mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
llama : avoid double tensor copy when saving session to buffer
This commit is contained in:
parent
dca7ad8627
commit
9329953a61
@ -17343,17 +17343,10 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi
|
|||||||
// TODO: replace all non-fatal assertions with returned errors or exceptions
|
// TODO: replace all non-fatal assertions with returned errors or exceptions
|
||||||
struct llama_data_write {
|
struct llama_data_write {
|
||||||
virtual void write(const void * src, size_t size) = 0;
|
virtual void write(const void * src, size_t size) = 0;
|
||||||
|
virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0;
|
||||||
virtual size_t get_size_written() = 0;
|
virtual size_t get_size_written() = 0;
|
||||||
virtual ~llama_data_write() = default;
|
virtual ~llama_data_write() = default;
|
||||||
|
|
||||||
std::vector<uint8_t> temp_buffer;
|
|
||||||
|
|
||||||
virtual void * get_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) {
|
|
||||||
temp_buffer.resize(size);
|
|
||||||
ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
|
|
||||||
return temp_buffer.data();
|
|
||||||
}
|
|
||||||
|
|
||||||
void write_string(const std::string & str) {
|
void write_string(const std::string & str) {
|
||||||
uint32_t str_size = str.size();
|
uint32_t str_size = str.size();
|
||||||
|
|
||||||
@ -17474,8 +17467,7 @@ struct llama_data_write {
|
|||||||
for (const auto & range : cell_ranges) {
|
for (const auto & range : cell_ranges) {
|
||||||
const size_t range_size = range.second - range.first;
|
const size_t range_size = range.second - range.first;
|
||||||
const size_t buf_size = range_size * k_size_row;
|
const size_t buf_size = range_size * k_size_row;
|
||||||
const void * data = get_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
|
write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
|
||||||
write(data, buf_size);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -17495,8 +17487,7 @@ struct llama_data_write {
|
|||||||
for (const auto & range : cell_ranges) {
|
for (const auto & range : cell_ranges) {
|
||||||
const size_t range_size = range.second - range.first;
|
const size_t range_size = range.second - range.first;
|
||||||
const size_t buf_size = range_size * v_size_row;
|
const size_t buf_size = range_size * v_size_row;
|
||||||
const void * data = get_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
|
write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
|
||||||
write(data, buf_size);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
@ -17523,8 +17514,7 @@ struct llama_data_write {
|
|||||||
const size_t range_size = range.second - range.first;
|
const size_t range_size = range.second - range.first;
|
||||||
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
|
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
|
||||||
const size_t buf_size = range_size * v_size_el;
|
const size_t buf_size = range_size * v_size_el;
|
||||||
const void * data = get_tensor_data(kv_self.v_l[il], src_offset, buf_size);
|
write_tensor_data(kv_self.v_l[il], src_offset, buf_size);
|
||||||
write(data, buf_size);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -17883,14 +17873,12 @@ struct llama_data_write_dummy : llama_data_write {
|
|||||||
|
|
||||||
llama_data_write_dummy() {}
|
llama_data_write_dummy() {}
|
||||||
|
|
||||||
// TODO: avoid unnecessary calls to ggml_backend_tensor_get in a dummy context
|
|
||||||
|
|
||||||
void write(const void * /* src */, size_t size) override {
|
void write(const void * /* src */, size_t size) override {
|
||||||
size_written += size;
|
size_written += size;
|
||||||
}
|
}
|
||||||
|
|
||||||
void * get_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t /* size */) override {
|
void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
|
||||||
return nullptr;
|
size_written += size;
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t get_size_written() override {
|
size_t get_size_written() override {
|
||||||
@ -17915,6 +17903,16 @@ struct llama_data_write_buffer : llama_data_write {
|
|||||||
buf_size -= size;
|
buf_size -= size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
|
||||||
|
if (size > buf_size) {
|
||||||
|
throw std::runtime_error("unexpectedly reached end of buffer");
|
||||||
|
}
|
||||||
|
ggml_backend_tensor_get(tensor, ptr, offset, size);
|
||||||
|
ptr += size;
|
||||||
|
size_written += size;
|
||||||
|
buf_size -= size;
|
||||||
|
}
|
||||||
|
|
||||||
size_t get_size_written() override {
|
size_t get_size_written() override {
|
||||||
return size_written;
|
return size_written;
|
||||||
}
|
}
|
||||||
@ -17950,6 +17948,7 @@ struct llama_data_read_buffer : llama_data_read {
|
|||||||
struct llama_data_write_file : llama_data_write {
|
struct llama_data_write_file : llama_data_write {
|
||||||
llama_file * file;
|
llama_file * file;
|
||||||
size_t size_written = 0;
|
size_t size_written = 0;
|
||||||
|
std::vector<uint8_t> temp_buffer;
|
||||||
|
|
||||||
llama_data_write_file(llama_file * f) : file(f) {}
|
llama_data_write_file(llama_file * f) : file(f) {}
|
||||||
|
|
||||||
@ -17958,6 +17957,12 @@ struct llama_data_write_file : llama_data_write {
|
|||||||
size_written += size;
|
size_written += size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
|
||||||
|
temp_buffer.resize(size);
|
||||||
|
ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
|
||||||
|
write(temp_buffer.data(), temp_buffer.size());
|
||||||
|
}
|
||||||
|
|
||||||
size_t get_size_written() override {
|
size_t get_size_written() override {
|
||||||
return size_written;
|
return size_written;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user