diff --git a/ggml.c b/ggml.c index 684d84235..55152bce4 100644 --- a/ggml.c +++ b/ggml.c @@ -165,9 +165,6 @@ void ggml_print_backtrace(void) { #define GGML_DEBUG 0 #define GGML_GELU_FP16 #define GGML_GELU_QUICK_FP16 -#define GGML_SILU_FP16 -// #define GGML_CROSS_ENTROPY_EXP_FP16 -// #define GGML_FLASH_ATTN_EXP_FP16 #define GGML_SOFT_MAX_UNROLL 4 #define GGML_VEC_DOT_UNROLL 2 @@ -318,12 +315,6 @@ static ggml_fp16_t ggml_table_gelu_f16[1 << 16]; // precomputed quick gelu table for f16 (128 KB) static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16]; -// precomputed silu table for f16 (128 KB) -static ggml_fp16_t ggml_table_silu_f16[1 << 16]; - -// precomputed exp table for f16 (128 KB) -static ggml_fp16_t ggml_table_exp_f16[1 << 16]; - // precomputed f32 table for f16 (256 KB) (ggml-impl.h) float ggml_table_f32_f16[1 << 16]; @@ -2085,52 +2076,291 @@ inline static float ggml_silu_f32(float x) { return x/(1.0f + expf(-x)); } -//inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { -// const uint16_t * i16 = (const uint16_t *) x; -// for (int i = 0; i < n; ++i) { -// y[i] = ggml_table_silu_f16[i16[i]]; -// } -//} +#if defined(__ARM_NEON) -#ifdef GGML_SILU_FP16 -inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) { - uint16_t t; - for (int i = 0; i < n; ++i) { - ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); - memcpy(&t, &fp16, sizeof(uint16_t)); - y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]); - } +// adapted from arm limited optimized routine +// the maximum error is 1.45358 plus 0.5 ulps +// numbers above 88.38 will flush to infinity +// numbers beneath -103.97 will flush to zero +inline static float32x4_t ggml_v_expf(float32x4_t x) { + const float32x4_t r = vdupq_n_f32(0x1.8p23f); + const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f)); + const float32x4_t n = vsubq_f32(z, r); + const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n, + vdupq_n_f32(0x1.7f7d1cp-20f)); + const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23); + const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1)))); + const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126)); + const float32x4_t u = vmulq_f32(b, b); + const float32x4_t j = vfmaq_f32( + vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b), + vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b), + vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u); + if (!vpaddd_u64(vreinterpretq_u64_u32(c))) + return vfmaq_f32(k, j, k); + const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000)); + const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000))); + const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d)); + return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1), + vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j))); } + +// computes silu x/(1+exp(-x)) in single precision vector +inline static float32x4_t ggml_v_silu(float32x4_t x) { + const float32x4_t one = vdupq_n_f32(1.0f); + const float32x4_t zero = vdupq_n_f32(0.0f); + const float32x4_t neg_x = vsubq_f32(zero, x); + const float32x4_t exp_neg_x = ggml_v_expf(neg_x); + const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x); + return vdivq_f32(x, one_plus_exp_neg_x); +} + +#elif defined(__AVX512F__) && defined(__AVX512DQ__) + +// adapted from arm limited optimized routine +// the maximum error is 1.45358 plus 0.5 ulps +// numbers above 88.38 will flush to infinity +// numbers beneath -103.97 will flush to zero +inline static __m512 ggml_v_expf(__m512 x) { + const __m512 r = _mm512_set1_ps(0x1.8p23f); + const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r); + const __m512 n = _mm512_sub_ps(z, r); + const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f), + _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x)); + const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23); + const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1)))); + const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ); + const __m512 u = _mm512_mul_ps(b, b); + const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b, + _mm512_set1_ps(0x1.573e2ep-5f)), u, + _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b, + _mm512_set1_ps(0x1.fffdb6p-2f))), + u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b)); + if (_mm512_kortestz(c, c)) + return _mm512_fmadd_ps(j, k, k); + const __m512i g = _mm512_and_si512( + _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)), + _mm512_set1_epi32(0x82000000u)); + const __m512 s1 = + _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u))); + const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g)); + const __mmask16 d = + _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ); + return _mm512_mask_blend_ps( + d, _mm512_mask_blend_ps( + c, _mm512_fmadd_ps(k, j, k), + _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)), + _mm512_mul_ps(s1, s1)); +} + +// computes silu x/(1+exp(-x)) in single precision vector +inline static __m512 ggml_v_silu(__m512 x) { + const __m512 one = _mm512_set1_ps(1); + const __m512 zero = _mm512_setzero_ps(); + const __m512 neg_x = _mm512_sub_ps(zero, x); + const __m512 exp_neg_x = ggml_v_expf(neg_x); + const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x); + return _mm512_div_ps(x, one_plus_exp_neg_x); +} + +#elif defined(__AVX2__) && defined(__FMA__) + +// adapted from arm limited optimized routine +// the maximum error is 1.45358 plus 0.5 ulps +// numbers above 88.38 will flush to infinity +// numbers beneath -103.97 will flush to zero +inline static __m256 ggml_v_expf(__m256 x) { + const __m256 r = _mm256_set1_ps(0x1.8p23f); + const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r); + const __m256 n = _mm256_sub_ps(z, r); + const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f), + _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x)); + const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23); + const __m256 k = _mm256_castsi256_ps( + _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1)))); + const __m256i c = _mm256_castps_si256( + _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n), + _mm256_set1_ps(126), _CMP_GT_OQ)); + const __m256 u = _mm256_mul_ps(b, b); + const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b, + _mm256_set1_ps(0x1.573e2ep-5f)), u, + _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b, + _mm256_set1_ps(0x1.fffdb6p-2f))), + u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b)); + if (!_mm256_movemask_ps(_mm256_castsi256_ps(c))) + return _mm256_fmadd_ps(j, k, k); + const __m256i g = _mm256_and_si256( + _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)), + _mm256_set1_epi32(0x82000000u)); + const __m256 s1 = + _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u))); + const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g)); + const __m256i d = _mm256_castps_si256( + _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n), + _mm256_set1_ps(192), _CMP_GT_OQ)); + return _mm256_or_ps( + _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)), + _mm256_andnot_ps( + _mm256_castsi256_ps(d), + _mm256_or_ps( + _mm256_and_ps(_mm256_castsi256_ps(c), + _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)), + _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k))))); +} + +// computes silu x/(1+exp(-x)) in single precision vector +inline static __m256 ggml_v_silu(__m256 x) { + const __m256 one = _mm256_set1_ps(1); + const __m256 zero = _mm256_setzero_ps(); + const __m256 neg_x = _mm256_sub_ps(zero, x); + const __m256 exp_neg_x = ggml_v_expf(neg_x); + const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x); + return _mm256_div_ps(x, one_plus_exp_neg_x); +} + +#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON + +#if defined(__FMA__) +#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z) +#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z) #else -inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) { - for (int i = 0; i < n; ++i) { +#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z) +#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y)) +#endif + +// adapted from arm limited optimized routine +// the maximum error is 1.45358 plus 0.5 ulps +// numbers above 88.38 will flush to infinity +// numbers beneath -103.97 will flush to zero +inline static __m128 ggml_v_expf(__m128 x) { + const __m128 r = _mm_set1_ps(0x1.8p23f); + const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r); + const __m128 n = _mm_sub_ps(z, r); + const __m128 b = + NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x)); + const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23); + const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1)))); + const __m128i c = + _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126))); + const __m128 u = _mm_mul_ps(b, b); + const __m128 j = + MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u, + MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))), + u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b)); + if (!_mm_movemask_epi8(c)) + return MADD128(j, k, k); + const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())), + _mm_set1_epi32(0x82000000u)); + const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u))); + const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g)); + const __m128i d = + _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192))); + return _mm_or_ps( + _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)), + _mm_andnot_ps(_mm_castsi128_ps(d), + _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)), + _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k))))); +} + +// computes silu x/(1+exp(-x)) in single precision vector +inline static __m128 ggml_v_silu(__m128 x) { + const __m128 one = _mm_set1_ps(1); + const __m128 zero = _mm_setzero_ps(); + const __m128 neg_x = _mm_sub_ps(zero, x); + const __m128 exp_neg_x = ggml_v_expf(neg_x); + const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x); + return _mm_div_ps(x, one_plus_exp_neg_x); +} + +#endif // __ARM_NEON / __AVX2__ / __SSE2__ + +static void ggml_vec_silu_f32(const int n, float * y, const float * x) { + int i = 0; +#if defined(__AVX512F__) && defined(__AVX512DQ__) + for (; i + 15 < n; i += 16) { + _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i))); + } +#elif defined(__AVX2__) && defined(__FMA__) + for (; i + 7 < n; i += 8) { + _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i))); + } +#elif defined(__SSE2__) + for (; i + 3 < n; i += 4) { + _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i))); + } +#elif defined(__ARM_NEON) + for (; i + 3 < n; i += 4) { + vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i))); + } +#endif + for (; i < n; ++i) { y[i] = ggml_silu_f32(x[i]); } } + +static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) { + int i = 0; + ggml_float sum = 0; +#if defined(__AVX512F__) && defined(__AVX512DQ__) + for (; i + 15 < n; i += 16) { + __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i), + _mm512_set1_ps(max))); + _mm512_storeu_ps(y + i, val); + sum += (ggml_float)_mm512_reduce_add_ps(val); + } +#elif defined(__AVX2__) && defined(__FMA__) + for (; i + 7 < n; i += 8) { + __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i), + _mm256_set1_ps(max))); + _mm256_storeu_ps(y + i, val); + __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1), + _mm256_castps256_ps128(val)); + val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2)); + val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2)); + sum += (ggml_float)_mm_cvtss_f32(val2); + } +#elif defined(__SSE2__) + for (; i + 3 < n; i += 4) { + __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i), + _mm_set1_ps(max))); + _mm_storeu_ps(y + i, val); +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) + val = _mm_add_ps(val, _mm_movehl_ps(val, val)); + val = _mm_add_ss(val, _mm_movehdup_ps(val)); +#else + __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1)); + val = _mm_add_ps(val, tmp); + tmp = _mm_movehl_ps(tmp, val); + val = _mm_add_ss(val, tmp); #endif + sum += (ggml_float)_mm_cvtss_f32(val); + } +#elif defined(__ARM_NEON) + for (; i + 3 < n; i += 4) { + float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i), + vdupq_n_f32(max))); + vst1q_f32(y + i, val); + sum += (ggml_float)vaddvq_f32(val); + } +#endif + for (; i < n; ++i) { + float val = expf(x[i] - max); + sum += (ggml_float)val; + y[i] = val; + } + return sum; +} inline static float ggml_silu_backward_f32(float x, float dy) { const float s = 1.0f/(1.0f + expf(-x)); return dy*s*(1.0f + x*(1.0f - s)); } -#ifdef GGML_SILU_FP16 -inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) { - for (int i = 0; i < n; ++i) { - // we did not use x[i] to compute forward silu but its f16 equivalent - // take derivative at f16 of x[i]: - ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); - float usedx = GGML_FP16_TO_FP32(fp16); - dx[i] = ggml_silu_backward_f32(usedx, dy[i]); - } -} -#else inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) { for (int i = 0; i < n; ++i) { dx[i] = ggml_silu_backward_f32(x[i], dy[i]); } } -#endif inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) { #ifndef GGML_USE_ACCELERATE @@ -2922,8 +3152,6 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16); ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f)); ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f)); - ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f)); - ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f)); } const uint64_t t_end = ggml_time_us(); UNUSED(t_end); @@ -13600,22 +13828,7 @@ static void ggml_compute_forward_soft_max_f32( float max = -INFINITY; ggml_vec_max_f32(nc, &max, wp); - ggml_float sum = 0.0; - - uint16_t scvt; - for (int i = 0; i < nc; i++) { - if (wp[i] == -INFINITY) { - dp[i] = 0.0f; - } else { - // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max); - ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max); - memcpy(&scvt, &s, sizeof(scvt)); - const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]); - sum += (ggml_float)val; - dp[i] = val; - } - } - + ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max); assert(sum > 0.0); sum = 1.0/sum; @@ -15374,37 +15587,7 @@ static void ggml_compute_forward_flash_attn_f32( vvexpf(S, S, &Mup); ggml_vec_sum_f32(Mup, &sum, S); #else - uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); - ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; - - for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { - if (i >= masked_begin) { - break; - } - float * SS = S + i; - - for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { - if (i + j >= masked_begin) { - break; - } else if (SS[j] == -INFINITY) { - SS[j] = 0.0f; - } else { -#ifndef GGML_FLASH_ATTN_EXP_FP16 - const float val = expf(SS[j] - max); -#else - ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); - memcpy(&scvt[j], &s, sizeof(uint16_t)); - const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]); -#endif - sump[j] += (ggml_float)val; - SS[j] = val; - } - } - } - - for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { - sum += sump[i]; - } + sum = ggml_vec_soft_max_f32(Mup, S, S, max); #endif } @@ -15586,28 +15769,7 @@ static void ggml_compute_forward_flash_attn_f16( vvexpf(S, S, &Mup); ggml_vec_sum_f32(Mup, &sum, S); #else - uint16_t scvt[GGML_SOFT_MAX_UNROLL]; - ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; - - for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { - float * SS = S + i; - - for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { - if (SS[j] == -INFINITY) { - SS[j] = 0.0f; - } else { - ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); - memcpy(&scvt[j], &s, sizeof(uint16_t)); - const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]); - sump[j] += (ggml_float)val; - SS[j] = val; - } - } - } - - for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { - sum += sump[i]; - } + sum = ggml_vec_soft_max_f32(Mup, S, S, max); #endif } @@ -16234,38 +16396,7 @@ static void ggml_compute_forward_flash_attn_back_f32( vvexpf(SM, SM, &Mup); ggml_vec_sum_f32(Mup, &sum, SM); #else - uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); - ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; - - for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { - if (i >= masked_begin) { - break; - } - float * SR = S + i; - float * SW = SM + i; - - for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { - if (i + j >= masked_begin) { - break; - } else if (SR[j] == -INFINITY) { - SW[j] = 0.0f; - } else { -#ifndef GGML_FLASH_ATTN_EXP_FP16 - const float val = expf(SR[j] - max); -#else - ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max); - memcpy(&scvt[j], &s, sizeof(uint16_t)); - const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]); -#endif - sump[j] += (ggml_float)val; - SW[j] = val; - } - } - } - - for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { - sum += sump[i]; - } + sum = ggml_vec_soft_max_f32(Mup, SM, S, max); #endif } @@ -17291,35 +17422,15 @@ static void ggml_compute_forward_cross_entropy_loss_f32( assert(!isnan(s1[i])); } #endif + // soft_max - ggml_float sum = 0.0; - { - float max = -INFINITY; - ggml_vec_max_f32(nc, &max, s0); - - uint16_t scvt; UNUSED(scvt); - for (int i = 0; i < nc; i++) { - if (s0[i] == -INFINITY) { - st[i] = 0.0f; - } else { -#ifndef GGML_CROSS_ENTROPY_EXP_FP16 - const float s = s0[i] - max; - const float val = expf(s); -#else - ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max); - memcpy(&scvt, &s, sizeof(scvt)); - const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]); -#endif - sum += (ggml_float)val; - st[i] = val; - } - } - - assert(sum > 0.0); - // sum = 1.0/sum; - } - // avoid log(0) by rescaling from [0..1] to [eps..1] + float max = -INFINITY; + ggml_vec_max_f32(nc, &max, s0); + ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max); + assert(sum > 0.0); sum = (1.0 - eps) / sum; + + // avoid log(0) by rescaling from [0..1] to [eps..1] ggml_vec_scale_f32(nc, st, sum); ggml_vec_add1_f32(nc, st, st, eps); ggml_vec_log_f32(nc, st, st); @@ -17409,32 +17520,11 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( #endif // soft_max - ggml_float sum = 0.0; - { - float max = -INFINITY; - ggml_vec_max_f32(nc, &max, s0); - - uint16_t scvt; UNUSED(scvt); - for (int i = 0; i < nc; i++) { - if (s0[i] == -INFINITY) { - ds0[i] = 0.0f; - } else { -#ifndef GGML_CROSS_ENTROPY_EXP_FP16 - const float s = s0[i] - max; - const float val = expf(s); -#else - ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max); - memcpy(&scvt, &s, sizeof(scvt)); - const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]); -#endif - sum += (ggml_float)val; - ds0[i] = val; - } - } - - assert(sum > 0.0); - sum = (1.0 - eps)/sum; - } + float max = -INFINITY; + ggml_vec_max_f32(nc, &max, s0); + ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max); + assert(sum > 0.0); + sum = (1.0 - eps) / sum; // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr ggml_vec_scale_f32(nc, ds0, sum);