mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
english : use typos
to fix comments and logs (#4354)
This commit is contained in:
parent
6138963fb2
commit
9494d7c477
@ -61,13 +61,13 @@
|
||||
// #define LOG_TARGET stderr
|
||||
// #include "log.h"
|
||||
//
|
||||
// The log target can also be redirected to a diffrent function
|
||||
// The log target can also be redirected to a different function
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_diffrent()
|
||||
// #define LOG_TARGET log_handler_different()
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_diffrent()
|
||||
// FILE* log_handler_different()
|
||||
// {
|
||||
// return stderr;
|
||||
// }
|
||||
@ -421,7 +421,7 @@ inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriS
|
||||
|
||||
// Disables logs entirely at runtime.
|
||||
// Makes LOG() and LOG_TEE() produce no output,
|
||||
// untill enabled back.
|
||||
// until enabled back.
|
||||
#define log_disable() log_disable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
|
@ -585,7 +585,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
|
||||
|
||||
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
|
||||
# Transformers models put different tensors in different files, but
|
||||
# don't split indivdual tensors between files.
|
||||
# don't split individual tensors between files.
|
||||
model: LazyModel = {}
|
||||
for mp in models_plus:
|
||||
model.update(mp.model)
|
||||
@ -678,7 +678,7 @@ class LazyUnpickler(pickle.Unpickler):
|
||||
return func(*args)
|
||||
|
||||
CLASSES: dict[tuple[str, str], Any] = {
|
||||
# getattr used here as a workaround for mypy not being smart enough to detrmine
|
||||
# getattr used here as a workaround for mypy not being smart enough to determine
|
||||
# the staticmethods have a __func__ attribute.
|
||||
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
|
||||
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
|
||||
|
@ -739,7 +739,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
|
||||
temp->ny = longer_side;
|
||||
temp->size = 3 * longer_side * longer_side;
|
||||
temp->data = new uint8_t[temp->size]();
|
||||
uint8_t bc[3] = {122, 116, 104}; // bakground color in RGB from LLaVA
|
||||
uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
|
||||
|
||||
// fill with background color
|
||||
for (size_t i = 0; i < temp->size; i++) {
|
||||
|
@ -51,7 +51,7 @@ def bytes_to_unicode():
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
|
@ -1,6 +1,6 @@
|
||||
# llama.cpp/examples/lookahead
|
||||
|
||||
Demonstartion of lookahead decoding technique:
|
||||
Demonstration of lookahead decoding technique:
|
||||
|
||||
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
|
||||
|
@ -11227,7 +11227,7 @@ class binary_reader
|
||||
}
|
||||
if (is_ndarray) // ndarray dimensional vector can only contain integers, and can not embed another array
|
||||
{
|
||||
return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimentional vector is not allowed", "size"), nullptr));
|
||||
return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimensional vector is not allowed", "size"), nullptr));
|
||||
}
|
||||
std::vector<size_t> dim;
|
||||
if (JSON_HEDLEY_UNLIKELY(!get_ubjson_ndarray_size(dim)))
|
||||
|
@ -114,7 +114,7 @@ export async function* llama(prompt, params = {}, config = {}) {
|
||||
return content;
|
||||
}
|
||||
|
||||
// Call llama, return an event target that you can subcribe to
|
||||
// Call llama, return an event target that you can subscribe to
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
|
@ -238,7 +238,7 @@
|
||||
cache_prompt: true
|
||||
})
|
||||
|
||||
/* START: Support for storing prompt templates and parameters in borwser LocalStorage */
|
||||
/* START: Support for storing prompt templates and parameters in browsers LocalStorage */
|
||||
|
||||
const local_storage_storageKey = "llamacpp_server_local_storage";
|
||||
|
||||
@ -282,7 +282,7 @@
|
||||
let importedTemplates = local_storage_getDataAsObject('user_templates')
|
||||
|
||||
if (importedTemplates) {
|
||||
// saved templates were successfuly imported.
|
||||
// saved templates were successfully imported.
|
||||
|
||||
console.log('Processing saved templates and updating default template')
|
||||
params.value = { ...params.value, image_data: [] };
|
||||
@ -303,7 +303,7 @@
|
||||
}
|
||||
|
||||
function userTemplateResetToDefault() {
|
||||
console.log('Reseting themplate to default')
|
||||
console.log('Resetting template to default')
|
||||
selectedUserTemplate.value.name = 'default';
|
||||
selectedUserTemplate.value.data = savedUserTemplates.value['default'];
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
# llama.cpp/examples/speculative
|
||||
|
||||
Demonstartion of speculative decoding and tree-based speculative decoding techniques
|
||||
Demonstration of speculative decoding and tree-based speculative decoding techniques
|
||||
|
||||
More info:
|
||||
|
||||
|
@ -428,7 +428,7 @@ int main(int argc, char ** argv) {
|
||||
++n_past_tgt;
|
||||
}
|
||||
|
||||
// the first token is always proposed by the traget model before the speculation loop so we erase it here
|
||||
// the first token is always proposed by the target model before the speculation loop so we erase it here
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
|
@ -43,7 +43,7 @@ GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph
|
||||
// ggml-backend v2 API
|
||||
//
|
||||
|
||||
// Seperate tensor and graph allocator objects
|
||||
// Separate tensor and graph allocator objects
|
||||
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
|
||||
// The original API is kept as a wrapper around the new API
|
||||
|
||||
|
@ -3114,7 +3114,7 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri
|
||||
|
||||
size_t vl = __riscv_vsetvl_e8m1(qk/2);
|
||||
|
||||
// These tempory registers are for masking and shift operations
|
||||
// These temporary registers are for masking and shift operations
|
||||
vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
|
||||
vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
|
||||
|
||||
@ -4757,7 +4757,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
vl = 16;
|
||||
|
||||
// retreive lane to multiply with scale
|
||||
// retrieve lane to multiply with scale
|
||||
vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
|
||||
vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
|
||||
vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
|
||||
|
12
ggml.c
12
ggml.c
@ -1,4 +1,4 @@
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
|
||||
#define _USE_MATH_DEFINES // For M_PI on MSVC
|
||||
|
||||
#include "ggml-impl.h"
|
||||
@ -33,7 +33,7 @@
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
|
||||
// disable POSIX deprecation warnigns
|
||||
// disable POSIX deprecation warnings
|
||||
// these functions are never going away, anyway
|
||||
#pragma warning(disable: 4996)
|
||||
#endif
|
||||
@ -1760,7 +1760,7 @@ static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size
|
||||
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
||||
|
||||
// WARN:
|
||||
// Mis-confguration can lead to problem that's hard to reason about:
|
||||
// Mis-configuration can lead to problem that's hard to reason about:
|
||||
// * At best it crash or talks nosense.
|
||||
// * At worst it talks slightly difference but hard to perceive.
|
||||
//
|
||||
@ -7520,7 +7520,7 @@ static void ggml_compute_forward_acc_f32(
|
||||
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||||
|
||||
// view src0 and dst with these strides and data offset inbytes during acc
|
||||
// nb0 is implicitely element_size because src0 and dst are contiguous
|
||||
// nb0 is implicitly element_size because src0 and dst are contiguous
|
||||
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||||
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||||
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||||
@ -10161,7 +10161,7 @@ static void ggml_compute_forward_set_f32(
|
||||
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||||
|
||||
// view src0 and dst with these strides and data offset inbytes during set
|
||||
// nb0 is implicitely element_size because src0 and dst are contiguous
|
||||
// nb0 is implicitly element_size because src0 and dst are contiguous
|
||||
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||||
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||||
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||||
@ -14475,7 +14475,7 @@ void ggml_build_backward_gradient_checkpointing(
|
||||
// insert new tensors recomputing src, reusing already made replacements,
|
||||
// remember replacements: remember new tensors with mapping from corresponding gf nodes
|
||||
// recurse for input tensors,
|
||||
// unless (i.e. terminating when) input tensors are replacments (like checkpoints)
|
||||
// unless (i.e. terminating when) input tensors are replacements (like checkpoints)
|
||||
node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
|
||||
}
|
||||
// insert rewritten backward node with replacements made into resulting backward graph gb
|
||||
|
@ -61,7 +61,7 @@ If you want to publish the package manually for any reason, you need to have `tw
|
||||
pip install build twine
|
||||
```
|
||||
|
||||
Then, folow these steps to release a new version:
|
||||
Then, follow these steps to release a new version:
|
||||
|
||||
1. Bump the version in `pyproject.toml`.
|
||||
2. Build the package:
|
||||
|
10
llama.cpp
10
llama.cpp
@ -2758,7 +2758,7 @@ static void llm_load_vocab(
|
||||
// The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
|
||||
// to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
|
||||
// are special tokens.
|
||||
// From testing, this appears to corelate 1:1 with special tokens.
|
||||
// From testing, this appears to correlate 1:1 with special tokens.
|
||||
//
|
||||
|
||||
// Counting special tokens and verifying in only one direction
|
||||
@ -5846,7 +5846,7 @@ static int llama_decode_internal(
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_vocab = hparams.n_vocab;
|
||||
|
||||
// helpers for smoother batch API transistion
|
||||
// helpers for smoother batch API transition
|
||||
// after deprecating the llama_eval calls, these will be removed
|
||||
std::vector<llama_pos> pos;
|
||||
|
||||
@ -6625,12 +6625,12 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
||||
|
||||
// loop over the text
|
||||
while (true) {
|
||||
// find the first occurence of a given special token in this fragment
|
||||
// find the first occurrence of a given special token in this fragment
|
||||
// passing offset argument only limit the "search area" but match coordinates
|
||||
// are still relative to the source full raw_text
|
||||
auto match = raw_text->find(special_token, raw_text_base_offset);
|
||||
|
||||
// no occurences found, stop processing this fragment for a given special token
|
||||
// no occurrences found, stop processing this fragment for a given special token
|
||||
if (match == std::string::npos) break;
|
||||
|
||||
// check if match is within bounds of offset <-> length
|
||||
@ -7829,7 +7829,7 @@ struct llama_beam_search_data {
|
||||
}
|
||||
|
||||
// Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
|
||||
// The repetative patterns below reflect the 2 stages of heaps:
|
||||
// The repetitive patterns below reflect the 2 stages of heaps:
|
||||
// * Gather elements until the vector is full, then call std::make_heap() on it.
|
||||
// * If the heap is full and a new element is found that should be included, pop the
|
||||
// least element to the back(), replace it with the new, then push it into the heap.
|
||||
|
@ -1,4 +1,4 @@
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cmath>
|
||||
|
@ -117,7 +117,7 @@ static void usage(char * argv[]) {
|
||||
printf(" --size SIZE set test size, divisible by 32 (L1_SIZE:%d)\n", L1_SIZE);
|
||||
printf(" -3 use size as L1, L2, L3 sizes (L1:%d L2:%d L3:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE);
|
||||
printf(" -4 use size as L1, L2, L3, MEM sizes (L1:%d L2:%d L3:%d MEM:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE, MEM_SIZE);
|
||||
printf(" --op OP set test opration as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n");
|
||||
printf(" --op OP set test operation as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n");
|
||||
printf(" quantize_row_q_dot, vec_dot_q (all)\n");
|
||||
printf(" --type TYPE set test type as");
|
||||
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
||||
@ -202,7 +202,7 @@ int main(int argc, char * argv[]) {
|
||||
}
|
||||
int alignment = std::stoi(argv[i]);
|
||||
if (alignment < 0 || alignment > MAX_ALIGNMENT) {
|
||||
fprintf(stderr, "error: aligment-offset must be less than %d\n", MAX_ALIGNMENT);
|
||||
fprintf(stderr, "error: alignment-offset must be less than %d\n", MAX_ALIGNMENT);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user