mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
examples : restore the functionality to import llama2.c models (#2685)
* Fix import of llama2.c models that don't share weights between embedding layers * llama2c: reinstate ggmlv3 conversion output + update readme w/ gguf conv * llama2.c: comment out legacy "load from ggml model" logic * llama2.c: convert special-cased "<0xXX>" single byte tokens from tokenizer.bin
This commit is contained in:
parent
335acd2ffd
commit
95385241a9
@ -12,15 +12,19 @@ usage: ./convert-llama2c-to-ggml [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'models/ggml-vocab.bin')
|
||||
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'tokenizer.bin')
|
||||
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
|
||||
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
|
||||
```
|
||||
|
||||
An example command is as follows:
|
||||
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
|
||||
|
||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model <ggml-vocab.bin> --llama2c-model <llama2.c model path> --llama2c-output-model <ggml output model path>`
|
||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model ../llama2.c/tokenizer.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.ggmlv3.bin`
|
||||
|
||||
Now you can use the model with command like:
|
||||
For now the generated model is in the legacy GGJTv3 format, so you need to convert it to gguf manually:
|
||||
|
||||
`$ ./main -m <ggml output model path> -p "One day, Lily met a Shoggoth" -n 500 -c 256 -eps 1e-5`
|
||||
`$ python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 --input stories42M.ggmlv3.bin --output stories42M.gguf.bin`
|
||||
|
||||
Now you can use the model with a command like:
|
||||
|
||||
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
|
||||
|
@ -17,6 +17,9 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||
#define LLAMA_FILE_VERSION_GGJT_V3 3
|
||||
|
||||
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
||||
typedef struct {
|
||||
int dim; // transformer dimension
|
||||
@ -49,10 +52,10 @@ typedef struct {
|
||||
// float* freq_cis_real; // (seq_len, dim/2)
|
||||
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||
// (optional) classifier weights for the logits, on the last layer
|
||||
//float* wcls;
|
||||
float* wcls;
|
||||
} TransformerWeights;
|
||||
|
||||
void malloc_weights(TransformerWeights* w, Config* p) {
|
||||
void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
||||
// we calloc instead of malloc to keep valgrind happy
|
||||
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
@ -86,9 +89,16 @@ void malloc_weights(TransformerWeights* w, Config* p) {
|
||||
|
||||
w->rms_final_weight = new float[p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
|
||||
if (shared_weights) {
|
||||
w->wcls = NULL;
|
||||
} else {
|
||||
w->wcls = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
}
|
||||
}
|
||||
|
||||
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) {
|
||||
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
@ -100,6 +110,22 @@ int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) {
|
||||
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
||||
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
||||
|
||||
// Skip freq_cis_real & freq_cis_imag
|
||||
int head_size = p->dim / p->n_heads;
|
||||
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
||||
|
||||
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
|
||||
// Check we didn't forget to read anything
|
||||
auto curr = ftell(f);
|
||||
fseek(f, 0, SEEK_END);
|
||||
auto end = ftell(f);
|
||||
if (curr != end) {
|
||||
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -115,6 +141,7 @@ void free_weights(TransformerWeights* w) {
|
||||
delete w->w2;
|
||||
delete w->w3;
|
||||
delete w->rms_final_weight;
|
||||
if (w->wcls) delete w->wcls;
|
||||
}
|
||||
|
||||
void print_sample_weights(TransformerWeights *w){
|
||||
@ -131,6 +158,7 @@ void print_sample_weights(TransformerWeights *w){
|
||||
printf("%f\n", w->w2[0]);
|
||||
printf("%f\n", w->w3[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
if (w->wcls) printf("%f\n", w->wcls[0]);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -509,26 +537,28 @@ bool is_ggml_file(const char *filename) {
|
||||
}
|
||||
|
||||
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||
// heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
|
||||
if (is_ggml_file(filename)) {
|
||||
|
||||
struct llama_context_params llama_params = llama_context_default_params();
|
||||
llama_params.vocab_only = true;
|
||||
|
||||
struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
|
||||
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
|
||||
|
||||
const int n_vocab = llama_n_vocab(lctx);
|
||||
vocab->id_to_token.resize(n_vocab);
|
||||
for (int i=0; i<n_vocab; ++i) {
|
||||
vocab->id_to_token[i].text = llama_token_get_text(lctx, i);
|
||||
vocab->id_to_token[i].score = llama_token_get_score(lctx, i);
|
||||
vocab->id_to_token[i].type = llama_token_get_type(lctx, i);
|
||||
vocab->token_to_id.emplace(vocab->id_to_token[i].text, i);
|
||||
}
|
||||
llama_free(lctx);
|
||||
llama_free_model(lmodel);
|
||||
} else { // assume llama2.c vocabulary
|
||||
#pragma message("TODO: implement reading vocabulary using gguf")
|
||||
// // heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
|
||||
// if (is_ggml_file(filename)) {
|
||||
//
|
||||
// struct llama_context_params llama_params = llama_context_default_params();
|
||||
// llama_params.vocab_only = true;
|
||||
//
|
||||
// struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
|
||||
// struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
|
||||
//
|
||||
// const int n_vocab = llama_n_vocab(lctx);
|
||||
// vocab->id_to_token.resize(n_vocab);
|
||||
// for (int i=0; i<n_vocab; ++i) {
|
||||
// vocab->id_to_token[i].text = llama_token_get_text(lctx, i);
|
||||
// vocab->id_to_token[i].score = llama_token_get_score(lctx, i);
|
||||
// vocab->id_to_token[i].type = llama_token_get_type(lctx, i);
|
||||
// vocab->token_to_id.emplace(vocab->id_to_token[i].text, i);
|
||||
// }
|
||||
// llama_free(lctx);
|
||||
// llama_free_model(lmodel);
|
||||
// } else
|
||||
{ // assume llama2.c vocabulary
|
||||
printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
|
||||
llama_file file(filename, "rb");
|
||||
const int n_vocab = config->vocab_size;
|
||||
@ -538,6 +568,12 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab)
|
||||
float_t score = file.read_f32();
|
||||
uint32_t len = file.read_u32();
|
||||
std::string text = file.read_string(len);
|
||||
// Special-case handling of <0xXX> single byte tokens.
|
||||
char byte_val;
|
||||
if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
|
||||
char cstr[2] = { byte_val, 0 };
|
||||
text = cstr;
|
||||
}
|
||||
vocab->id_to_token[i].text = text;
|
||||
vocab->id_to_token[i].score = score;
|
||||
vocab->id_to_token[i].type = LLAMA_TOKEN_TYPE_UNDEFINED;
|
||||
@ -589,83 +625,80 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
|
||||
}
|
||||
|
||||
#pragma message("TODO: implement file saving using gguf")
|
||||
(void) vocab;
|
||||
(void) model;
|
||||
(void) w;
|
||||
// // write_magic
|
||||
// file.write_u32(LLAMA_FILE_MAGIC); // magic
|
||||
// file.write_u32(LLAMA_FILE_VERSION); // version
|
||||
// // write_hparams
|
||||
// file.write_u32(model->hparams.n_vocab);
|
||||
// file.write_u32(model->hparams.n_embd);
|
||||
// file.write_u32(model->hparams.n_mult);
|
||||
// file.write_u32(model->hparams.n_head);
|
||||
// file.write_u32(model->hparams.n_layer);
|
||||
// file.write_u32(model->hparams.n_rot);
|
||||
// file.write_u32(LLAMA_FTYPE_ALL_F32);
|
||||
//
|
||||
// // write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
|
||||
// uint32_t n_vocab = model->hparams.n_vocab;
|
||||
// for (uint32_t i = 0; i < n_vocab; i++) {
|
||||
// const auto & token_data = vocab->id_to_token.at(i);
|
||||
// file.write_u32((uint32_t) token_data.tok.size());
|
||||
// file.write_raw(token_data.tok.data(), token_data.tok.size());
|
||||
// file.write_raw(&token_data.score, sizeof(token_data.score));
|
||||
// }
|
||||
//
|
||||
// // stuff AK weights into GG weights one by one.
|
||||
// // w->token_embedding_table -> model->tok_embeddings
|
||||
// // float* -> struct ggml_tensor
|
||||
// stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
// stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
|
||||
//
|
||||
// stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
||||
// //print_row(model->norm, 0);
|
||||
//
|
||||
// // for rms-att-weight
|
||||
// int row_length = model->hparams.n_embd;
|
||||
// const auto & hparams = model->hparams;
|
||||
// //int n_ff = model->hparams.n_embd;
|
||||
// int n_ff = get_n_ff(&hparams);
|
||||
//
|
||||
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||
// auto & layer = model->layers[i];
|
||||
// // 1d
|
||||
// stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||
// stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||
//
|
||||
// // from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||
// stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
// stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
// stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
// stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
//
|
||||
// stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
// stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
// stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||
// }
|
||||
// // write tensors
|
||||
// write_tensor(&file, model->tok_embeddings);
|
||||
// write_tensor(&file, model->norm);
|
||||
// write_tensor(&file, model->output); // ?
|
||||
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||
// auto & layer = model->layers[i];
|
||||
//
|
||||
// write_tensor(&file, layer.attention_norm);
|
||||
// write_tensor(&file, layer.wq);
|
||||
// write_tensor(&file, layer.wk);
|
||||
// write_tensor(&file, layer.wv);
|
||||
// write_tensor(&file, layer.wo);
|
||||
// write_tensor(&file, layer.ffn_norm);
|
||||
// write_tensor(&file, layer.w1);
|
||||
// write_tensor(&file, layer.w2);
|
||||
// write_tensor(&file, layer.w3);
|
||||
// }
|
||||
// write_magic
|
||||
file.write_u32(LLAMA_FILE_MAGIC_GGJT); // magic
|
||||
file.write_u32(LLAMA_FILE_VERSION_GGJT_V3); // version
|
||||
// write_hparams
|
||||
file.write_u32(model->hparams.n_vocab);
|
||||
file.write_u32(model->hparams.n_embd);
|
||||
file.write_u32(model->hparams.n_mult);
|
||||
file.write_u32(model->hparams.n_head);
|
||||
file.write_u32(model->hparams.n_layer);
|
||||
file.write_u32(model->hparams.n_rot);
|
||||
file.write_u32(LLAMA_FTYPE_ALL_F32);
|
||||
|
||||
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
|
||||
uint32_t n_vocab = model->hparams.n_vocab;
|
||||
for (uint32_t i = 0; i < n_vocab; i++) {
|
||||
const auto & token_data = vocab->id_to_token.at(i);
|
||||
file.write_u32((uint32_t) token_data.text.size());
|
||||
file.write_raw(token_data.text.data(), token_data.text.size());
|
||||
file.write_raw(&token_data.score, sizeof(token_data.score));
|
||||
}
|
||||
|
||||
// stuff AK weights into GG weights one by one.
|
||||
// w->token_embedding_table -> model->tok_embeddings
|
||||
// float* -> struct ggml_tensor
|
||||
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
stuff_karpathy_weights_into_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
||||
|
||||
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
||||
//print_row(model->norm, 0);
|
||||
|
||||
// for rms-att-weight
|
||||
int row_length = model->hparams.n_embd;
|
||||
const auto & hparams = model->hparams;
|
||||
//int n_ff = model->hparams.n_embd;
|
||||
int n_ff = get_n_ff(&hparams);
|
||||
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||
auto & layer = model->layers[i];
|
||||
// 1d
|
||||
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
|
||||
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||
}
|
||||
// write tensors
|
||||
write_tensor(&file, model->tok_embeddings);
|
||||
write_tensor(&file, model->norm);
|
||||
write_tensor(&file, model->output); // ?
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
|
||||
write_tensor(&file, layer.attention_norm);
|
||||
write_tensor(&file, layer.wq);
|
||||
write_tensor(&file, layer.wk);
|
||||
write_tensor(&file, layer.wv);
|
||||
write_tensor(&file, layer.wo);
|
||||
write_tensor(&file, layer.ffn_norm);
|
||||
write_tensor(&file, layer.w1);
|
||||
write_tensor(&file, layer.w2);
|
||||
write_tensor(&file, layer.w3);
|
||||
}
|
||||
}
|
||||
|
||||
struct train_params get_default_train_params() {
|
||||
struct train_params params;
|
||||
params.fn_vocab_model = "models/ggml-vocab.bin";
|
||||
params.fn_vocab_model = "tokenizer.bin";
|
||||
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||
params.fn_train_data = "shakespeare.txt";
|
||||
params.fn_checkpoint_in = "checkpoint.bin";
|
||||
@ -718,7 +751,7 @@ void print_usage(int /*argc*/, char ** argv, const struct train_params * params)
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggml model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
||||
fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggmlv3 model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
||||
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
||||
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
||||
fprintf(stderr, "\n");
|
||||
@ -791,9 +824,12 @@ int main(int argc, char ** argv) {
|
||||
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||
// read in the config header
|
||||
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
||||
auto shared_weights = config.vocab_size > 0;
|
||||
config.vocab_size = abs(config.vocab_size);
|
||||
|
||||
// read in the Transformer weights
|
||||
malloc_weights(&weights, &config);
|
||||
if(checkpoint_init_weights(&weights, &config, file)) { return 1; }
|
||||
malloc_weights(&weights, &config, shared_weights);
|
||||
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user