From 96ea727f4780620b60c1897b538654931411a3fd Mon Sep 17 00:00:00 2001 From: Matvey Soloviev Date: Sun, 12 Mar 2023 22:13:28 +0100 Subject: [PATCH] Add interactive mode (#61) * Initial work on interactive mode. * Improve interactive mode. Make rev. prompt optional. * Update README to explain interactive mode. * Fix OS X build --- README.md | 23 +++++++++ main.cpp | 137 ++++++++++++++++++++++++++++++++++++++++++++++++++---- utils.cpp | 14 ++++++ utils.h | 6 +++ 4 files changed, 170 insertions(+), 10 deletions(-) diff --git a/README.md b/README.md index a7ba2c967..c333f0142 100644 --- a/README.md +++ b/README.md @@ -183,6 +183,29 @@ The number of files generated for each model is as follows: When running the larger models, make sure you have enough disk space to store all the intermediate files. +### Interactive mode + +If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter. +In this mode, you can always interrupt generation by pressing Ctrl+C and enter one or more lines of text which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt which makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`. + +Here is an example few-shot interaction, invoked with the command +``` +./main -m ./models/13B/ggml-model-q4_0.bin -t 8 --repeat_penalty 1.2 --temp 0.9 --top_p 0.9 -n 256 \ + --color -i -r "User:" \ + -p \ +"Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. + +User: Hello, Bob. +Bob: Hello. How may I help you today? +User: Please tell me the largest city in Europe. +Bob: Sure. The largest city in Europe is London, the capital of the United Kingdom. +User:" +``` +Note the use of `--color` to distinguish between user input and generated text. + +![image](https://user-images.githubusercontent.com/401380/224572787-d418782f-47b2-49c4-a04e-65bfa7ad4ec0.png) + + ## Limitations - Not sure if my tokenizer is correct. There are a few places where we might have a mistake: diff --git a/main.cpp b/main.cpp index 015561432..8c79461f3 100644 --- a/main.cpp +++ b/main.cpp @@ -11,6 +11,18 @@ #include #include +#include +#include + +#define ANSI_COLOR_RED "\x1b[31m" +#define ANSI_COLOR_GREEN "\x1b[32m" +#define ANSI_COLOR_YELLOW "\x1b[33m" +#define ANSI_COLOR_BLUE "\x1b[34m" +#define ANSI_COLOR_MAGENTA "\x1b[35m" +#define ANSI_COLOR_CYAN "\x1b[36m" +#define ANSI_COLOR_RESET "\x1b[0m" +#define ANSI_BOLD "\x1b[1m" + // determine number of model parts based on the dimension static const std::map LLAMA_N_PARTS = { { 4096, 1 }, @@ -733,6 +745,18 @@ bool llama_eval( return true; } +static bool is_interacting = false; + +void sigint_handler(int signo) { + if (signo == SIGINT) { + if (!is_interacting) { + is_interacting=true; + } else { + _exit(130); + } + } +} + int main(int argc, char ** argv) { ggml_time_init(); const int64_t t_main_start_us = ggml_time_us(); @@ -787,6 +811,9 @@ int main(int argc, char ** argv) { params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); + // tokenize the reverse prompt + std::vector antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false); + printf("\n"); printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); @@ -794,6 +821,24 @@ int main(int argc, char ** argv) { printf("%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str()); } printf("\n"); + if (params.interactive) { + struct sigaction sigint_action; + sigint_action.sa_handler = sigint_handler; + sigemptyset (&sigint_action.sa_mask); + sigint_action.sa_flags = 0; + sigaction(SIGINT, &sigint_action, NULL); + + printf("%s: interactive mode on.\n", __func__); + + if(antiprompt_inp.size()) { + printf("%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str()); + printf("%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size()); + for (int i = 0; i < (int) antiprompt_inp.size(); i++) { + printf("%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str()); + } + printf("\n"); + } + } printf("sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); printf("\n\n"); @@ -807,7 +852,28 @@ int main(int argc, char ** argv) { std::vector last_n_tokens(last_n_size); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); - for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { + + if (params.interactive) { + printf("== Running in interactive mode. ==\n" + " - Press Ctrl+C to interject at any time.\n" + " - Press Return to return control to LLaMa.\n" + " - If you want to submit another line, end your input in '\\'.\n"); + } + + int remaining_tokens = params.n_predict; + int input_consumed = 0; + bool input_noecho = false; + + // prompt user immediately after the starting prompt has been loaded + if (params.interactive_start) { + is_interacting = true; + } + + if (params.use_color) { + printf(ANSI_COLOR_YELLOW); + } + + while (remaining_tokens > 0) { // predict if (embd.size() > 0) { const int64_t t_start_us = ggml_time_us(); @@ -823,8 +889,8 @@ int main(int argc, char ** argv) { n_past += embd.size(); embd.clear(); - if (i >= embd_inp.size()) { - // sample next token + if (embd_inp.size() <= input_consumed) { + // out of input, sample next token const float top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; @@ -847,24 +913,74 @@ int main(int argc, char ** argv) { // add it to the context embd.push_back(id); + + // echo this to console + input_noecho = false; + + // decrement remaining sampling budget + --remaining_tokens; } else { // if here, it means we are still processing the input prompt - for (int k = i; k < embd_inp.size(); k++) { - embd.push_back(embd_inp[k]); + while (embd_inp.size() > input_consumed) { + embd.push_back(embd_inp[input_consumed]); last_n_tokens.erase(last_n_tokens.begin()); - last_n_tokens.push_back(embd_inp[k]); + last_n_tokens.push_back(embd_inp[input_consumed]); + ++input_consumed; if (embd.size() > params.n_batch) { break; } } - i += embd.size() - 1; + + if (params.use_color && embd_inp.size() <= input_consumed) { + printf(ANSI_COLOR_RESET); + } } // display text - for (auto id : embd) { - printf("%s", vocab.id_to_token[id].c_str()); + if (!input_noecho) { + for (auto id : embd) { + printf("%s", vocab.id_to_token[id].c_str()); + } + fflush(stdout); + } + + // in interactive mode, and not currently processing queued inputs; + // check if we should prompt the user for more + if (params.interactive && embd_inp.size() <= input_consumed) { + // check for reverse prompt + if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) { + // reverse prompt found + is_interacting = true; + } + if (is_interacting) { + // currently being interactive + bool another_line=true; + while (another_line) { + char buf[256] = {0}; + int n_read; + if(params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN); + scanf("%255[^\n]%n%*c", buf, &n_read); + if(params.use_color) printf(ANSI_COLOR_RESET); + + if (n_read > 0 && buf[n_read-1]=='\\') { + another_line = true; + buf[n_read-1] = '\n'; + buf[n_read] = 0; + } else { + another_line = false; + buf[n_read] = '\n'; + buf[n_read+1] = 0; + } + + std::vector line_inp = ::llama_tokenize(vocab, buf, false); + embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); + + input_noecho = true; // do not echo this again + } + + is_interacting = false; + } } - fflush(stdout); // end of text token if (embd.back() == 2) { @@ -873,6 +989,7 @@ int main(int argc, char ** argv) { } } + // report timing { const int64_t t_main_end_us = ggml_time_us(); diff --git a/utils.cpp b/utils.cpp index 13d4aa0f8..b340bd61b 100644 --- a/utils.cpp +++ b/utils.cpp @@ -49,6 +49,15 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { params.n_batch = std::stoi(argv[++i]); } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; + } else if (arg == "-i" || arg == "--interactive") { + params.interactive = true; + } else if (arg == "--interactive-start") { + params.interactive = true; + params.interactive_start = true; + } else if (arg == "--color") { + params.use_color = true; + } else if (arg == "-r" || arg == "--reverse-prompt") { + params.antiprompt = argv[++i]; } else if (arg == "-h" || arg == "--help") { gpt_print_usage(argc, argv, params); exit(0); @@ -67,6 +76,11 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params) { fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -i, --interactive run in interactive mode\n"); + fprintf(stderr, " --interactive-start run in interactive mode and poll user input at startup\n"); + fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n"); + fprintf(stderr, " in interactive mode, poll user input upon seeing PROMPT\n"); + fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); diff --git a/utils.h b/utils.h index 5b3d7364b..4f98011cf 100644 --- a/utils.h +++ b/utils.h @@ -28,6 +28,12 @@ struct gpt_params { std::string model = "models/lamma-7B/ggml-model.bin"; // model path std::string prompt; + + bool use_color = false; // use color to distinguish generations and inputs + + bool interactive = false; // interactive mode + bool interactive_start = false; // reverse prompt immediately + std::string antiprompt = ""; // string upon seeing which more user input is prompted }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params);