mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
server : reuse llama_sample_token common util (#3494)
* server : reuse llama_sample_token common function * common : use n_probs for temperature sampling
This commit is contained in:
parent
16820a5a0d
commit
97af49fa39
@ -1020,10 +1020,11 @@ llama_token llama_sample_token(
|
|||||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||||
} else {
|
} else {
|
||||||
// Temperature sampling
|
// Temperature sampling
|
||||||
llama_sample_top_k (ctx, &cur_p, top_k, 1);
|
size_t min_keep = std::max(1, params.n_probs);
|
||||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
|
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
||||||
llama_sample_typical (ctx, &cur_p, typical_p, 1);
|
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
||||||
llama_sample_top_p (ctx, &cur_p, top_p, 1);
|
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
||||||
|
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
||||||
llama_sample_temp(ctx, &cur_p, temp);
|
llama_sample_temp(ctx, &cur_p, temp);
|
||||||
|
|
||||||
{
|
{
|
||||||
|
@ -534,98 +534,20 @@ struct llama_server_context
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
// out of user input, sample next token
|
|
||||||
const float temp = params.temp;
|
|
||||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k;
|
|
||||||
const float top_p = params.top_p;
|
|
||||||
const float tfs_z = params.tfs_z;
|
|
||||||
const float typical_p = params.typical_p;
|
|
||||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
|
||||||
const float repeat_penalty = params.repeat_penalty;
|
|
||||||
const float alpha_presence = params.presence_penalty;
|
|
||||||
const float alpha_frequency = params.frequency_penalty;
|
|
||||||
const int mirostat = params.mirostat;
|
|
||||||
const float mirostat_tau = params.mirostat_tau;
|
|
||||||
const float mirostat_eta = params.mirostat_eta;
|
|
||||||
const bool penalize_nl = params.penalize_nl;
|
|
||||||
const int32_t n_probs = params.n_probs;
|
|
||||||
|
|
||||||
{
|
{
|
||||||
auto *logits = llama_get_logits(ctx);
|
// out of user input, sample next token
|
||||||
auto n_vocab = llama_n_vocab(model);
|
|
||||||
|
|
||||||
// Apply params.logit_bias map
|
|
||||||
for (const auto &it : params.logit_bias)
|
|
||||||
{
|
|
||||||
logits[it.first] += it.second;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(llama_n_vocab(model));
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
|
|
||||||
|
result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);
|
||||||
|
|
||||||
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
|
const int32_t n_probs = params.n_probs;
|
||||||
|
if (params.temp <= 0 && n_probs > 0)
|
||||||
{
|
{
|
||||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
// For llama_sample_token_greedy we need to sort candidates
|
||||||
}
|
llama_sample_softmax(ctx, &candidates_p);
|
||||||
|
|
||||||
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
|
|
||||||
|
|
||||||
// Apply penalties
|
|
||||||
float nl_logit = logits[llama_token_nl(ctx)];
|
|
||||||
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
|
||||||
llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
||||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
||||||
last_n_repeat, repeat_penalty);
|
|
||||||
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
||||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
||||||
last_n_repeat, alpha_frequency, alpha_presence);
|
|
||||||
if (!penalize_nl)
|
|
||||||
{
|
|
||||||
logits[llama_token_nl(ctx)] = nl_logit;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (grammar != nullptr) {
|
|
||||||
llama_sample_grammar(ctx, &candidates_p, grammar);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (temp <= 0)
|
|
||||||
{
|
|
||||||
// Greedy sampling
|
|
||||||
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
|
|
||||||
if (n_probs > 0)
|
|
||||||
{
|
|
||||||
llama_sample_softmax(ctx, &candidates_p);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
if (mirostat == 1)
|
|
||||||
{
|
|
||||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
||||||
const int mirostat_m = 100;
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
||||||
}
|
|
||||||
else if (mirostat == 2)
|
|
||||||
{
|
|
||||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
// Temperature sampling
|
|
||||||
size_t min_keep = std::max(1, n_probs);
|
|
||||||
llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
|
|
||||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
|
|
||||||
llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
|
|
||||||
llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
result.tok = llama_sample_token(ctx, &candidates_p);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (grammar != nullptr) {
|
|
||||||
llama_grammar_accept_token(ctx, grammar, result.tok);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user