From 986b6ce9f99503c51ec5afd8a10baa32359434c6 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 5 Apr 2023 22:07:33 +0300 Subject: [PATCH] ggml, llama : avoid heavy V transpose + improvements (#775) ggml : - added ggml_view_3d() - ggml_view_tensor() now inherits the stride too - reimplement ggml_cpy() to account for dst stride - no longer require tensor->data to be memory aligned llama : - compute RoPE on 32-bit tensors (should be more accurate) - store RoPE-ed K in the KV cache - store transposed V in the KV cache (significant speed-up) - avoid unnecessary Q copy --- ggml.c | 309 ++++++++++++++++++++++++++++++------------------------ ggml.h | 10 ++ llama.cpp | 69 ++++++------ 3 files changed, 222 insertions(+), 166 deletions(-) diff --git a/ggml.c b/ggml.c index 59e84ab45..a3a3314c7 100644 --- a/ggml.c +++ b/ggml.c @@ -3219,7 +3219,8 @@ struct ggml_tensor * ggml_new_tensor_impl( /*.pad =*/ { 0 }, }; - ggml_assert_aligned(result->data); + // TODO: this should not be needed as long as we don't rely on aligned SIMD loads + //ggml_assert_aligned(result->data); for (int i = 0; i < n_dims; i++) { result->ne[i] = ne[i]; @@ -3620,7 +3621,14 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) { struct ggml_tensor * ggml_view_tensor( struct ggml_context * ctx, const struct ggml_tensor * src) { - return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); + + result->nb[0] = src->nb[0]; + result->nb[1] = src->nb[1]; + result->nb[2] = src->nb[2]; + result->nb[3] = src->nb[3]; + + return result; } //////////////////////////////////////////////////////////////////////////////// @@ -4510,6 +4518,37 @@ struct ggml_tensor * ggml_view_2d( return result; } +// ggml_view_3d + +struct ggml_tensor * ggml_view_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + size_t nb1, + size_t nb2, + size_t offset) { + if (a->grad) { + GGML_ASSERT(false); // gradient propagation is not supported + } + + const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 }; + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset); + + result->nb[1] = nb1; + result->nb[2] = nb2; + result->nb[3] = result->nb[2]*ne2; + + result->op = GGML_OP_VIEW; + result->grad = NULL; + result->src0 = a; + result->src1 = NULL; // TODO: maybe store the offset here? + + return result; +} + // ggml_permute struct ggml_tensor * ggml_permute( @@ -4845,7 +4884,6 @@ static void ggml_compute_forward_dup_f16( const struct ggml_tensor * src0, struct ggml_tensor * dst) { GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -4862,85 +4900,96 @@ static void ggml_compute_forward_dup_f16( const size_t nb02 = src0->nb[2]; const size_t nb03 = src0->nb[3]; - if (ggml_is_contiguous(src0) && src0->type == dst->type) { + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); return; } - if (src0->nb[0] == sizeof(ggml_fp16_t)) { - if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - const size_t rs = ne00*nb00; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; - char * dst_ptr = (char *) dst->data + id*rs; - - memcpy(dst_ptr, src0_ptr, rs); - - id++; - } + if (src0->type == dst->type && + src0->ne[0] == dst->ne[0] && + src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) { + // copy by rows + const size_t rs = ne00*nb00; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); } } - } else if (dst->type == GGML_TYPE_F32) { - size_t id = 0; - float * dst_ptr = (float *) dst->data; + } + return; + } - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - for (int64_t i00 = 0; i00 < ne00; i00++) { - const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy - dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); - id++; + // dst counters + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t)); + + if (++i10 == ne00) { + i10 = 0; + if (++i11 == ne01) { + i11 = 0; + if (++i12 == ne02) { + i12 = 0; + if (++i13 == ne03) { + i13 = 0; + } + } + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr); + + if (++i10 == ne00) { + i10 = 0; + if (++i11 == ne01) { + i11 = 0; + if (++i12 == ne02) { + i12 = 0; + if (++i13 == ne03) { + i13 = 0; + } + } + } } } } } - } else { - GGML_ASSERT(false); // TODO: implement } } else { - //printf("%s: this is not optimal - fix me\n", __func__); - - if (dst->type == GGML_TYPE_F32) { - size_t id = 0; - float * dst_ptr = (float *) dst->data; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - for (int64_t i00 = 0; i00 < ne00; i00++) { - const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); - - dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); - id++; - } - } - } - } - } else if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - for (int64_t i00 = 0; i00 < ne00; i00++) { - const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); - - dst_ptr[id] = *src0_ptr; - id++; - } - } - } - } - } else { - GGML_ASSERT(false); // TODO: implement - } + GGML_ASSERT(false); // TODO: implement } } @@ -4949,7 +4998,6 @@ static void ggml_compute_forward_dup_f32( const struct ggml_tensor * src0, struct ggml_tensor * dst) { GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -4966,85 +5014,76 @@ static void ggml_compute_forward_dup_f32( const size_t nb02 = src0->nb[2]; const size_t nb03 = src0->nb[3]; - if (ggml_is_contiguous(src0) && src0->type == dst->type) { + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); return; } - if (src0->nb[0] == sizeof(float)) { - if (dst->type == GGML_TYPE_F32) { - size_t id = 0; - const size_t rs = ne00*nb00; + // dst counters + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; - char * dst_ptr = (char *) dst->data + id*rs; + if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); - memcpy(dst_ptr, src0_ptr, rs); + memcpy(dst_ptr, src0_ptr, sizeof(float)); - id++; - } - } - } - } else if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - for (int64_t i00 = 0; i00 < ne00; i00++) { - const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); - - dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); - id++; + if (++i10 == dst->ne[0]) { + i10 = 0; + if (++i11 == dst->ne[1]) { + i11 = 0; + if (++i12 == dst->ne[2]) { + i12 = 0; + if (++i13 == dst->ne[3]) { + i13 = 0; + } + } + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr); + + if (++i10 == dst->ne[0]) { + i10 = 0; + if (++i11 == dst->ne[1]) { + i11 = 0; + if (++i12 == dst->ne[2]) { + i12 = 0; + if (++i13 == dst->ne[3]) { + i13 = 0; + } + } + } } } } } - } else { - GGML_ASSERT(false); // TODO: implement } } else { - //printf("%s: this is not optimal - fix me\n", __func__); - - if (dst->type == GGML_TYPE_F32) { - size_t id = 0; - float * dst_ptr = (float *) dst->data; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - for (int64_t i00 = 0; i00 < ne00; i00++) { - const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); - - dst_ptr[id] = *src0_ptr; - id++; - } - } - } - } - } else if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - for (int64_t i00 = 0; i00 < ne00; i00++) { - const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); - - dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); - id++; - } - } - } - } - } else { - GGML_ASSERT(false); // TODO: implement - } + GGML_ASSERT(false); // TODO: implement } } diff --git a/ggml.h b/ggml.h index ad962b109..3c94efc35 100644 --- a/ggml.h +++ b/ggml.h @@ -558,6 +558,16 @@ struct ggml_tensor * ggml_view_2d( size_t nb1, // row stride in bytes size_t offset); +struct ggml_tensor * ggml_view_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + size_t nb1, // row stride in bytes + size_t nb2, // slice stride in bytes + size_t offset); + struct ggml_tensor * ggml_permute( struct ggml_context * ctx, struct ggml_tensor * a, diff --git a/llama.cpp b/llama.cpp index e4517959a..581a8399d 100644 --- a/llama.cpp +++ b/llama.cpp @@ -810,37 +810,35 @@ static bool llama_eval_internal( // self-attention { - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); // store key and value to memory - if (N >= 1) { - struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_1d(ctx0, kv_self.v, N*n_embd, (ggml_element_size(kv_self.v)*n_embd)*(il*n_ctx + n_past)); + { + // compute the transposed [N, n_embd] V matrix + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N)); + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); + + // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } - // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, - ggml_rope(ctx0, - ggml_cpy(ctx0, - Qcur, - ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), - n_past, n_rot, 0), + Qcur, 0, 2, 1, 3); - // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor * K = ggml_permute(ctx0, - ggml_rope(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), - n_embd/n_head, n_head, n_past + N), - n_past, n_rot, 1), + ggml_reshape_3d(ctx0, + ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), + n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q @@ -858,18 +856,23 @@ static bool llama_eval_internal( // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); - // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() - struct ggml_tensor * V_trans = - ggml_cpy(ctx0, - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.v)*n_embd), - n_embd/n_head, n_head, n_past + N), - 1, 2, 0, 3), - ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head)); + // split cached V into n_head heads + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_past + N, n_embd/n_head, n_head, + n_ctx*ggml_element_size(kv_self.v), + n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head, + il*n_ctx*ggml_element_size(kv_self.v)*n_embd); - // KQV = transpose(V) * KQ_soft_max - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); +#if 1 + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); +#else + // make V contiguous in memory to speed up the matmul, however we waste time on the copy + // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation + // is there a better way? + struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head)); + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); +#endif // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); @@ -955,9 +958,13 @@ static bool llama_eval_internal( ggml_build_forward_expand(&gf, inpL); ggml_graph_compute (ctx0, &gf); + // print timing information per ggml operation (for debugging purposes) + // requires GGML_PERF to be defined + //ggml_graph_print(&gf); + + // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { - // ggml_graph_print (&gf); - // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); + // ggml_graph_dump_dot(&gf, NULL, "llama.dot"); //} //embd_w.resize(n_vocab*N);