diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 1621c7c43..c25338f57 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -754,13 +754,13 @@ struct server_context { default_generation_settings_for_props = get_formated_generation(slots.front()); default_generation_settings_for_props["seed"] = -1; - // the update_slots() logic will always submit a maximum of n_batch tokens + // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used) { const int32_t n_batch = llama_n_batch(ctx); // only a single seq_id per token is needed - batch = llama_batch_init(n_batch, 0, 1); + batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1); } metrics.init(); @@ -1137,28 +1137,19 @@ struct server_context { if (!system_prompt.empty()) { system_tokens = ::llama_tokenize(ctx, system_prompt, true); - llama_batch_clear(batch); - - for (int i = 0; i < (int)system_tokens.size(); ++i) { - llama_batch_add(batch, system_tokens[i], i, { 0 }, false); - } - const int32_t n_batch = llama_n_batch(ctx); + const int32_t n_tokens_prompt = system_tokens.size(); - for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { - const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i); - llama_batch batch_view = { - n_tokens, - batch.token + i, - nullptr, - batch.pos + i, - batch.n_seq_id + i, - batch.seq_id + i, - batch.logits + i, - 0, 0, 0, // unused - }; + for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) { + const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i); - if (llama_decode(ctx, batch_view) != 0) { + llama_batch_clear(batch); + + for (int32_t j = 0; j < n_tokens; ++j) { + llama_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false); + } + + if (llama_decode(ctx, batch) != 0) { LOG_ERROR("llama_decode() failed", {}); return; }