mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
perplexity: avoid unnecessary alloocations and logit copies (#5035)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
8b20858e5e
commit
993fba8180
@ -325,6 +325,13 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
double nll = 0.0;
|
double nll = 0.0;
|
||||||
double nll2 = 0.0;
|
double nll2 = 0.0;
|
||||||
|
|
||||||
|
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
||||||
|
|
||||||
|
std::vector<float> logits;
|
||||||
|
if (num_batches > 1) {
|
||||||
|
logits.reserve((size_t)n_ctx * n_vocab);
|
||||||
|
}
|
||||||
|
|
||||||
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
||||||
|
|
||||||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||||
@ -333,10 +340,6 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
const int start = i * n_ctx;
|
const int start = i * n_ctx;
|
||||||
const int end = start + n_ctx;
|
const int end = start + n_ctx;
|
||||||
|
|
||||||
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
|
||||||
|
|
||||||
std::vector<float> logits;
|
|
||||||
|
|
||||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||||
|
|
||||||
// clear the KV cache
|
// clear the KV cache
|
||||||
@ -362,8 +365,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
// restore the original token in case it was set to BOS
|
// restore the original token in case it was set to BOS
|
||||||
tokens[batch_start] = token_org;
|
tokens[batch_start] = token_org;
|
||||||
|
|
||||||
const auto * batch_logits = llama_get_logits(ctx);
|
if (num_batches > 1) {
|
||||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
const auto * batch_logits = llama_get_logits(ctx);
|
||||||
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||||
@ -392,7 +397,8 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||||
// process the entire prompt.
|
// process the entire prompt.
|
||||||
const int first = n_ctx/2;
|
const int first = n_ctx/2;
|
||||||
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
||||||
|
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||||
count += n_ctx - first - 1;
|
count += n_ctx - first - 1;
|
||||||
|
|
||||||
@ -406,6 +412,8 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
||||||
}
|
}
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
|
||||||
|
logits.clear();
|
||||||
}
|
}
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user