llama : cache llama_token_to_piece

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-05-28 13:15:27 +03:00
parent fb76ec31a9
commit 9964cd02f7
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
2 changed files with 94 additions and 71 deletions

View File

@ -1702,12 +1702,13 @@ struct llama_mlock {
};
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
// NOTE: avoid ever using this except for building the token_to_piece caches
static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
GGML_ASSERT(check == -n_tokens);
}
else {
@ -2162,7 +2163,11 @@ struct llama_vocab {
std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token;
std::vector<id> special_tokens_cache;
bool has_cache = false;
std::vector<id> cache_special_tokens;
std::unordered_map<id, token> cache_token_to_piece; // llama_token_to_piece(special = false);
std::unordered_map<id, token> cache_token_to_piece_special; // llama_token_to_piece(special = true);
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
@ -4833,18 +4838,26 @@ static void llm_load_vocab(
{
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
vocab.special_tokens_cache.push_back(id);
vocab.cache_special_tokens.push_back(id);
}
}
std::sort( vocab.special_tokens_cache.begin(), vocab.special_tokens_cache.end(),
std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
[&] (const llama_vocab::id a, const llama_vocab::id b) {
return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
}
);
LLAMA_LOG_INFO("%s: special tokens cache size = %u.\n", __func__, (uint32_t)vocab.special_tokens_cache.size());
LLAMA_LOG_INFO("%s: special tokens cache size = %u.\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
}
// build token to piece caches
for (llama_token id = 0; id < (llama_token) n_vocab; ++id) {
vocab.cache_token_to_piece[id] = llama_token_to_piece(&model, id, false);
vocab.cache_token_to_piece_special[id] = llama_token_to_piece(&model, id, true);
}
vocab.has_cache = true;
}
static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
@ -13233,7 +13246,7 @@ struct fragment_buffer_variant {
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
// for each special token
for (const llama_vocab::id special_id : vocab.special_tokens_cache) {
for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
const auto & special_token = vocab.id_to_token[special_id].text;
// for each text fragment
@ -14392,7 +14405,7 @@ void llama_sample_repetition_penalties(
void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
GGML_ASSERT(ctx);
const int64_t t_start_sample_us = ggml_time_us();
int64_t t_start_sample_us = ggml_time_us();
bool allow_eog = false;
for (const auto & stack : grammar->stacks) {
@ -14409,7 +14422,7 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
for (size_t i = 0; i < candidates->size; ++i) {
const llama_token id = candidates->data[i].id;
const std::string piece = llama_token_to_piece(ctx, id, false);
const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
if (llama_token_is_eog(&ctx->model, id)) {
if (!allow_eog) {
@ -14609,7 +14622,7 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
GGML_ASSERT(false);
}
const std::string piece = llama_token_to_piece(ctx, token, false);
const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar->partial_utf8);
@ -18292,6 +18305,16 @@ static std::string llama_decode_text(const std::string & text) {
// does not write null-terminator to buf
int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
if (model->vocab.has_cache) {
const auto & cache = special ? model->vocab.cache_token_to_piece_special : model->vocab.cache_token_to_piece;
const auto & res = cache.at(token);
if (length < (int) res.size()) {
return -(int) res.size();
}
memcpy(buf, res.c_str(), res.size());
return res.size();
}
if (0 <= token && token < llama_n_vocab(model)) {
switch (llama_vocab_get_type(model->vocab)) {
case LLAMA_VOCAB_TYPE_WPM: