mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
parent
3d9a551816
commit
99d29c0094
387
ggml.c
387
ggml.c
@ -195,8 +195,8 @@ typedef void * thread_ret_t;
|
||||
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
|
||||
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
|
||||
#else
|
||||
inline static void* ggml_aligned_malloc(size_t size) {
|
||||
void* aligned_memory = NULL;
|
||||
inline static void * ggml_aligned_malloc(size_t size) {
|
||||
void * aligned_memory = NULL;
|
||||
#ifdef GGML_USE_METAL
|
||||
int result = posix_memalign(&aligned_memory, getpagesize(), size);
|
||||
#else
|
||||
@ -3811,7 +3811,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"CROSS_ENTROPY_LOSS_BACK",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
|
||||
static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@ -3883,7 +3883,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"cross_entropy_loss_back(x,y)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
|
||||
static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@ -4253,7 +4253,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
||||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||
}
|
||||
|
||||
static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||||
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return
|
||||
@ -6890,7 +6890,7 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
|
||||
ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
|
||||
a->ne[2], 1, 1,
|
||||
};
|
||||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
||||
|
||||
int32_t params[] = { s0, p0, d0 };
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
@ -6905,10 +6905,10 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
|
||||
|
||||
// ggml_conv_2d
|
||||
|
||||
struct ggml_tensor* ggml_conv_2d(
|
||||
struct ggml_context* ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * ggml_conv_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
@ -6929,7 +6929,7 @@ struct ggml_tensor* ggml_conv_2d(
|
||||
ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
|
||||
a->ne[3], b->ne[3],
|
||||
};
|
||||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||
|
||||
int32_t params[] = { s0, s1, p0, p1, d0, d1 };
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
@ -6945,7 +6945,7 @@ struct ggml_tensor* ggml_conv_2d(
|
||||
|
||||
// ggml_conv_1d_ph
|
||||
|
||||
struct ggml_tensor* ggml_conv_1d_ph(
|
||||
struct ggml_tensor * ggml_conv_1d_ph(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
@ -6963,7 +6963,7 @@ static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
|
||||
|
||||
// ggml_pool_1d
|
||||
|
||||
struct ggml_tensor* ggml_pool_1d(
|
||||
struct ggml_tensor * ggml_pool_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_op_pool op,
|
||||
@ -6982,7 +6982,7 @@ struct ggml_tensor* ggml_pool_1d(
|
||||
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
|
||||
a->ne[1],
|
||||
};
|
||||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
||||
|
||||
int32_t params[] = { op, k0, s0, p0 };
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
@ -6996,7 +6996,7 @@ struct ggml_tensor* ggml_pool_1d(
|
||||
|
||||
// ggml_pool_2d
|
||||
|
||||
struct ggml_tensor* ggml_pool_2d(
|
||||
struct ggml_tensor * ggml_pool_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_op_pool op,
|
||||
@ -7019,7 +7019,7 @@ struct ggml_tensor* ggml_pool_2d(
|
||||
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
|
||||
a->ne[2],
|
||||
};
|
||||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||||
|
||||
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
@ -7349,7 +7349,7 @@ struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom1
|
||||
// ggml_map_custom1_f32
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom1_impl_f32(
|
||||
struct ggml_context * ctx,
|
||||
@ -7366,7 +7366,7 @@ static struct ggml_tensor * ggml_map_custom1_impl_f32(
|
||||
|
||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM1;
|
||||
result->op = GGML_OP_MAP_CUSTOM1_F32;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
@ -7387,7 +7387,7 @@ struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom2
|
||||
// ggml_map_custom2_f32
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom2_impl_f32(
|
||||
struct ggml_context * ctx,
|
||||
@ -7405,7 +7405,7 @@ static struct ggml_tensor * ggml_map_custom2_impl_f32(
|
||||
|
||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM2;
|
||||
result->op = GGML_OP_MAP_CUSTOM2_F32;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
@ -7429,7 +7429,7 @@ struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom3
|
||||
// ggml_map_custom3_f32
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom3_impl_f32(
|
||||
struct ggml_context * ctx,
|
||||
@ -7448,7 +7448,7 @@ static struct ggml_tensor * ggml_map_custom3_impl_f32(
|
||||
|
||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM3;
|
||||
result->op = GGML_OP_MAP_CUSTOM3_F32;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
@ -7475,6 +7475,190 @@ struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom1
|
||||
struct ggml_map_custom1_op_params {
|
||||
ggml_custom1_op_t fun;
|
||||
int n_tasks;
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom1_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_custom1_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (!inplace && a->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
struct ggml_map_custom1_op_params params = {
|
||||
/*.fun =*/ fun,
|
||||
/*.n_tasks =*/ n_tasks,
|
||||
/*.userdata =*/ userdata
|
||||
};
|
||||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM1;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom1(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_custom1_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata) {
|
||||
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom1_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_custom1_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata) {
|
||||
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom2
|
||||
|
||||
struct ggml_map_custom2_op_params {
|
||||
ggml_custom2_op_t fun;
|
||||
int n_tasks;
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom2_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_custom2_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (!inplace && (a->grad || b->grad)) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
struct ggml_map_custom2_op_params params = {
|
||||
/*.fun =*/ fun,
|
||||
/*.n_tasks =*/ n_tasks,
|
||||
/*.userdata =*/ userdata
|
||||
};
|
||||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM2;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom2(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_custom2_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata) {
|
||||
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom2_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_custom2_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata) {
|
||||
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom3
|
||||
|
||||
struct ggml_map_custom3_op_params {
|
||||
ggml_custom3_op_t fun;
|
||||
int n_tasks;
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom3_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
const ggml_custom3_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (!inplace && (a->grad || b->grad || c->grad)) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
struct ggml_map_custom3_op_params params = {
|
||||
/*.fun =*/ fun,
|
||||
/*.n_tasks =*/ n_tasks,
|
||||
/*.userdata =*/ userdata
|
||||
};
|
||||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM3;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
result->src[2] = c;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom3(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
const ggml_custom3_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata) {
|
||||
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom3_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
const ggml_custom3_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata) {
|
||||
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// ggml_cross_entropy_loss
|
||||
|
||||
struct ggml_tensor * ggml_cross_entropy_loss(
|
||||
@ -9283,8 +9467,8 @@ static void ggml_compute_forward_sum_rows_f32(
|
||||
for (int64_t i3 = 0; i3 < ne03; i3++) {
|
||||
for (int64_t i2 = 0; i2 < ne02; i2++) {
|
||||
for (int64_t i1 = 0; i1 < ne01; i1++) {
|
||||
float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
|
||||
float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
|
||||
float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
|
||||
float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
|
||||
float row_sum = 0;
|
||||
ggml_vec_sum_f32(ne00, &row_sum, src_row);
|
||||
dst_row[0] = row_sum;
|
||||
@ -12894,7 +13078,7 @@ static void ggml_compute_forward_pool_1d(
|
||||
const struct ggml_tensor * src0,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const int32_t* opts = (const int32_t*)dst->op_params;
|
||||
const int32_t * opts = (const int32_t *)dst->op_params;
|
||||
enum ggml_op_pool op = opts[0];
|
||||
const int k0 = opts[1];
|
||||
const int s0 = opts[2];
|
||||
@ -14227,24 +14411,6 @@ static void ggml_compute_forward_map_custom1_f32(
|
||||
fun(dst, a);
|
||||
}
|
||||
|
||||
|
||||
static void ggml_compute_forward_map_custom1(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * a,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom1_op_f32_t fun) {
|
||||
switch (a->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom2
|
||||
|
||||
static void ggml_compute_forward_map_custom2_f32(
|
||||
@ -14263,24 +14429,6 @@ static void ggml_compute_forward_map_custom2_f32(
|
||||
}
|
||||
|
||||
|
||||
static void ggml_compute_forward_map_custom2(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * a,
|
||||
const struct ggml_tensor * b,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom2_op_f32_t fun) {
|
||||
switch (a->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom3
|
||||
|
||||
static void ggml_compute_forward_map_custom3_f32(
|
||||
@ -14299,24 +14447,52 @@ static void ggml_compute_forward_map_custom3_f32(
|
||||
fun(dst, a, b, c);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom1
|
||||
|
||||
static void ggml_compute_forward_map_custom1(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * a,
|
||||
struct ggml_tensor * dst) {
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
|
||||
|
||||
p->fun(dst, a, params->ith, params->nth, p->userdata);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom2
|
||||
|
||||
static void ggml_compute_forward_map_custom2(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * a,
|
||||
const struct ggml_tensor * b,
|
||||
struct ggml_tensor * dst) {
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
|
||||
|
||||
p->fun(dst, a, b, params->ith, params->nth, p->userdata);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom3
|
||||
|
||||
static void ggml_compute_forward_map_custom3(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * a,
|
||||
const struct ggml_tensor * b,
|
||||
const struct ggml_tensor * c,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom3_op_f32_t fun) {
|
||||
switch (a->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
struct ggml_tensor * dst) {
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
|
||||
|
||||
p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_cross_entropy_loss
|
||||
@ -14838,25 +15014,40 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
case GGML_OP_MAP_CUSTOM1_F32:
|
||||
{
|
||||
ggml_custom1_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
|
||||
ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM2_F32:
|
||||
{
|
||||
ggml_custom2_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM3_F32:
|
||||
{
|
||||
ggml_custom3_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
{
|
||||
ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM2:
|
||||
{
|
||||
ggml_custom2_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
|
||||
ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM3:
|
||||
{
|
||||
ggml_custom3_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
|
||||
ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
@ -15664,6 +15855,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
||||
} break;
|
||||
case GGML_OP_MAP_UNARY:
|
||||
case GGML_OP_MAP_BINARY:
|
||||
case GGML_OP_MAP_CUSTOM1_F32:
|
||||
case GGML_OP_MAP_CUSTOM2_F32:
|
||||
case GGML_OP_MAP_CUSTOM3_F32:
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
case GGML_OP_MAP_CUSTOM2:
|
||||
case GGML_OP_MAP_CUSTOM3:
|
||||
@ -16449,12 +16643,39 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
case GGML_OP_WIN_UNPART:
|
||||
case GGML_OP_MAP_UNARY:
|
||||
case GGML_OP_MAP_BINARY:
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
case GGML_OP_MAP_CUSTOM2:
|
||||
case GGML_OP_MAP_CUSTOM3:
|
||||
case GGML_OP_MAP_CUSTOM1_F32:
|
||||
case GGML_OP_MAP_CUSTOM2_F32:
|
||||
case GGML_OP_MAP_CUSTOM3_F32:
|
||||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
{
|
||||
struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
|
||||
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||
n_tasks = n_threads;
|
||||
} else {
|
||||
n_tasks = MIN(p->n_tasks, n_threads);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MAP_CUSTOM2:
|
||||
{
|
||||
struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
|
||||
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||
n_tasks = n_threads;
|
||||
} else {
|
||||
n_tasks = MIN(p->n_tasks, n_threads);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MAP_CUSTOM3:
|
||||
{
|
||||
struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
|
||||
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||
n_tasks = n_threads;
|
||||
} else {
|
||||
n_tasks = MIN(p->n_tasks, n_threads);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
145
ggml.h
145
ggml.h
@ -183,6 +183,15 @@
|
||||
# define GGML_API
|
||||
#endif
|
||||
|
||||
// TODO: support for clang
|
||||
#ifdef __GNUC__
|
||||
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||||
#elif defined(_MSC_VER)
|
||||
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||||
#else
|
||||
# define GGML_DEPRECATED(func, hint) func
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
@ -374,6 +383,10 @@ extern "C" {
|
||||
GGML_OP_MAP_UNARY,
|
||||
GGML_OP_MAP_BINARY,
|
||||
|
||||
GGML_OP_MAP_CUSTOM1_F32,
|
||||
GGML_OP_MAP_CUSTOM2_F32,
|
||||
GGML_OP_MAP_CUSTOM3_F32,
|
||||
|
||||
GGML_OP_MAP_CUSTOM1,
|
||||
GGML_OP_MAP_CUSTOM2,
|
||||
GGML_OP_MAP_CUSTOM3,
|
||||
@ -570,6 +583,8 @@ extern "C" {
|
||||
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
// use this to compute the memory overhead of a tensor
|
||||
GGML_API size_t ggml_tensor_overhead(void);
|
||||
|
||||
@ -1240,7 +1255,7 @@ extern "C" {
|
||||
|
||||
// conv_1d with padding = half
|
||||
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
||||
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
||||
GGML_API struct ggml_tensor * ggml_conv_1d_ph(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
@ -1253,7 +1268,7 @@ extern "C" {
|
||||
GGML_OP_POOL_COUNT,
|
||||
};
|
||||
|
||||
GGML_API struct ggml_tensor* ggml_pool_1d(
|
||||
GGML_API struct ggml_tensor * ggml_pool_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_op_pool op,
|
||||
@ -1261,7 +1276,7 @@ extern "C" {
|
||||
int s0, // stride
|
||||
int p0); // padding
|
||||
|
||||
GGML_API struct ggml_tensor* ggml_pool_2d(
|
||||
GGML_API struct ggml_tensor * ggml_pool_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_op_pool op,
|
||||
@ -1315,15 +1330,6 @@ extern "C" {
|
||||
int h0,
|
||||
int w);
|
||||
|
||||
// custom operators
|
||||
|
||||
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
||||
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
||||
|
||||
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_unary(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -1334,63 +1340,138 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_unary_op op);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
||||
// custom operators
|
||||
|
||||
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
||||
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
||||
|
||||
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_unary_op_f32_t fun);
|
||||
ggml_unary_op_f32_t fun),
|
||||
"use ggml_map_custom1 instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_unary_op_f32_t fun);
|
||||
ggml_unary_op_f32_t fun),
|
||||
"use ggml_map_custom1_inplace instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_binary_op_f32_t fun);
|
||||
ggml_binary_op_f32_t fun),
|
||||
"use ggml_map_custom2 instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_binary_op_f32_t fun);
|
||||
ggml_binary_op_f32_t fun),
|
||||
"use ggml_map_custom2_inplace instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_f32_t fun);
|
||||
ggml_custom1_op_f32_t fun),
|
||||
"use ggml_map_custom1 instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_f32_t fun);
|
||||
ggml_custom1_op_f32_t fun),
|
||||
"use ggml_map_custom1_inplace instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_f32_t fun);
|
||||
ggml_custom2_op_f32_t fun),
|
||||
"use ggml_map_custom2 instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_f32_t fun);
|
||||
ggml_custom2_op_f32_t fun),
|
||||
"use ggml_map_custom2_inplace instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_f32_t fun);
|
||||
ggml_custom3_op_f32_t fun),
|
||||
"use ggml_map_custom3 instead");
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_f32_t fun);
|
||||
ggml_custom3_op_f32_t fun),
|
||||
"use ggml_map_custom3_inplace instead");
|
||||
|
||||
// custom operators v2
|
||||
|
||||
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
||||
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
||||
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
||||
|
||||
#define GGML_N_TASKS_MAX -1
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom1(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom2(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom3(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
// loss function
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user