CANN: Improve the Inferencing Performance for Ascend NPU Device (#10454)

* improve inferencing performance for ascend npu.

Co-authored-by: Frank Mai <thxCode@thxcode0824@gmail.com>

* some modification after review

* some modifications after review

* restore some modifications

* restore some modifications

---------

Co-authored-by: shanshan shen <shanshanshen333@gmail.com>
Co-authored-by: Frank Mai <thxCode@thxcode0824@gmail.com>
This commit is contained in:
Shanshan Shen 2024-11-26 18:08:37 +08:00 committed by GitHub
parent 7066b4cce2
commit 9a4b79bcfa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 266 additions and 102 deletions

View File

@ -33,6 +33,8 @@
#include <aclnnop/aclnn_group_norm.h>
#include <aclnnop/aclnn_index_fill_tensor.h>
#include <aclnnop/aclnn_layer_norm.h>
#include <aclnnop/aclnn_mm.h>
#include <aclnnop/aclnn_batch_matmul.h>
#include <aclnnop/aclnn_matmul.h>
#include <aclnnop/aclnn_max_pool.h>
#include <aclnnop/aclnn_permute.h>
@ -2423,7 +2425,6 @@ static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input,
aclTensor* acl_weight, aclTensor* acl_dst) {
int8_t cube_math_type = 1; // ALLOW_FP32_DOWN_PRECISION, when input is
// fp32, atlas a2 will transpose it to HFLOAT32.
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
@ -2441,6 +2442,80 @@ static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input,
aclnnMatmul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication of two 2D tensors.
*
* This function computes the matrix multiplication of the input tensor
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the
* destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst}=\text {acl_input@acl_weight}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_input The input tensor for the matrix multiplication.
* @param acl_weight The weight tensor for the matrix multiplication.
* @param acl_dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void aclnn_mat_mul_2d(ggml_backend_cann_context& ctx, aclTensor* acl_input,
aclTensor* acl_weight, aclTensor* acl_dst) {
int8_t cube_math_type = 2;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMmGetWorkspaceSize(acl_input, acl_weight, acl_dst,
cube_math_type, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnMm(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication of two 3D tensors.
*
* This function computes the matrix multiplication of the input tensor
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the
* destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst}=\text {acl_input@acl_weight}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_input The input tensor for the matrix multiplication.
* @param acl_weight The weight tensor for the matrix multiplication.
* @param acl_dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void aclnn_mat_mul_3d(ggml_backend_cann_context& ctx, aclTensor* acl_input,
aclTensor* acl_weight, aclTensor* acl_dst) {
int8_t cube_math_type = 2;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnBatchMatMulGetWorkspaceSize(acl_input, acl_weight, acl_dst,
cube_math_type, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnBatchMatMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication with floating-point precision on
* tensors using the CANN backend.
@ -2462,20 +2537,43 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
// broadcast, when weight ne2 or ne3 is not 1, weight need repeat.
BCAST_MUL_MAT_SHAPE(input, weight, dst);
// transpose weight: [1,2,3,4] -> [1,2,4,3]
int64_t transpose_ne[] = {bcast_weight_ne[1], bcast_weight_ne[0],
bcast_weight_ne[2], bcast_weight_ne[3],
bcast_weight_ne[4], bcast_weight_ne[5]};
size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0],
bcast_weight_nb[2], bcast_weight_nb[3],
bcast_weight_nb[4], bcast_weight_nb[5]};
int64_t n_dims = bcast_dims;
if (bcast_input_ne[3] == bcast_weight_ne[3] && bcast_input_ne[3] == 1) {
if (bcast_input_ne[2] == 1 && bcast_weight_ne[2] == 1) {
n_dims = 2;
} else if (bcast_input_ne[2] == 1) {
n_dims = 3;
}
}
aclTensor* acl_weight_tensor =
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, bcast_dims);
aclTensor* acl_input_tensor =
ggml_cann_create_tensor(input, BCAST_MUL_MAT_PARAM(input));
aclTensor* acl_dst = ggml_cann_create_tensor(dst, BCAST_MUL_MAT_PARAM(dst));
aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
ggml_cann_create_tensor(input, bcast_input_ne, bcast_input_nb, n_dims);
int64_t transpose_ne[] = {
bcast_weight_ne[1], bcast_weight_ne[0],
bcast_weight_ne[2], bcast_weight_ne[3],
bcast_weight_ne[4], bcast_weight_ne[5]
};
size_t transpose_nb[] = {
bcast_weight_nb[1], bcast_weight_nb[0],
bcast_weight_nb[2], bcast_weight_nb[3],
bcast_weight_nb[4], bcast_weight_nb[5]
};
aclTensor* acl_weight_tensor =
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims);
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, bcast_dst_ne, bcast_dst_nb, n_dims);
switch (n_dims) {
case 2:
aclnn_mat_mul_2d(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
break;
case 3:
aclnn_mat_mul_3d(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
break;
default:
aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
break;
}
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
@ -2501,46 +2599,40 @@ static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
ggml_tensor* src0 = dst->src[0]; // weight
ggml_tensor* src1 = dst->src[1]; // input
// The shape of the weight is NCHW. Matrix multiplication uses HW dims. HC
// is regarded as batch. weight need transpose.
int64_t weight_ne[] = {src0->ne[1], src0->ne[0]};
// The shape of the weight is NCHW.
// Matrix multiplication uses HW dims.
// HC is regarded as batch.
// weight need transpose.
float weight_elem_size;
if (type == GGML_TYPE_Q4_0) {
weight_elem_size = float(sizeof(uint8_t)) / 2;
}
else if (type == GGML_TYPE_Q8_0) {
} else if (type == GGML_TYPE_Q8_0) {
weight_elem_size = float(sizeof(uint8_t));
}
else {
} else {
GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT");
}
float weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size};
// size of one matrix is element_size * height * width.
size_t weight_stride = weight_elem_size * src0->ne[0] * src0->ne[1];
float weight_nb[] = {src0->ne[0] * weight_elem_size, weight_elem_size};
size_t weight_stride = src0->ne[1] * src0->ne[0] * weight_elem_size;
size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3];
// scale stored at the end of weight. Also need transpose.
GGML_ASSERT(QK4_0 == QK8_0);
int64_t scale_ne[] = {src0->ne[1], src0->ne[0] / QK8_0};
size_t scale_elem_size = sizeof(uint16_t);
size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size,
scale_elem_size};
size_t scale_stride = scale_elem_size * src0->ne[0] * src0->ne[1] / QK8_0;
size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size, scale_elem_size};
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
char* scale_offset = (char*)src0->data + weight_size;
// input
void* input_buffer;
size_t input_elem_size = sizeof(uint16_t);
int64_t input_ne[] = {src1->ne[0], src1->ne[1]};
size_t input_nb[] = {input_elem_size, input_elem_size * src1->ne[0]};
size_t input_stride = input_elem_size * src1->ne[0] * src1->ne[1];
size_t input_nb[] = {input_elem_size, input_ne[0] * input_elem_size};
size_t input_stride = input_ne[0] * input_ne[1] * input_elem_size;
ggml_cann_pool_alloc input_alloctor(ctx.pool());
void* input_buffer = src1->data;
// case in
if (src1->type != GGML_TYPE_F16) {
aclTensor* acl_src1_tensor = ggml_cann_create_tensor(src1);
input_alloctor.alloc(ggml_nelements(src1) * input_elem_size);
input_buffer = input_alloctor.get();
input_buffer = input_alloctor.alloc(ggml_nelements(src1) * input_elem_size);
int64_t* input_cast_ne = src1->ne;
size_t input_cast_nb[GGML_MAX_DIMS];
@ -2550,88 +2642,139 @@ static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
}
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
input_buffer, ACL_FLOAT16, input_elem_size, input_cast_ne,
input_cast_nb, GGML_MAX_DIMS);
input_buffer,
ACL_FLOAT16,
input_elem_size, input_cast_ne, input_cast_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src1_tensor, acl_input_tensor, ACL_FLOAT16);
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
ACL_CHECK(aclDestroyTensor(acl_src1_tensor));
} else {
input_buffer = src1->data;
}
// output
size_t output_elem_size = sizeof(uint16_t);
int64_t output_ne[] = {dst->ne[0], dst->ne[1]};
size_t output_nb[] = {output_elem_size, output_elem_size * dst->ne[0]};
ggml_cann_pool_alloc output_alloctor(
ctx.pool(), ggml_nelements(dst) * output_elem_size);
void* output_buffer = output_alloctor.get();
size_t output_stride = output_elem_size * dst->ne[0] * dst->ne[1];
size_t output_nb[] = {output_elem_size, dst->ne[0] * output_elem_size};
ggml_cann_pool_alloc output_allocator(ctx.pool());
void* output_buffer = output_allocator.alloc(ggml_nelements(dst) * output_elem_size);
size_t output_stride = dst->ne[0] * dst->ne[1] * output_elem_size;
// aclnn
int64_t max_elem_size = 65535;
int64_t split_size = (src0->ne[1] / max_elem_size) + 1;
ggml_cann_pool_alloc workspace_allocator(ctx.pool());
aclOpExecutor* executor = nullptr;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
for (int64_t n1 = 0; n1 < src1->ne[3]; n1++) {
for (int64_t c1 = 0; c1 < src1->ne[2]; c1++) {
int64_t n0 = n1 / (src1->ne[3] / src0->ne[3]);
int64_t c0 = c1 / (src1->ne[2] / src0->ne[2]);
int64_t batch1 = n1 * src1->ne[2] + c1;
int64_t batch0 = n0 * src0->ne[2] + c0;
int64_t batch1 = (n1 * src1->ne[2]) + c1;
int64_t batch0 = (n0 * src0->ne[2]) + c0;
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
(char*)input_buffer + batch1 * input_stride, ACL_FLOAT16,
input_elem_size, input_ne, input_nb, 2);
// first split
int64_t weight_ne_offset = 0;
int64_t weight_ne[2] = {max_elem_size > src0->ne[1] ? src0->ne[1] : max_elem_size, src0->ne[0]};
int64_t scale_ne_offset = 0;
int64_t scale_ne[2] = {weight_ne[0], weight_ne[1] / QK8_0};
int64_t output_ne_offset = 0;
int64_t output_ne[2] = {weight_ne[0], dst->ne[1]};
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
(char*)src0->data + batch0 * weight_stride,
ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
weight_nb, 2);
ggml_cann_type_mapping(type),
weight_elem_size, weight_ne, weight_nb, 2,
ACL_FORMAT_ND, weight_ne_offset);
aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
scale_offset + batch0 * scale_stride, ACL_FLOAT16,
scale_elem_size, scale_ne, scale_nb, 2);
scale_offset + batch0 * scale_stride,
ACL_FLOAT16,
scale_elem_size, scale_ne, scale_nb, 2,
ACL_FORMAT_ND, scale_ne_offset);
aclTensor* acl_output_tensor = ggml_cann_create_tensor(
(char*)output_buffer + batch1 * output_stride, ACL_FLOAT16,
output_elem_size, output_ne, output_nb, 2);
(char*)output_buffer + batch1 * output_stride,
ACL_FLOAT16,
output_elem_size, output_ne, output_nb, 2,
ACL_FORMAT_ND, output_ne_offset);
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr,
nullptr, nullptr, nullptr, QK8_0, acl_output_tensor,
&workspaceSize, &executor));
if (workspaceSize > 0 && workspaceAddr == nullptr) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(),
workspaceSize);
workspaceAddr = workspace_allocator.get();
acl_input_tensor, acl_weight_tensor, acl_scale_tensor,
nullptr, nullptr, nullptr, nullptr, QK8_0,
acl_output_tensor, &workspaceSize, &executor));
if (workspaceAddr == nullptr) {
workspaceAddr = workspace_allocator.alloc(workspaceSize);
}
ACL_CHECK(aclnnWeightQuantBatchMatmulV2(
workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
ACL_CHECK(aclDestroyTensor(acl_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
// other splits
for (int64_t split = 1; split < split_size; split++) {
weight_ne_offset += weight_elem_size * weight_ne[0] * weight_ne[1];
weight_ne[0] = max_elem_size * (split + 1) > src0->ne[1] ? src0->ne[1] - (max_elem_size * split) : max_elem_size;
scale_ne_offset += scale_elem_size * scale_ne[0] * scale_ne[1];
scale_ne[0] = weight_ne[0];
output_ne_offset += output_elem_size * output_ne[0] * output_ne[1];
output_ne[0] = weight_ne[0];
acl_weight_tensor = ggml_cann_create_tensor(
(char*)src0->data + batch0 * weight_stride,
ggml_cann_type_mapping(type),
weight_elem_size, weight_ne, weight_nb, 2,
ACL_FORMAT_ND, weight_ne_offset);
acl_scale_tensor = ggml_cann_create_tensor(
scale_offset + batch0 * scale_stride,
ACL_FLOAT16,
scale_elem_size, scale_ne, scale_nb, 2,
ACL_FORMAT_ND, scale_ne_offset);
acl_output_tensor = ggml_cann_create_tensor(
(char*)output_buffer + batch1 * output_stride,
ACL_FLOAT16,
output_elem_size, output_ne, output_nb, 2,
ACL_FORMAT_ND, output_ne_offset);
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
acl_input_tensor, acl_weight_tensor, acl_scale_tensor,
nullptr, nullptr, nullptr, nullptr, QK8_0,
acl_output_tensor, &workspaceSize, &executor));
ACL_CHECK(aclnnWeightQuantBatchMatmulV2(
workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
ACL_CHECK(aclDestroyTensor(acl_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
}
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
}
}
// cast out
int64_t* output_cast_ne = dst->ne;
size_t output_cast_nb[GGML_MAX_DIMS];
output_cast_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1];
if (dst->type != GGML_TYPE_F16) {
int64_t* output_cast_ne = dst->ne;
size_t output_cast_nb[GGML_MAX_DIMS];
output_cast_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1];
}
aclTensor* acl_output_tensor = ggml_cann_create_tensor(
output_buffer,
ACL_FLOAT16,
output_elem_size, output_cast_ne, output_cast_nb, GGML_MAX_DIMS);
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type));
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst_tensor));
}
aclTensor* acl_output_tensor =
ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, output_elem_size,
output_cast_ne, output_cast_nb, GGML_MAX_DIMS);
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor, ACL_FLOAT);
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst_tensor));
}
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {

View File

@ -211,17 +211,20 @@ struct ggml_cann_pool_alloc {
struct ggml_backend_cann_context {
int32_t device; /**< Device ID. */
std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {
{nullptr}}; /**< Array of streams for the device. */
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
/**
* @brief Constructor for initializing the context with a given device.
* @param device Device ID.
*/
explicit ggml_backend_cann_context(int device)
: device(device), name("CANN" + std::to_string(device)) {}
: device(device), name("CANN" + std::to_string(device)) {
ggml_cann_set_device(device);
description = aclrtGetSocName();
}
/**
* @brief Destructor for cleaning up resources.

View File

@ -122,6 +122,10 @@ static ggml_cann_device_info ggml_cann_init() {
ACL_CHECK(aclrtMemGetAllocationGranularity(
&prop, ACL_RT_MEM_ALLOC_GRANULARITY_RECOMMENDED,
&info.devices[id].vmm_granularity));
size_t free, total;
ggml_backend_cann_get_device_memory(id, &free, &total);
info.devices[id].total_vram = free;
}
// TODO: add more device info later.
@ -208,6 +212,11 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
* @return A pointer to the allocated buffer.
*/
void* alloc(size_t size, size_t* actual_size) override {
const size_t alignment = 128;
size = GGML_PAD(size, alignment);
if (size == 0) {
size = alignment;
}
#ifdef DEBUG_CANN_MALLOC
int nnz = 0;
size_t max_size = 0;
@ -246,13 +255,11 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
return ptr;
}
void* ptr;
size_t look_ahead_size = (size_t)(1.05 * size);
look_ahead_size = 256 * ((look_ahead_size + 255) / 256);
ggml_cann_set_device(device);
ACL_CHECK(
aclrtMalloc(&ptr, look_ahead_size, ACL_MEM_MALLOC_HUGE_FIRST));
*actual_size = look_ahead_size;
pool_size += look_ahead_size;
aclrtMalloc(&ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
*actual_size = size;
pool_size += size;
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO(
"%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, "
@ -296,7 +303,7 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
/**
* @brief The maximum size of the virtual memory pool (32 GB).
*/
static const size_t CANN_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
size_t max_size;
/**
* @brief The device ID associated with this buffer pool.
@ -341,7 +348,11 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
*/
explicit ggml_cann_pool_vmm(int device)
: device(device),
granularity(ggml_cann_info().devices[device].vmm_granularity) {}
granularity(ggml_cann_info().devices[device].vmm_granularity) {
auto dev = ggml_cann_info().devices[device];
granularity = dev.vmm_granularity;
max_size = dev.total_vram;
}
/**
* @brief Destructor to free all buffers in the virtual memory pool.
@ -370,17 +381,19 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
// round up the allocation size to the alignment to ensure that all
// allocations are aligned for all data types
const size_t alignment = 128;
size = alignment * ((size + alignment - 1) / alignment);
size = GGML_PAD(size, alignment);
if (size == 0) {
size = alignment;
}
size_t avail = pool_size - pool_used;
if (size > avail) {
// round up to the next multiple of the granularity
size_t reserve_size = size - avail;
reserve_size =
granularity * ((reserve_size + granularity - 1) / granularity);
reserve_size = GGML_PAD(reserve_size, granularity);
GGML_ASSERT(pool_size + reserve_size <= CANN_POOL_VMM_MAX_SIZE);
GGML_ASSERT(pool_size + reserve_size <= max_size);
// allocate more physical memory
aclrtPhysicalMemProp prop = {};
@ -396,7 +409,7 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
// reserve virtual address space (if not already reserved)
if (pool_addr == 0) {
ACL_CHECK(aclrtReserveMemAddress(
&pool_addr, CANN_POOL_VMM_MAX_SIZE, 0, NULL, 1));
&pool_addr, max_size, 0, NULL, 1));
}
// map at the end of the pool
@ -409,10 +422,11 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
// add to the pool
pool_size += reserve_size;
// GGML_LOG_INFO("cann pool[%d]: size increased to %llu MB (
// reserved %llu MB)\n",
// device, (unsigned long long) (pool_size/1024/1024),
// (unsigned long long) (reserve_size/1024/1024));
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO("cann pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
device, (unsigned long long) (pool_size/1024/1024),
(unsigned long long) (reserve_size/1024/1024));
#endif
}
GGML_ASSERT(pool_addr != 0);
@ -457,7 +471,6 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
*/
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
int device) {
// return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_leg(device));
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
}
@ -1130,10 +1143,10 @@ ggml_backend_cann_buffer_type(int32_t device) {
static bool ggml_backend_cann_buffer_type_initialized = false;
if (!ggml_backend_cann_buffer_type_initialized) {
for (int32_t i = 0; i < GGML_CANN_MAX_DEVICES; i++) {
for (int32_t i = 0; i < ggml_cann_info().device_count; i++) {
ggml_backend_cann_buffer_types[i] = {
/* .iface = */ ggml_backend_cann_buffer_type_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cann_reg(), device),
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cann_reg(), i),
/* .context = */
new ggml_backend_cann_buffer_type_context{
i, "CANN" + std::to_string(i)},
@ -1199,10 +1212,15 @@ static void * ggml_cann_host_malloc(size_t size) {
return nullptr;
}
const size_t alignment = 128;
size = GGML_PAD(size, alignment);
if (size == 0) {
size = alignment;
}
void * hostPtr = nullptr;
aclError err = aclrtMallocHost((void **) &hostPtr, size);
if (err != ACL_SUCCESS) {
GGML_LOG_WARN("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
size / 1024.0 / 1024.0, aclGetRecentErrMsg());
return nullptr;