mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-27 12:33:06 +01:00
Merge branch 'ggerganov:master' into ag_cuda_graphs
This commit is contained in:
commit
9c5786161d
2
.github/workflows/bench.yml
vendored
2
.github/workflows/bench.yml
vendored
@ -32,7 +32,7 @@ on:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}-${{ github.event.inputs.sha }}
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}-${{ github.event.inputs.sha }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
|
90
.github/workflows/build.yml
vendored
90
.github/workflows/build.yml
vendored
@ -32,6 +32,8 @@ jobs:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -88,6 +90,8 @@ jobs:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -206,6 +210,8 @@ jobs:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -238,6 +244,33 @@ jobs:
|
||||
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
|
||||
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
|
||||
name: llama-bin-ubuntu-x64.zip
|
||||
|
||||
# ubuntu-latest-cmake-sanitizer:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
@ -560,6 +593,63 @@ jobs:
|
||||
run: |
|
||||
make swift
|
||||
|
||||
windows-msys2:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- { sys: UCRT64, env: ucrt-x86_64, build: Release }
|
||||
- { sys: CLANG64, env: clang-x86_64, build: Release }
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup ${{ matrix.sys }}
|
||||
uses: msys2/setup-msys2@v2
|
||||
with:
|
||||
update: true
|
||||
msystem: ${{matrix.sys}}
|
||||
install: >-
|
||||
base-devel
|
||||
mingw-w64-${{matrix.env}}-toolchain
|
||||
mingw-w64-${{matrix.env}}-cmake
|
||||
mingw-w64-${{matrix.env}}-openblas
|
||||
|
||||
- name: Build using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make -j $(nproc)
|
||||
|
||||
- name: Clean after building using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make clean
|
||||
|
||||
- name: Build using make w/ OpenBLAS
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make LLAMA_OPENBLAS=1 -j $(nproc)
|
||||
|
||||
- name: Build using CMake
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
cmake -B build
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
- name: Clean after building using CMake
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
rm -rf build
|
||||
|
||||
- name: Build using CMake w/ OpenBLAS
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
|
||||
|
29
.github/workflows/server.yml
vendored
29
.github/workflows/server.yml
vendored
@ -23,7 +23,7 @@ on:
|
||||
- cron: '2 4 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
@ -41,23 +41,16 @@ jobs:
|
||||
sanitizer: ""
|
||||
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
|
||||
|
||||
container:
|
||||
image: ubuntu:latest
|
||||
ports:
|
||||
- 8888
|
||||
options: --cpus 4
|
||||
|
||||
steps:
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
apt-get update
|
||||
apt-get -y install \
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install \
|
||||
build-essential \
|
||||
xxd \
|
||||
git \
|
||||
cmake \
|
||||
python3-pip \
|
||||
curl \
|
||||
wget \
|
||||
language-pack-en \
|
||||
@ -70,6 +63,17 @@ jobs:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: Python setup
|
||||
id: setup_python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
|
||||
- name: Verify server deps
|
||||
id: verify_server_deps
|
||||
run: |
|
||||
@ -100,10 +104,6 @@ jobs:
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
|
||||
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
@ -129,6 +129,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
|
4
.gitignore
vendored
4
.gitignore
vendored
@ -34,6 +34,7 @@ lcov-report/
|
||||
gcovr-report/
|
||||
|
||||
build*
|
||||
!build.zig
|
||||
cmake-build-*
|
||||
out/
|
||||
tmp/
|
||||
@ -100,6 +101,9 @@ qnt-*.txt
|
||||
perf-*.txt
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
|
||||
poetry.lock
|
||||
poetry.toml
|
||||
|
@ -43,17 +43,7 @@ else()
|
||||
set(LLAMA_METAL_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
# TODO: fix this for Android CI
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6716#issuecomment-2061509191
|
||||
#if (CMAKE_SYSTEM_NAME MATCHES "ANDROID")
|
||||
# set(LLAMA_LLAMAFILE_DEFAULT OFF)
|
||||
#else()
|
||||
# set(LLAMA_LLAMAFILE_DEFAULT ON)
|
||||
#endif()
|
||||
|
||||
# TODO: temporary disable until MoE is fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6716
|
||||
set(LLAMA_LLAMAFILE_DEFAULT OFF)
|
||||
set(LLAMA_LLAMAFILE_DEFAULT ON)
|
||||
|
||||
# general
|
||||
option(BUILD_SHARED_LIBS "build shared libraries" OFF)
|
||||
|
19
Makefile
19
Makefile
@ -384,10 +384,6 @@ ifdef LLAMA_OPENBLAS
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
# TODO: temporary disable until MoE is fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6716
|
||||
LLAMA_NO_LLAMAFILE := 1
|
||||
|
||||
ifndef LLAMA_NO_LLAMAFILE
|
||||
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
|
||||
OBJS += sgemm.o
|
||||
@ -699,7 +695,7 @@ OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o unicode-data.o
|
||||
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h llama.h
|
||||
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o json-schema-to-grammar.o
|
||||
|
||||
common.o: common/common.cpp $(COMMON_H_DEPS)
|
||||
@ -772,7 +768,7 @@ batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS)
|
||||
quantize: examples/quantize/quantize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
@ -800,10 +796,19 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/server/json-schema-to-grammar.mjs.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
|
||||
examples/server/%.hpp: examples/server/public/% Makefile
|
||||
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
|
||||
echo "unsigned char $${NAME}[] = {" && \
|
||||
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
|
||||
echo "};" && \
|
||||
echo "unsigned int $${NAME}_len = $(shell cat $< | wc -c );" \
|
||||
) > $@
|
||||
|
||||
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
@ -229,12 +229,12 @@ source /opt/intel/oneapi/setvars.sh
|
||||
# Build LLAMA with MKL BLAS acceleration for intel GPU
|
||||
mkdir -p build && cd build
|
||||
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
# Option 2: Use FP32 by default
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
#build all binary
|
||||
cmake --build . --config Release -j -v
|
||||
```
|
||||
@ -250,12 +250,12 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
mkdir -p build && cd build
|
||||
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
# Option 2: Use FP32 by default
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
#build all binary
|
||||
cmake --build . --config Release -j -v
|
||||
|
||||
@ -416,6 +416,10 @@ mkdir -p build
|
||||
cd build
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
|
||||
# Option 2: Or FP16
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
make -j
|
||||
|
21
README.md
21
README.md
@ -10,6 +10,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
### Recent API changes
|
||||
|
||||
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
|
||||
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
|
||||
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
|
||||
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
@ -92,10 +93,11 @@ Typically finetunes of the base models below are supported as well.
|
||||
|
||||
- [X] LLaMA 🦙
|
||||
- [x] LLaMA 2 🦙🦙
|
||||
- [x] LLaMA 3 🦙🦙🦙
|
||||
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||||
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
|
||||
- [X] Falcon
|
||||
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
@ -118,8 +120,9 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||||
- [x] [Mamba](https://github.com/state-spaces/mamba)
|
||||
- [x] [Grok-1](https://huggingface.co/keyfan/grok-1-hf)
|
||||
- [x] [Xverse](https://huggingface.co/models?search=xverse)
|
||||
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
|
||||
- [x] [Command-R models](https://huggingface.co/models?search=CohereForAI/c4ai-command-r)
|
||||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||||
- [x] [OLMo](https://allenai.org/olmo)
|
||||
@ -134,6 +137,8 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
|
||||
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
|
||||
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
|
||||
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
|
||||
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
|
||||
|
||||
**HTTP server**
|
||||
|
||||
@ -549,7 +554,7 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
|
||||
|
||||
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
|
||||
- For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed.
|
||||
- For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed.
|
||||
|
||||
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
|
||||
|
||||
@ -574,6 +579,12 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
|
||||
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
|
||||
|
||||
Linux packaging:
|
||||
Fedora Linux:
|
||||
```bash
|
||||
sudo dnf install clblast
|
||||
```
|
||||
|
||||
Alternatively, they may be built from source.
|
||||
|
||||
- <details>
|
||||
@ -1110,7 +1121,9 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m
|
||||
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
|
||||
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`z = ggml_mul_mat(ctx, x, y)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means `zT = x @ yT`
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
|
||||
![matmul](media/matmul.png)
|
||||
|
||||
### Docs
|
||||
|
||||
|
29
build.zig
29
build.zig
@ -140,4 +140,33 @@ pub fn build(b: *std.build.Builder) !void {
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
|
||||
const server_assets = [_][]const u8{ "index.html", "index.js", "completion.js", "json-schema-to-grammar.mjs" };
|
||||
for (server_assets) |asset| {
|
||||
const input_path = b.fmt("examples/server/public/{s}", .{asset});
|
||||
const output_path = b.fmt("examples/server/{s}.hpp", .{asset});
|
||||
|
||||
// Portable equivalent of `b.addSystemCommand(&.{ "xxd", "-n", asset, "-i", input_path, output_path }) })`:
|
||||
|
||||
const input = try std.fs.cwd().readFileAlloc(b.allocator, input_path, std.math.maxInt(usize));
|
||||
defer b.allocator.free(input);
|
||||
|
||||
var buf = std.ArrayList(u8).init(b.allocator);
|
||||
defer buf.deinit();
|
||||
|
||||
for (input) |byte| {
|
||||
try std.fmt.format(buf.writer(), "0x{X:0>2}, ", .{byte});
|
||||
}
|
||||
|
||||
var name = try std.mem.replaceOwned(u8, b.allocator, asset, "-", "_");
|
||||
defer b.allocator.free(name);
|
||||
std.mem.replaceScalar(u8, name, '.', '_');
|
||||
|
||||
try std.fs.cwd().writeFile(output_path, b.fmt(
|
||||
"unsigned char {s}[] = {{{s}}};\nunsigned int {s}_len = {d};\n",
|
||||
.{ name, buf.items, name, input.len },
|
||||
));
|
||||
|
||||
std.debug.print("Dumped hex of \"{s}\" ({s}) to {s}\n", .{ input_path, name, output_path });
|
||||
}
|
||||
}
|
||||
|
@ -160,7 +160,9 @@ function gg_run_test_scripts_debug {
|
||||
|
||||
set -e
|
||||
|
||||
# TODO: too slow, run on dedicated node
|
||||
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
#(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
|
||||
set +e
|
||||
}
|
||||
@ -184,6 +186,7 @@ function gg_run_test_scripts_release {
|
||||
set -e
|
||||
|
||||
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
@ -108,7 +108,7 @@ int32_t get_num_physical_cores() {
|
||||
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
||||
}
|
||||
|
||||
#if defined(__x86_64__) && defined(__linux__)
|
||||
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
|
||||
#include <pthread.h>
|
||||
|
||||
static void cpuid(unsigned leaf, unsigned subleaf,
|
||||
@ -162,7 +162,7 @@ static int count_math_cpus(int cpu_count) {
|
||||
* Returns number of CPUs on system that are useful for math.
|
||||
*/
|
||||
int get_math_cpu_count() {
|
||||
#if defined(__x86_64__) && defined(__linux__)
|
||||
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
|
||||
int cpu_count = sysconf(_SC_NPROCESSORS_ONLN);
|
||||
if (cpu_count < 1) {
|
||||
return get_num_physical_cores();
|
||||
@ -234,15 +234,63 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
return result;
|
||||
}
|
||||
|
||||
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
||||
const char * sep = strchr(data, '=');
|
||||
if (sep == nullptr || sep - data >= 128) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, data, sep - data);
|
||||
kvo.key[sep - data] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.val_i64 = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.val_f64 = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.val_bool = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.val_bool = false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
} else if (strncmp(sep, "str:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
||||
if (strlen(sep) > 127) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
strncpy(kvo.val_str, sep, 127);
|
||||
kvo.val_str[127] = '\0';
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
overrides.emplace_back(std::move(kvo));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
|
||||
llama_sampling_params& sparams = params.sparams;
|
||||
llama_sampling_params & sparams = params.sparams;
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
// This is temporary, in the future the samplign state will be moved fully to llama_sampling_context.
|
||||
params.seed = std::stoul(argv[i]);
|
||||
sparams.seed = std::stoul(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "-t" || arg == "--threads") {
|
||||
@ -1087,6 +1135,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.n_print = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--check-tensors") {
|
||||
params.check_tensors = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--ppl-output-type") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -1238,47 +1290,11 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
char* sep = strchr(argv[i], '=');
|
||||
if (sep == nullptr || sep - argv[i] >= 128) {
|
||||
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
struct llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, argv[i], sep - argv[i]);
|
||||
kvo.key[sep - argv[i]] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
}
|
||||
else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
}
|
||||
else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
}
|
||||
else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (!parse_kv_override(argv[i], params.kv_overrides)) {
|
||||
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.kv_overrides.push_back(kvo);
|
||||
return true;
|
||||
}
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
@ -1549,9 +1565,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -ptc N, --print-token-count N\n");
|
||||
printf(" print token count every N tokens (default: %d)\n", params.n_print);
|
||||
printf(" --check-tensors check model tensor data for invalid values\n");
|
||||
printf("\n");
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_print_usage();
|
||||
@ -1772,6 +1789,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
@ -2326,12 +2344,12 @@ std::vector<llama_token> llama_tokenize(
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
|
@ -86,8 +86,8 @@ struct gpt_params {
|
||||
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
@ -161,6 +161,7 @@ struct gpt_params {
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
|
||||
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||||
@ -170,6 +171,8 @@ struct gpt_params {
|
||||
std::string image = ""; // path to an image file
|
||||
};
|
||||
|
||||
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
|
||||
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
@ -237,11 +240,12 @@ std::vector<llama_token> llama_tokenize(
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
// tokenizes a token into a piece
|
||||
// tokenizes a token into a piece, optionally renders special/control tokens
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
std::string llama_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token);
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
|
||||
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
|
||||
// that takes into account the tokenizer type and decides how to handle the leading space
|
||||
|
@ -234,7 +234,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG() INSTEAD
|
||||
//
|
||||
#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER)
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER)
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
@ -257,7 +257,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER)
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER)
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
|
@ -1,4 +1,6 @@
|
||||
#define LLAMA_API_INTERNAL
|
||||
#include "sampling.h"
|
||||
#include <random>
|
||||
|
||||
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
|
||||
struct llama_sampling_context * result = new llama_sampling_context();
|
||||
@ -33,6 +35,8 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
|
||||
|
||||
result->prev.resize(params.n_prev);
|
||||
|
||||
llama_sampling_set_rng_seed(result, params.seed);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -62,6 +66,13 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
|
||||
ctx->cur.clear();
|
||||
}
|
||||
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
|
||||
if (seed == LLAMA_DEFAULT_SEED) {
|
||||
seed = time(NULL);
|
||||
}
|
||||
ctx->rng.seed(seed);
|
||||
}
|
||||
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
|
||||
if (dst->grammar) {
|
||||
llama_grammar_free(dst->grammar);
|
||||
@ -203,7 +214,7 @@ static llama_token llama_sampling_sample_impl(
|
||||
|
||||
sampler_queue(ctx_main, params, cur_p, min_keep);
|
||||
|
||||
id = llama_sample_token(ctx_main, &cur_p);
|
||||
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
|
||||
|
||||
//{
|
||||
// const int n_top = 10;
|
||||
|
@ -4,9 +4,10 @@
|
||||
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
// sampler types
|
||||
enum class llama_sampler_type : char {
|
||||
@ -20,25 +21,26 @@ enum class llama_sampler_type : char {
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
|
||||
|
||||
std::vector<llama_sampler_type> samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
@ -79,6 +81,8 @@ struct llama_sampling_context {
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> prev;
|
||||
std::vector<llama_token_data> cur;
|
||||
|
||||
std::mt19937 rng;
|
||||
};
|
||||
|
||||
#include "common.h"
|
||||
@ -93,6 +97,9 @@ void llama_sampling_free(struct llama_sampling_context * ctx);
|
||||
// - reset grammar
|
||||
void llama_sampling_reset(llama_sampling_context * ctx);
|
||||
|
||||
// Set the sampler seed
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
|
||||
|
||||
// Copy the sampler context
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
|
||||
|
||||
|
@ -363,6 +363,16 @@ class Model(ABC):
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
print(
|
||||
f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]"
|
||||
)
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(f"[PAD{i}]")
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||||
|
||||
assert len(tokens) == vocab_size
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
@ -1301,15 +1311,23 @@ class LlamaModel(Model):
|
||||
try:
|
||||
self. _set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
self._set_vocab_llama_hf()
|
||||
try:
|
||||
self._set_vocab_llama_hf()
|
||||
except (FileNotFoundError, TypeError):
|
||||
# Llama 3
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
|
||||
special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
|
||||
special_vocab._set_special_token("prefix", 32007)
|
||||
special_vocab._set_special_token("suffix", 32008)
|
||||
special_vocab._set_special_token("middle", 32009)
|
||||
special_vocab._set_special_token("eot", 32010)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
|
||||
if self.hparams.get("vocab_size", 32000) == 32016:
|
||||
special_vocab = gguf.SpecialVocab(
|
||||
self.dir_model, load_merges=False,
|
||||
special_token_types = ['prefix', 'suffix', 'middle', 'eot']
|
||||
)
|
||||
special_vocab._set_special_token("prefix", 32007)
|
||||
special_vocab._set_special_token("suffix", 32008)
|
||||
special_vocab._set_special_token("middle", 32009)
|
||||
special_vocab._set_special_token("eot", 32010)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
@ -1781,6 +1799,12 @@ class QwenModel(Model):
|
||||
class Qwen2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
|
||||
@Model.register("Qwen2MoeForCausalLM")
|
||||
class Qwen2MoeModel(Model):
|
||||
@ -1971,6 +1995,91 @@ class Phi2Model(Model):
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
|
||||
@Model.register("Phi3ForCausalLM")
|
||||
class Phi3MiniModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PHI3
|
||||
|
||||
def set_vocab(self):
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
|
||||
piece = tokenizer.id_to_piece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.is_unknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.is_control(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.is_unused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.is_byte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_json = json.load(f)
|
||||
|
||||
for key in added_tokens_json:
|
||||
token_id = added_tokens_json[key]
|
||||
if (token_id >= vocab_size):
|
||||
print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
|
||||
tokens[token_id] = key.encode("utf-8")
|
||||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||
|
||||
rot_pct = 1.0
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
rms_eps = self.find_hparam(["rms_norm_eps"])
|
||||
|
||||
self.gguf_writer.add_name("Phi3")
|
||||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
||||
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
self.gguf_writer.add_feed_forward_length(8192)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
|
||||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@Model.register("PlamoForCausalLM")
|
||||
class PlamoModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PLAMO
|
||||
@ -2194,6 +2303,8 @@ class InternLM2Model(Model):
|
||||
old_eos = special_vocab.special_token_ids["eos"]
|
||||
if "chat" in os.path.basename(self.dir_model.absolute()):
|
||||
# For the chat model, we replace the eos with '<|im_end|>'.
|
||||
# TODO: this is a hack, should be fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
|
||||
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
|
||||
print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
|
||||
in chat mode so that the conversation can end normally.")
|
||||
@ -2429,12 +2540,15 @@ class GemmaModel(Model):
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
# TODO: these special tokens should be exported only for the CodeGemma family
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
|
||||
special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
|
||||
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
|
||||
special_vocab._set_special_token("prefix", 67)
|
||||
special_vocab._set_special_token("suffix", 69)
|
||||
special_vocab._set_special_token("middle", 68)
|
||||
special_vocab._set_special_token("eot", 70)
|
||||
special_vocab._set_special_token("fsep", 70)
|
||||
special_vocab._set_special_token("eot", 107)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
@ -2523,28 +2637,34 @@ class MambaModel(Model):
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
|
||||
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
|
||||
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
|
||||
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
|
||||
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
|
||||
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
|
||||
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
|
||||
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
d_model = self.find_hparam(["hidden_size", "d_model"])
|
||||
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
|
||||
d_model = self.find_hparam(["hidden_size", "d_model"])
|
||||
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
|
||||
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
|
||||
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
|
||||
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
|
||||
# ceiling division
|
||||
# ref: https://stackoverflow.com/a/17511341/22827863
|
||||
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
|
||||
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
|
||||
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
|
||||
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
|
||||
|
||||
# Fail early for models which don't have a block expansion factor of 2
|
||||
|
@ -525,7 +525,14 @@ class LlamaHfVocab(Vocab):
|
||||
|
||||
# pre-check so we know if we need transformers
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
if (
|
||||
is_llama3 = (
|
||||
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
|
||||
and not tokenizer_model.get('byte_fallback', True)
|
||||
)
|
||||
if is_llama3:
|
||||
raise TypeError('Llama 3 must be converted with BpeVocab')
|
||||
|
||||
if not is_llama3 and (
|
||||
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'Sequence'
|
||||
):
|
||||
|
@ -153,7 +153,7 @@ while n_cur <= n_len {
|
||||
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if new_token_id == llama_token_eos(model) || n_cur == n_len {
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
i_batch[i] = -1
|
||||
// print("")
|
||||
if n_parallel > 1 {
|
||||
@ -229,7 +229,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
|
||||
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
|
||||
var result = [CChar](repeating: 0, count: 8)
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), false)
|
||||
if nTokens < 0 {
|
||||
let actualTokensCount = -Int(nTokens)
|
||||
result = .init(repeating: 0, count: actualTokensCount)
|
||||
@ -237,7 +237,8 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
|
||||
model,
|
||||
token,
|
||||
&result,
|
||||
Int32(result.count)
|
||||
Int32(result.count),
|
||||
false
|
||||
)
|
||||
assert(check == actualTokensCount)
|
||||
} else {
|
||||
|
@ -191,8 +191,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
i_batch[i] = -1;
|
||||
LOG_TEE("\n");
|
||||
if (n_parallel > 1) {
|
||||
|
@ -47,7 +47,7 @@ struct beam_search_callback_data {
|
||||
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
|
||||
// For example, eob can be flagged due to maximum token length, stop words, etc.
|
||||
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
|
||||
return n_tokens && tokens[n_tokens-1] == llama_token_eos(llama_get_model(callback_data.ctx));
|
||||
return n_tokens && llama_token_is_eog(llama_get_model(callback_data.ctx), tokens[n_tokens-1]);
|
||||
}
|
||||
|
||||
// Function matching type llama_beam_search_callback_fn_t.
|
||||
|
16
examples/gguf-split/tests.sh
Normal file → Executable file
16
examples/gguf-split/tests.sh
Normal file → Executable file
@ -4,16 +4,16 @@ set -eu
|
||||
|
||||
if [ $# -lt 1 ]
|
||||
then
|
||||
echo "usage: $0 path_to_build_binary [path_to_temp_folder]"
|
||||
echo "example: $0 ../../build/bin ../../tmp"
|
||||
exit 1
|
||||
echo "usage: $0 path_to_build_binary [path_to_temp_folder]"
|
||||
echo "example: $0 ../../build/bin ../../tmp"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# -gt 1 ]
|
||||
then
|
||||
TMP_DIR=$2
|
||||
TMP_DIR=$2
|
||||
else
|
||||
TMP_DIR=/tmp
|
||||
TMP_DIR=/tmp
|
||||
fi
|
||||
|
||||
set -x
|
||||
@ -21,7 +21,7 @@ set -x
|
||||
SPLIT=$1/gguf-split
|
||||
MAIN=$1/main
|
||||
WORK_PATH=$TMP_DIR/gguf-split
|
||||
CUR_DIR=$(pwd)
|
||||
ROOT_DIR=$(realpath $(dirname $0)/../../)
|
||||
|
||||
mkdir -p "$WORK_PATH"
|
||||
|
||||
@ -30,8 +30,8 @@ rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-merge*.gguf
|
||||
|
||||
# 1. Get a model
|
||||
(
|
||||
cd $WORK_PATH
|
||||
"$CUR_DIR"/../../scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
|
||||
cd $WORK_PATH
|
||||
"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
|
||||
)
|
||||
echo PASS
|
||||
|
||||
|
@ -23,6 +23,7 @@ struct Stats {
|
||||
};
|
||||
|
||||
struct StatParams {
|
||||
std::string dataset;
|
||||
std::string ofile = "imatrix.dat";
|
||||
int n_output_frequency = 10;
|
||||
int verbosity = 1;
|
||||
@ -46,7 +47,7 @@ private:
|
||||
std::vector<float> m_src1_data;
|
||||
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
|
||||
//
|
||||
void save_imatrix(const char * file_name) const;
|
||||
void save_imatrix(const char * file_name, const char * dataset) const;
|
||||
void keep_imatrix(int ncall) const;
|
||||
};
|
||||
|
||||
@ -199,7 +200,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
}
|
||||
|
||||
void IMatrixCollector::save_imatrix() const {
|
||||
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str());
|
||||
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str());
|
||||
}
|
||||
|
||||
void IMatrixCollector::keep_imatrix(int ncall) const {
|
||||
@ -207,24 +208,33 @@ void IMatrixCollector::keep_imatrix(int ncall) const {
|
||||
if (file_name.empty()) file_name = "imatrix.dat";
|
||||
file_name += ".at_";
|
||||
file_name += std::to_string(ncall);
|
||||
save_imatrix(file_name.c_str());
|
||||
save_imatrix(file_name.c_str(), m_params.dataset.c_str());
|
||||
}
|
||||
|
||||
void IMatrixCollector::save_imatrix(const char * fname) const {
|
||||
void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const {
|
||||
std::ofstream out(fname, std::ios::binary);
|
||||
int n_entries = m_stats.size();
|
||||
out.write((const char*)&n_entries, sizeof(n_entries));
|
||||
for (auto& p : m_stats) {
|
||||
out.write((const char *) &n_entries, sizeof(n_entries));
|
||||
for (const auto & p : m_stats) {
|
||||
int len = p.first.size();
|
||||
out.write((const char*)&len, sizeof(len));
|
||||
out.write((const char *) &len, sizeof(len));
|
||||
out.write(p.first.c_str(), len);
|
||||
out.write((const char*)&p.second.ncall, sizeof(p.second.ncall));
|
||||
out.write((const char *) &p.second.ncall, sizeof(p.second.ncall));
|
||||
int nval = p.second.values.size();
|
||||
out.write((const char*)&nval, sizeof(nval));
|
||||
if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float));
|
||||
out.write((const char *) &nval, sizeof(nval));
|
||||
if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float));
|
||||
}
|
||||
|
||||
// Write the number of call the matrix was computed with
|
||||
out.write((const char *) &m_last_call, sizeof(m_last_call));
|
||||
|
||||
// Write the dataset name at the end of the file to later on specify it in quantize
|
||||
int n_dataset = strlen(dataset);
|
||||
out.write((const char *) &n_dataset, sizeof(n_dataset));
|
||||
out.write(dataset, n_dataset);
|
||||
|
||||
if (m_params.verbosity > 0) {
|
||||
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname);
|
||||
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname);
|
||||
}
|
||||
}
|
||||
|
||||
@ -547,6 +557,29 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
gpt_params params;
|
||||
params.n_batch = 512;
|
||||
if (!gpt_params_parse(args.size(), args.data(), params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.logits_all = true;
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
sparams.dataset = params.prompt_file;
|
||||
g_collector.set_parameters(std::move(sparams));
|
||||
|
||||
if (!combine_files.empty()) {
|
||||
@ -585,28 +618,6 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
gpt_params params;
|
||||
params.n_batch = 512;
|
||||
if (!gpt_params_parse(args.size(), args.data(), params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.logits_all = true;
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
|
@ -586,7 +586,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// deal with eot token in infill mode
|
||||
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if(is_interacting && !params.interactive_first) {
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
@ -651,8 +651,8 @@ int main(int argc, char ** argv) {
|
||||
// LOG_TEE("took new input\n");
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of text token in interactive mode
|
||||
else if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@ -731,8 +731,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
// end of text token
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(model) && !params.interactive) {
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) {
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -408,7 +408,7 @@ Java_com_example_llama_Llm_completion_1loop(
|
||||
const auto new_token_id = llama_sample_token_greedy(context, &candidates_p);
|
||||
|
||||
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
return env->NewStringUTF("");
|
||||
}
|
||||
|
||||
|
@ -158,7 +158,7 @@ actor LlamaContext {
|
||||
new_token_id = llama_sample_token_greedy(context, &candidates_p)
|
||||
}
|
||||
|
||||
if new_token_id == llama_token_eos(model) || n_cur == n_len {
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
print("\n")
|
||||
let new_token_str = String(cString: temporary_invalid_cchars + [0])
|
||||
temporary_invalid_cchars.removeAll()
|
||||
@ -322,7 +322,7 @@ actor LlamaContext {
|
||||
defer {
|
||||
result.deallocate()
|
||||
}
|
||||
let nTokens = llama_token_to_piece(model, token, result, 8)
|
||||
let nTokens = llama_token_to_piece(model, token, result, 8, false)
|
||||
|
||||
if nTokens < 0 {
|
||||
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
|
||||
@ -330,7 +330,7 @@ actor LlamaContext {
|
||||
defer {
|
||||
newResult.deallocate()
|
||||
}
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens)
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, false)
|
||||
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
|
||||
return Array(bufferPointer)
|
||||
} else {
|
||||
|
@ -3,6 +3,7 @@
|
||||
// I'll gradually clean and extend it
|
||||
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
|
||||
#include "clip.h"
|
||||
#include "log.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
@ -23,7 +24,6 @@
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
@ -104,6 +104,7 @@ static std::string format(const char * fmt, ...) {
|
||||
#define TN_POS_EMBD "%s.position_embd.weight"
|
||||
#define TN_CLASS_EMBD "v.class_embd"
|
||||
#define TN_PATCH_EMBD "v.patch_embd.weight"
|
||||
#define TN_PATCH_BIAS "v.patch_embd.bias"
|
||||
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
|
||||
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
|
||||
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
|
||||
@ -145,7 +146,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
static int get_key_idx(const gguf_context * ctx, const char * key) {
|
||||
int i = gguf_find_key(ctx, key);
|
||||
if (i == -1) {
|
||||
fprintf(stderr, "key %s not found in file\n", key);
|
||||
LOG_TEE("key %s not found in file\n", key);
|
||||
throw std::runtime_error(format("Missing required key: %s", key));
|
||||
}
|
||||
|
||||
@ -247,7 +248,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
|
||||
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
|
||||
size_t tensor_size = ggml_nbytes(tensor);
|
||||
printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
|
||||
LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
|
||||
prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
|
||||
}
|
||||
@ -265,7 +266,7 @@ static projector_type clip_projector_type_from_string(const std::string & name)
|
||||
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
|
||||
std::ofstream file(filename, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "Failed to open file for writing: " << filename << std::endl;
|
||||
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -284,7 +285,7 @@ static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::s
|
||||
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
|
||||
std::ofstream file(filename, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "Failed to open file for writing: " << filename << std::endl;
|
||||
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -425,6 +426,7 @@ struct clip_vision_model {
|
||||
// embeddings
|
||||
struct ggml_tensor * class_embedding;
|
||||
struct ggml_tensor * patch_embeddings;
|
||||
struct ggml_tensor * patch_bias;
|
||||
struct ggml_tensor * position_embeddings;
|
||||
|
||||
struct ggml_tensor * pre_ln_w;
|
||||
@ -501,6 +503,11 @@ struct clip_ctx {
|
||||
bool use_gelu = false;
|
||||
int32_t ftype = 1;
|
||||
|
||||
bool has_class_embedding = true;
|
||||
bool has_pre_norm = true;
|
||||
bool has_post_norm = false;
|
||||
bool has_patch_bias = false;
|
||||
|
||||
struct gguf_context * ctx_gguf;
|
||||
struct ggml_context * ctx_data;
|
||||
|
||||
@ -515,7 +522,7 @@ struct clip_ctx {
|
||||
|
||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@ -526,7 +533,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
|
||||
const int num_positions = num_patches + 1;
|
||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||
const int hidden_size = hparams.hidden_size;
|
||||
const int n_head = hparams.n_head;
|
||||
const int d_head = hidden_size / n_head;
|
||||
@ -557,16 +564,23 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
|
||||
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
|
||||
|
||||
if (ctx->has_patch_bias) {
|
||||
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
|
||||
inp = ggml_add(ctx0, inp, model.patch_bias);
|
||||
}
|
||||
|
||||
// concat class_embeddings and patch_embeddings
|
||||
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||
struct ggml_tensor * embeddings = inp;
|
||||
if (ctx->has_class_embedding) {
|
||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
||||
embeddings = ggml_acc(ctx0, embeddings, inp,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
}
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
|
||||
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
||||
|
||||
embeddings = ggml_acc(ctx0, embeddings, inp,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
|
||||
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||
ggml_set_name(positions, "positions");
|
||||
@ -576,7 +590,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
|
||||
|
||||
// pre-layernorm
|
||||
{
|
||||
if (ctx->has_pre_norm) {
|
||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||
ggml_set_name(embeddings, "pre_ln");
|
||||
|
||||
@ -664,6 +678,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings = cur;
|
||||
}
|
||||
|
||||
// post-layernorm
|
||||
if (ctx->has_post_norm) {
|
||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||
ggml_set_name(embeddings, "post_ln");
|
||||
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
|
||||
}
|
||||
|
||||
// llava projector
|
||||
{
|
||||
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
||||
@ -879,21 +901,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
const int idx_name = gguf_find_key(ctx, KEY_NAME);
|
||||
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
|
||||
const std::string name = gguf_get_val_str(ctx, idx_name);
|
||||
printf("%s: model name: %s\n", __func__, name.c_str());
|
||||
LOG_TEE("%s: model name: %s\n", __func__, name.c_str());
|
||||
}
|
||||
printf("%s: description: %s\n", __func__, description.c_str());
|
||||
printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
|
||||
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
printf("%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
printf("%s: n_kv: %d\n", __func__, n_kv);
|
||||
printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
|
||||
printf("\n");
|
||||
LOG_TEE("%s: description: %s\n", __func__, description.c_str());
|
||||
LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
|
||||
LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
LOG_TEE("%s: n_kv: %d\n", __func__, n_kv);
|
||||
LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str());
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
// kv
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
|
||||
LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
|
||||
__func__, n_kv, n_tensors, fname);
|
||||
{
|
||||
std::map<enum ggml_type, uint32_t> n_type;
|
||||
@ -904,7 +926,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
n_type[type]++;
|
||||
}
|
||||
|
||||
printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
for (int i = 0; i < n_kv; i++) {
|
||||
const char * name = gguf_get_key(ctx, i);
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx, i);
|
||||
@ -920,7 +942,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
replace_all(value, "\n", "\\n");
|
||||
|
||||
printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
|
||||
LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
|
||||
}
|
||||
|
||||
// print type counts
|
||||
@ -929,7 +951,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
|
||||
LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
|
||||
}
|
||||
}
|
||||
|
||||
@ -944,7 +966,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
size_t tensor_size = ggml_nbytes(cur);
|
||||
model_size += tensor_size;
|
||||
if (verbosity >= 3) {
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
||||
LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
||||
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
|
||||
}
|
||||
}
|
||||
@ -971,18 +993,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
new_clip->backend = ggml_backend_cuda_init(0);
|
||||
printf("%s: CLIP using CUDA backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using CUDA backend\n", __func__);
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
new_clip->backend = ggml_backend_metal_init();
|
||||
printf("%s: CLIP using Metal backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using Metal backend\n", __func__);
|
||||
#endif
|
||||
|
||||
|
||||
if (!new_clip->backend) {
|
||||
new_clip->backend = ggml_backend_cpu_init();
|
||||
printf("%s: CLIP using CPU backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using CPU backend\n", __func__);
|
||||
}
|
||||
|
||||
// model size and capabilities
|
||||
@ -1006,15 +1028,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
|
||||
|
||||
if (verbosity >= 1) {
|
||||
printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||
printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
printf("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
|
||||
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
|
||||
LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
|
||||
|
||||
// load tensors
|
||||
{
|
||||
@ -1027,7 +1049,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
|
||||
new_clip->ctx_data = ggml_init(params);
|
||||
if (!new_clip->ctx_data) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
LOG_TEE("%s: ggml_init() failed\n", __func__);
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
@ -1035,7 +1057,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin) {
|
||||
printf("cannot open model file for loading tensors\n");
|
||||
LOG_TEE("cannot open model file for loading tensors\n");
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
@ -1057,7 +1079,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
|
||||
fin.seekg(offset, std::ios::beg);
|
||||
if (!fin) {
|
||||
printf("%s: failed to seek for tensor %s\n", __func__, name);
|
||||
LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name);
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
@ -1128,34 +1150,61 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
|
||||
if (verbosity >= 2) {
|
||||
printf("\n%s: vision model hparams\n", __func__);
|
||||
printf("image_size %d\n", hparams.image_size);
|
||||
printf("patch_size %d\n", hparams.patch_size);
|
||||
printf("v_hidden_size %d\n", hparams.hidden_size);
|
||||
printf("v_n_intermediate %d\n", hparams.n_intermediate);
|
||||
printf("v_projection_dim %d\n", hparams.projection_dim);
|
||||
printf("v_n_head %d\n", hparams.n_head);
|
||||
printf("v_n_layer %d\n", hparams.n_layer);
|
||||
printf("v_eps %f\n", hparams.eps);
|
||||
printf("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
|
||||
printf("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
|
||||
printf("v_image_grid_pinpoints: ");
|
||||
LOG_TEE("\n%s: vision model hparams\n", __func__);
|
||||
LOG_TEE("image_size %d\n", hparams.image_size);
|
||||
LOG_TEE("patch_size %d\n", hparams.patch_size);
|
||||
LOG_TEE("v_hidden_size %d\n", hparams.hidden_size);
|
||||
LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate);
|
||||
LOG_TEE("v_projection_dim %d\n", hparams.projection_dim);
|
||||
LOG_TEE("v_n_head %d\n", hparams.n_head);
|
||||
LOG_TEE("v_n_layer %d\n", hparams.n_layer);
|
||||
LOG_TEE("v_eps %f\n", hparams.eps);
|
||||
LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
|
||||
LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
|
||||
LOG_TEE("v_image_grid_pinpoints: ");
|
||||
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
|
||||
printf("%d ", hparams.image_grid_pinpoints[i]);
|
||||
LOG_TEE("%d ", hparams.image_grid_pinpoints[i]);
|
||||
}
|
||||
printf("\n");
|
||||
printf("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
|
||||
new_clip->has_class_embedding = true;
|
||||
} catch (const std::exception& e) {
|
||||
new_clip->has_class_embedding = false;
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
|
||||
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
||||
new_clip->has_pre_norm = true;
|
||||
} catch (std::exception & e) {
|
||||
new_clip->has_pre_norm = false;
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
|
||||
vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
|
||||
new_clip->has_post_norm = true;
|
||||
} catch (std::exception & e) {
|
||||
new_clip->has_post_norm = false;
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
|
||||
new_clip->has_patch_bias = true;
|
||||
} catch (std::exception & e) {
|
||||
new_clip->has_patch_bias = false;
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
|
||||
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
|
||||
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
|
||||
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
|
||||
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
||||
} catch(const std::exception& e) {
|
||||
fprintf(stderr, "%s: failed to load vision model tensors\n", __func__);
|
||||
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
|
||||
}
|
||||
|
||||
// LLaVA projection
|
||||
@ -1184,7 +1233,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
} catch (std::runtime_error & e) { }
|
||||
try {
|
||||
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
|
||||
// fprintf(stderr, "%s: image_newline tensor (llava-1.6) found\n", __func__);
|
||||
// LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
|
||||
} catch (std::runtime_error & e) { }
|
||||
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
||||
// MobileVLM projection
|
||||
@ -1264,7 +1313,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
|
||||
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
|
||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
|
||||
printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||
}
|
||||
|
||||
return new_clip;
|
||||
@ -1304,7 +1353,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
|
||||
int nx, ny, nc;
|
||||
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
|
||||
if (!data) {
|
||||
fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
|
||||
LOG_TEE("%s: failed to load image '%s'\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
@ -1316,7 +1365,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
|
||||
int nx, ny, nc;
|
||||
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
|
||||
if (!data) {
|
||||
fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
|
||||
LOG_TEE("%s: failed to decode image bytes\n", __func__);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
@ -1325,7 +1374,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
|
||||
}
|
||||
|
||||
// Linear interpolation between two points
|
||||
inline float lerp(float s, float e, float t) {
|
||||
inline float clip_lerp(float s, float e, float t) {
|
||||
return s + (e - s) * t;
|
||||
}
|
||||
// Bilinear resize function
|
||||
@ -1347,17 +1396,17 @@ static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int ta
|
||||
float y_lerp = py - y_floor;
|
||||
|
||||
for (int c = 0; c < 3; c++) {
|
||||
float top = lerp(
|
||||
float top = clip_lerp(
|
||||
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
|
||||
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
|
||||
x_lerp
|
||||
);
|
||||
float bottom = lerp(
|
||||
float bottom = clip_lerp(
|
||||
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
|
||||
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
|
||||
x_lerp
|
||||
);
|
||||
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
|
||||
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1506,7 +1555,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or
|
||||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
@ -1545,7 +1594,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
|
||||
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
|
||||
bool pad_to_square = true;
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
auto & params = ctx->vision_model.hparams;
|
||||
@ -1622,7 +1671,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < patches.size(); i++) {
|
||||
// printf("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
|
||||
// LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
|
||||
clip_image_u8_free(patches[i]);
|
||||
}
|
||||
|
||||
@ -1765,7 +1814,7 @@ int clip_n_patches(const struct clip_ctx * ctx) {
|
||||
|
||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -1777,7 +1826,7 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3
|
||||
|
||||
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -1939,7 +1988,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
new_type = type;
|
||||
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
|
||||
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
|
||||
// fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
|
||||
// LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
|
||||
}
|
||||
const size_t n_elms = ggml_nelements(cur);
|
||||
float * f32_data;
|
||||
@ -1958,7 +2007,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
f32_data = (float *)conv_buf.data();
|
||||
break;
|
||||
default:
|
||||
printf("Please use an input file in f32 or f16\n");
|
||||
LOG_TEE("Please use an input file in f32 or f16\n");
|
||||
gguf_free(ctx_out);
|
||||
return false;
|
||||
}
|
||||
@ -1985,7 +2034,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
fout.put(0);
|
||||
}
|
||||
|
||||
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
|
||||
LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
|
||||
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
@ -2001,8 +2050,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
gguf_free(ctx_out);
|
||||
|
||||
{
|
||||
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
|
||||
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include "ggml.h"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
@ -18,7 +19,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
@ -45,7 +46,7 @@ static const char * sample(struct llama_sampling_context * ctx_sampling,
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
||||
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
||||
static std::string ret;
|
||||
if (id == llama_token_eos(llama_get_model(ctx_llama))) {
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
@ -73,7 +74,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
|
||||
size_t img_base64_str_start, img_base64_str_end;
|
||||
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
|
||||
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
|
||||
fprintf(stderr, "%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
|
||||
LOG_TEE("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -87,7 +88,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
|
||||
|
||||
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: could not load image from base64 string.\n", __func__);
|
||||
LOG_TEE("%s: could not load image from base64 string.\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -112,8 +113,8 @@ struct llava_context {
|
||||
};
|
||||
|
||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
fprintf(stderr, "\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
fprintf(stderr, " note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) {
|
||||
@ -123,18 +124,18 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
||||
auto prompt = params->prompt;
|
||||
if (prompt_contains_image(prompt)) {
|
||||
if (!params->image.empty()) {
|
||||
fprintf(stderr, "using base64 encoded image instead of command line image path\n");
|
||||
LOG_TEE("using base64 encoded image instead of command line image path\n");
|
||||
}
|
||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: can't load image from prompt\n", __func__);
|
||||
LOG_TEE("%s: can't load image from prompt\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
params->prompt = remove_image_from_prompt(prompt);
|
||||
} else {
|
||||
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str());
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str());
|
||||
LOG_TEE("%s: is %s really an image file?\n", __func__, params->image.c_str());
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
@ -153,18 +154,18 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
|
||||
system_prompt = prompt.substr(0, image_pos);
|
||||
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
||||
printf("system_prompt: %s\n", system_prompt.c_str());
|
||||
LOG_TEE("system_prompt: %s\n", system_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
printf("user_prompt: %s\n", user_prompt.c_str());
|
||||
LOG_TEE("user_prompt: %s\n", user_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -174,7 +175,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -185,7 +186,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
|
||||
// generate the response
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||
std::string response = "";
|
||||
@ -224,7 +225,7 @@ static struct llava_context * llava_init(gpt_params * params) {
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -234,7 +235,7 @@ static struct llava_context * llava_init(gpt_params * params) {
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -257,6 +258,12 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
LOG_TEE("%s", text);
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
@ -266,6 +273,14 @@ int main(int argc, char ** argv) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("llava", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
llama_log_set(llama_log_callback_logTee, nullptr);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
show_additional_info(argc, argv);
|
||||
@ -274,7 +289,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
auto ctx_llava = llava_init(¶ms);
|
||||
if (ctx_llava == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to init llava\n", __func__);
|
||||
LOG_TEE("%s: error: failed to init llava\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -54,7 +54,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int>& ori
|
||||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
@ -154,13 +154,13 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
||||
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
|
||||
if (newline_tmp->buffer == NULL) {
|
||||
printf("newline_tmp tensor buffer is NULL\n");
|
||||
LOG_TEE("newline_tmp tensor buffer is NULL\n");
|
||||
}
|
||||
ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp));
|
||||
} else {
|
||||
model.newline->data = newline_tmp->data;
|
||||
if (model.newline->data == NULL) {
|
||||
printf("newline_tmp tensor data is NULL\n");
|
||||
LOG_TEE("newline_tmp tensor data is NULL\n");
|
||||
}
|
||||
}
|
||||
|
||||
@ -224,7 +224,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
|
||||
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
|
||||
LOG_TEE("%s: unable to preprocess image\n", __func__);
|
||||
delete[] img_res_v.data;
|
||||
return false;
|
||||
}
|
||||
@ -239,7 +239,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
||||
delete[] img_res_v.data;
|
||||
if (!encoded) {
|
||||
fprintf(stderr, "Unable to encode image\n");
|
||||
LOG_TEE("Unable to encode image\n");
|
||||
|
||||
return false;
|
||||
}
|
||||
@ -252,12 +252,12 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
|
||||
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||||
if (!encoded) {
|
||||
fprintf(stderr, "Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
printf("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||||
|
||||
@ -290,12 +290,12 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
// clip_image_save_to_bmp(*tmp, "image_feature.bmp");
|
||||
}
|
||||
|
||||
printf("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
|
||||
const int64_t t_img_enc_end_us = ggml_time_us();
|
||||
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||||
|
||||
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||||
LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -305,7 +305,7 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
||||
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
|
||||
if (n_image_embd != n_llama_embd) {
|
||||
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
@ -314,13 +314,13 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
||||
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
|
||||
if (!image_embd) {
|
||||
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
|
||||
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
int n_img_pos;
|
||||
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
|
||||
fprintf(stderr, "%s: cannot encode image, aborting\n", __func__);
|
||||
LOG_TEE("%s: cannot encode image, aborting\n", __func__);
|
||||
free(image_embd);
|
||||
return false;
|
||||
}
|
||||
@ -340,7 +340,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
@ -352,7 +352,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
||||
clip_image_u8 * img = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
||||
clip_image_u8_free(img);
|
||||
fprintf(stderr, "%s: can't load image from bytes, is it a valid image?", __func__);
|
||||
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -361,7 +361,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
||||
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
|
||||
if (!image_embed_result) {
|
||||
clip_image_u8_free(img);
|
||||
fprintf(stderr, "%s: coulnd't embed the image\n", __func__);
|
||||
LOG_TEE("%s: coulnd't embed the image\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -375,7 +375,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
||||
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
|
||||
auto file = fopen(path, "rb");
|
||||
if (file == NULL) {
|
||||
fprintf(stderr, "%s: can't read file %s\n", __func__, path);
|
||||
LOG_TEE("%s: can't read file %s\n", __func__, path);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -385,7 +385,7 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
|
||||
|
||||
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
|
||||
if (buffer == NULL) {
|
||||
fprintf(stderr, "%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
||||
LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
||||
perror("Memory allocation error");
|
||||
fclose(file);
|
||||
return false;
|
||||
@ -410,7 +410,7 @@ struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx
|
||||
long image_bytes_length;
|
||||
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
||||
if (!loaded) {
|
||||
fprintf(stderr, "%s: failed to load %s\n", __func__, image_path);
|
||||
LOG_TEE("%s: failed to load %s\n", __func__, image_path);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -299,7 +299,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
if (id == llama_token_eos(model)) {
|
||||
if (llama_token_is_eog(model, id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
|
||||
|
@ -30,7 +30,6 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
|
@ -38,7 +38,6 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
@ -141,7 +140,7 @@ int main(int argc, char ** argv){
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
|
||||
if (id == llama_token_eos(model)) {
|
||||
if (llama_token_is_eog(model, id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
|
||||
|
@ -240,7 +240,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
session_tokens.resize(n_token_count_out);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
|
||||
}
|
||||
}
|
||||
@ -795,8 +794,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
// deal with end of text token in interactive mode
|
||||
if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
|
||||
// deal with end of generation tokens in interactive mode
|
||||
if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@ -920,8 +919,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
// end of text token
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) {
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.instruct || params.interactive || params.chatml)) {
|
||||
LOG_TEE(" [end of text]\n");
|
||||
break;
|
||||
}
|
||||
|
@ -359,7 +359,7 @@ int main(int argc, char ** argv) {
|
||||
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
|
||||
|
||||
if (client.n_decoded > 2 &&
|
||||
(id == llama_token_eos(model) ||
|
||||
(llama_token_is_eog(model, id) ||
|
||||
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
|
||||
client.response.find("User:") != std::string::npos ||
|
||||
client.response.find('\n') != std::string::npos)) {
|
||||
|
@ -252,8 +252,8 @@ int main(int argc, char ** argv) {
|
||||
// sample the most likely token
|
||||
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream?
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
break;
|
||||
|
@ -1,6 +1,6 @@
|
||||
set(TARGET quantize)
|
||||
add_executable(${TARGET} quantize.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_include_directories(${TARGET} PRIVATE ../../common)
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
@ -8,7 +8,6 @@
|
||||
#include <unordered_map>
|
||||
#include <fstream>
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
|
||||
struct quant_option {
|
||||
std::string name;
|
||||
@ -53,6 +52,10 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
};
|
||||
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
|
||||
|
||||
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
|
||||
std::string ftype_str;
|
||||
@ -97,6 +100,7 @@ static void usage(const char * executable) {
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --keep-split: will generate quatized model in the same shards as input");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
||||
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
|
||||
@ -112,7 +116,7 @@ static void usage(const char * executable) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
static void load_imatrix(const std::string & imatrix_file, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
|
||||
if (!in) {
|
||||
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
|
||||
@ -159,18 +163,33 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map<st
|
||||
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
|
||||
}
|
||||
}
|
||||
printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
|
||||
|
||||
// latest imatrix version contains the dataset filename at the end of the file
|
||||
int m_last_call = 0;
|
||||
if (in.peek() != EOF) {
|
||||
in.read((char *)&m_last_call, sizeof(m_last_call));
|
||||
int dataset_len;
|
||||
in.read((char *)&dataset_len, sizeof(dataset_len));
|
||||
std::vector<char> dataset_as_vec(dataset_len);
|
||||
in.read(dataset_as_vec.data(), dataset_len);
|
||||
imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
|
||||
printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
|
||||
}
|
||||
printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
|
||||
return m_last_call;
|
||||
}
|
||||
|
||||
static void prepare_imatrix(const std::string & imatrix_file,
|
||||
static int prepare_imatrix(const std::string & imatrix_file,
|
||||
std::string & imatrix_dataset,
|
||||
const std::vector<std::string> & included_weights,
|
||||
const std::vector<std::string> & excluded_weights,
|
||||
std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
int m_last_call = -1;
|
||||
if (!imatrix_file.empty()) {
|
||||
load_imatrix(imatrix_file, imatrix_data);
|
||||
m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
|
||||
}
|
||||
if (imatrix_data.empty()) {
|
||||
return;
|
||||
return m_last_call;
|
||||
}
|
||||
if (!excluded_weights.empty()) {
|
||||
for (auto& name : excluded_weights) {
|
||||
@ -196,6 +215,7 @@ static void prepare_imatrix(const std::string & imatrix_file,
|
||||
if (!imatrix_data.empty()) {
|
||||
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
|
||||
}
|
||||
return m_last_call;
|
||||
}
|
||||
|
||||
static ggml_type parse_ggml_type(const char * arg) {
|
||||
@ -210,43 +230,6 @@ static ggml_type parse_ggml_type(const char * arg) {
|
||||
return result;
|
||||
}
|
||||
|
||||
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
||||
const char* sep = strchr(data, '=');
|
||||
if (sep == nullptr || sep - data >= 128) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, data, sep - data);
|
||||
kvo.key[sep - data] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
overrides.emplace_back(std::move(kvo));
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
@ -300,6 +283,8 @@ int main(int argc, char ** argv) {
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--keep-split")) {
|
||||
params.keep_split = true;
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
@ -313,10 +298,43 @@ int main(int argc, char ** argv) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
|
||||
std::string imatrix_dataset;
|
||||
std::unordered_map<std::string, std::vector<float>> imatrix_data;
|
||||
prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data);
|
||||
int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
|
||||
if (!imatrix_data.empty()) {
|
||||
params.imatrix = &imatrix_data;
|
||||
{
|
||||
llama_model_kv_override kvo;
|
||||
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
||||
strncpy(kvo.val_str, imatrix_file.c_str(), 127);
|
||||
kvo.val_str[127] = '\0';
|
||||
kv_overrides.emplace_back(std::move(kvo));
|
||||
}
|
||||
if (!imatrix_dataset.empty()) {
|
||||
llama_model_kv_override kvo;
|
||||
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
||||
strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
|
||||
kvo.val_str[127] = '\0';
|
||||
kv_overrides.emplace_back(std::move(kvo));
|
||||
}
|
||||
|
||||
{
|
||||
llama_model_kv_override kvo;
|
||||
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.val_i64 = imatrix_data.size();
|
||||
kv_overrides.emplace_back(std::move(kvo));
|
||||
}
|
||||
|
||||
if (m_last_call > 0) {
|
||||
llama_model_kv_override kvo;
|
||||
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.val_i64 = m_last_call;
|
||||
kv_overrides.emplace_back(std::move(kvo));
|
||||
}
|
||||
}
|
||||
if (!kv_overrides.empty()) {
|
||||
kv_overrides.emplace_back();
|
||||
@ -332,20 +350,28 @@ int main(int argc, char ** argv) {
|
||||
std::string fname_out;
|
||||
|
||||
std::string ftype_str;
|
||||
std::string suffix = ".gguf";
|
||||
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
||||
std::string fpath;
|
||||
const size_t pos = fname_inp.find_last_of("/\\");
|
||||
if (pos != std::string::npos) {
|
||||
fpath = fname_inp.substr(0, pos + 1);
|
||||
}
|
||||
// export as [inp path]/ggml-model-[ftype].gguf
|
||||
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
|
||||
|
||||
// export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
|
||||
fname_out = fpath + "ggml-model-" + ftype_str;
|
||||
if (!params.keep_split) {
|
||||
fname_out += suffix;
|
||||
}
|
||||
arg_idx++;
|
||||
if (ftype_str == "COPY") {
|
||||
params.only_copy = true;
|
||||
}
|
||||
} else {
|
||||
fname_out = argv[arg_idx];
|
||||
if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
|
||||
fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
|
||||
}
|
||||
arg_idx++;
|
||||
|
||||
if (argc <= arg_idx) {
|
||||
|
65
examples/quantize/tests.sh
Normal file
65
examples/quantize/tests.sh
Normal file
@ -0,0 +1,65 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -eu
|
||||
|
||||
if [ $# -lt 1 ]
|
||||
then
|
||||
echo "usage: $0 path_to_build_binary [path_to_temp_folder]"
|
||||
echo "example: $0 ../../build/bin ../../tmp"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# -gt 1 ]
|
||||
then
|
||||
TMP_DIR=$2
|
||||
else
|
||||
TMP_DIR=/tmp
|
||||
fi
|
||||
|
||||
set -x
|
||||
|
||||
SPLIT=$1/gguf-split
|
||||
QUANTIZE=$1/quantize
|
||||
MAIN=$1/main
|
||||
WORK_PATH=$TMP_DIR/quantize
|
||||
ROOT_DIR=$(realpath $(dirname $0)/../../)
|
||||
|
||||
mkdir -p "$WORK_PATH"
|
||||
|
||||
# Clean up in case of previously failed test
|
||||
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-requant*.gguf
|
||||
|
||||
# 1. Get a model
|
||||
(
|
||||
cd $WORK_PATH
|
||||
"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
|
||||
)
|
||||
echo PASS
|
||||
|
||||
# 2. Split model
|
||||
$SPLIT --split-max-tensors 28 $WORK_PATH/gemma-1.1-2b-it.Q8_0.gguf $WORK_PATH/ggml-model-split
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
# 3. Requant model with '--keep_split'
|
||||
$QUANTIZE --allow-requantize --keep_split $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant.gguf Q4_K
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
# 3a. Test the requanted model is loading properly
|
||||
$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
# 4. Requant mode without '--keep_split'
|
||||
$QUANTIZE --allow-requantize $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant-merge.gguf Q4_K
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
# 4b. Test the requanted model is loading properly
|
||||
$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --random-prompt --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
# Clean up
|
||||
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-requant*.gguf
|
@ -1,12 +1,29 @@
|
||||
set(TARGET server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET}
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
|
||||
set(TARGET_SRCS
|
||||
server.cpp
|
||||
utils.hpp
|
||||
httplib.h
|
||||
)
|
||||
set(PUBLIC_ASSETS
|
||||
index.html
|
||||
index.js
|
||||
completion.js
|
||||
json-schema-to-grammar.mjs
|
||||
)
|
||||
foreach(asset ${PUBLIC_ASSETS})
|
||||
set(input "${CMAKE_CURRENT_SOURCE_DIR}/public/${asset}")
|
||||
set(output "${CMAKE_CURRENT_BINARY_DIR}/${asset}.hpp")
|
||||
list(APPEND TARGET_SRCS ${output})
|
||||
add_custom_command(
|
||||
DEPENDS "${input}"
|
||||
OUTPUT "${output}"
|
||||
COMMAND "${CMAKE_COMMAND}" "-DINPUT=${input}" "-DOUTPUT=${output}" -P "${PROJECT_SOURCE_DIR}/scripts/xxd.cmake"
|
||||
)
|
||||
endforeach()
|
||||
add_executable(${TARGET} ${TARGET_SRCS})
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
|
@ -90,7 +90,8 @@ export default function () {
|
||||
"model": model,
|
||||
"stream": true,
|
||||
"seed": 42,
|
||||
"max_tokens": max_tokens
|
||||
"max_tokens": max_tokens,
|
||||
"stop": ["<|im_end|>"] // This is temporary for phi-2 base (i.e. not instructed) since the server expects that the model always to emit BOS
|
||||
}
|
||||
|
||||
const params = {method: 'POST', body: JSON.stringify(payload)};
|
||||
|
@ -1,496 +0,0 @@
|
||||
unsigned char completion_js[] = {
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44,
|
||||
0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x3a, 0x20, 0x74, 0x72,
|
||||
0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64,
|
||||
0x69, 0x63, 0x74, 0x3a, 0x20, 0x35, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20,
|
||||
0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a,
|
||||
0x20, 0x30, 0x2e, 0x32, 0x2c, 0x0a, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70,
|
||||
0x3a, 0x20, 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, 0x22, 0x5d, 0x0a, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x6c, 0x65, 0x74, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72,
|
||||
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
|
||||
0x67, 0x73, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x0a,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65,
|
||||
0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
|
||||
0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
|
||||
0x74, 0x6f, 0x72, 0x2e, 0x20, 0x52, 0x65, 0x63, 0x6f, 0x6d, 0x6d, 0x65,
|
||||
0x6e, 0x64, 0x65, 0x64, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x6d, 0x6f, 0x73,
|
||||
0x74, 0x20, 0x75, 0x73, 0x65, 0x20, 0x63, 0x61, 0x73, 0x65, 0x73, 0x2e,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27,
|
||||
0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e,
|
||||
0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65,
|
||||
0x73, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x22,
|
||||
0x54, 0x65, 0x6c, 0x6c, 0x20, 0x6d, 0x65, 0x20, 0x61, 0x20, 0x6a, 0x6f,
|
||||
0x6b, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64,
|
||||
0x69, 0x63, 0x74, 0x3a, 0x20, 0x38, 0x30, 0x30, 0x7d, 0x29, 0x0a, 0x2f,
|
||||
0x2f, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61,
|
||||
0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65,
|
||||
0x73, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77,
|
||||
0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
|
||||
0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x2f, 0x2f, 0x0a,
|
||||
0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63,
|
||||
0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x2a, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
|
||||
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d,
|
||||
0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b,
|
||||
0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f,
|
||||
0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x0a,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
|
||||
0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
|
||||
0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e,
|
||||
0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75,
|
||||
0x6c, 0x74, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x2c, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
|
||||
0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77,
|
||||
0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60, 0x24,
|
||||
0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x60, 0x2c, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a,
|
||||
0x20, 0x27, 0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x62, 0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e,
|
||||
0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61,
|
||||
0x64, 0x65, 0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f,
|
||||
0x6e, 0x27, 0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c,
|
||||
0x69, 0x76, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x27, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70,
|
||||
0x65, 0x27, 0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70,
|
||||
0x74, 0x27, 0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70,
|
||||
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65,
|
||||
0x79, 0x20, 0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72,
|
||||
0x69, 0x7a, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42,
|
||||
0x65, 0x61, 0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60,
|
||||
0x7d, 0x20, 0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61,
|
||||
0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
|
||||
0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20,
|
||||
0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65,
|
||||
0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e,
|
||||
0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63,
|
||||
0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54,
|
||||
0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29,
|
||||
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
|
||||
0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42,
|
||||
0x75, 0x66, 0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61,
|
||||
0x72, 0x74, 0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64,
|
||||
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72,
|
||||
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20,
|
||||
0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
|
||||
0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x41, 0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66,
|
||||
0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e,
|
||||
0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64,
|
||||
0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c,
|
||||
0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65,
|
||||
0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75,
|
||||
0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
|
||||
0x2f, 0x20, 0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74,
|
||||
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72,
|
||||
0x61, 0x63, 0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e,
|
||||
0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72,
|
||||
0x65, 0x61, 0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65,
|
||||
0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27,
|
||||
0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x53, 0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74,
|
||||
0x65, 0x78, 0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e,
|
||||
0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74,
|
||||
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78,
|
||||
0x74, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27,
|
||||
0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x49, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74,
|
||||
0x20, 0x64, 0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64,
|
||||
0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65,
|
||||
0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69,
|
||||
0x6e, 0x65, 0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
|
||||
0x2f, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69,
|
||||
0x6e, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
|
||||
0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65,
|
||||
0x42, 0x72, 0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
|
||||
0x72, 0x20, 0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f,
|
||||
0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
|
||||
0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65,
|
||||
0x73, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
|
||||
0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20,
|
||||
0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b,
|
||||
0x20, 0x61, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20,
|
||||
0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74,
|
||||
0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e,
|
||||
0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29,
|
||||
0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20,
|
||||
0x3d, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63,
|
||||
0x28, 0x6c, 0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63,
|
||||
0x68, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61,
|
||||
0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61,
|
||||
0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63,
|
||||
0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68,
|
||||
0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
|
||||
0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a,
|
||||
0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74,
|
||||
0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64,
|
||||
0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a,
|
||||
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x79, 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20,
|
||||
0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66,
|
||||
0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20,
|
||||
0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61,
|
||||
0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73,
|
||||
0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
|
||||
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20,
|
||||
0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74,
|
||||
0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
|
||||
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20,
|
||||
0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65,
|
||||
0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a,
|
||||
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65, 0x73, 0x73,
|
||||
0x61, 0x67, 0x65, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73,
|
||||
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
|
||||
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77,
|
||||
0x20, 0x61, 0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f,
|
||||
0x20, 0x62, 0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62,
|
||||
0x79, 0x20, 0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63,
|
||||
0x61, 0x6c, 0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74,
|
||||
0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72,
|
||||
0x6f, 0x72, 0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61,
|
||||
0x76, 0x61, 0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
|
||||
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x5b, 0x24,
|
||||
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x2e, 0x63, 0x6f, 0x64, 0x65, 0x7d, 0x20, 0x2d, 0x20, 0x24, 0x7b,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
|
||||
0x2e, 0x74, 0x79, 0x70, 0x65, 0x7d, 0x5d, 0x3a, 0x20, 0x24, 0x7b, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e,
|
||||
0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28,
|
||||
0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
|
||||
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e,
|
||||
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62,
|
||||
0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
|
||||
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22,
|
||||
0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c,
|
||||
0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72,
|
||||
0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61,
|
||||
0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65,
|
||||
0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61,
|
||||
0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75,
|
||||
0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
|
||||
0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69,
|
||||
0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61,
|
||||
0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65,
|
||||
0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65,
|
||||
0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d,
|
||||
0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
|
||||
0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74,
|
||||
0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f,
|
||||
0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72,
|
||||
0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
|
||||
0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
|
||||
0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
|
||||
0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79,
|
||||
0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20,
|
||||
0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f,
|
||||
0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64,
|
||||
0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
|
||||
0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
|
||||
0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67,
|
||||
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
|
||||
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
|
||||
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
|
||||
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b,
|
||||
0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
|
||||
0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74,
|
||||
0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73,
|
||||
0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22,
|
||||
0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74,
|
||||
0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
|
||||
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
|
||||
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
|
||||
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74,
|
||||
0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43,
|
||||
0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72,
|
||||
0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d,
|
||||
0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73,
|
||||
0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65,
|
||||
0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74,
|
||||
0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f,
|
||||
0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f,
|
||||
0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69,
|
||||
0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74,
|
||||
0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
|
||||
0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e,
|
||||
0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
|
||||
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70,
|
||||
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
|
||||
0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66,
|
||||
0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61,
|
||||
0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
|
||||
0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d,
|
||||
0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77,
|
||||
0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
|
||||
0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67,
|
||||
0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||
0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61,
|
||||
0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65,
|
||||
0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64,
|
||||
0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20,
|
||||
0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d,
|
||||
0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
|
||||
0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63,
|
||||
0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69,
|
||||
0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28,
|
||||
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70,
|
||||
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
|
||||
0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61,
|
||||
0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f,
|
||||
0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64,
|
||||
0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e,
|
||||
0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65,
|
||||
0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74,
|
||||
0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61,
|
||||
0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78,
|
||||
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66,
|
||||
0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x63,
|
||||
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
|
||||
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
|
||||
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
|
||||
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x61, 0x70, 0x69,
|
||||
0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
|
||||
0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c,
|
||||
0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x20, 0x3d, 0x20, 0x61,
|
||||
0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60,
|
||||
0x24, 0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x70,
|
||||
0x72, 0x6f, 0x70, 0x73, 0x60, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28,
|
||||
0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28,
|
||||
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e,
|
||||
0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x5f, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72,
|
||||
0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
|
||||
0x73, 0x3b, 0x0a, 0x7d, 0x0a
|
||||
};
|
||||
unsigned int completion_js_len = 5909;
|
@ -8,13 +8,3 @@ PUBLIC=$DIR/public
|
||||
echo "download js bundle files"
|
||||
curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js
|
||||
echo >> $PUBLIC/index.js # add newline
|
||||
|
||||
FILES=$(ls $PUBLIC)
|
||||
|
||||
cd $PUBLIC
|
||||
for FILE in $FILES; do
|
||||
echo "generate $FILE.hpp"
|
||||
|
||||
# use simple flag for old version of xxd
|
||||
xxd -i $FILE > $DIR/$FILE.hpp
|
||||
done
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -881,11 +881,11 @@
|
||||
.replace(/&/g, '&')
|
||||
.replace(/</g, '<')
|
||||
.replace(/>/g, '>')
|
||||
.replace(/^#{1,6} (.*)$/gim, '<h3>$1</h3>')
|
||||
.replace(/\*\*(.*?)\*\*/g, '<strong>$1</strong>')
|
||||
.replace(/__(.*?)__/g, '<strong>$1</strong>')
|
||||
.replace(/\*(.*?)\*/g, '<em>$1</em>')
|
||||
.replace(/_(.*?)_/g, '<em>$1</em>')
|
||||
.replace(/(^|\n)#{1,6} ([^\n]*)(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1<h3>$2</h3>')
|
||||
.replace(/\*\*(.*?)\*\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '<strong>$1</strong>')
|
||||
.replace(/__(.*?)__(?=([^`]*`[^`]*`)*[^`]*$)/g, '<strong>$1</strong>')
|
||||
.replace(/\*(.*?)\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '<em>$1</em>')
|
||||
.replace(/_(.*?)_(?=([^`]*`[^`]*`)*[^`]*$)/g, '<em>$1</em>')
|
||||
.replace(/```.*?\n([\s\S]*?)```/g, '<pre><code>$1</code></pre>')
|
||||
.replace(/`(.*?)`/g, '<code>$1</code>')
|
||||
.replace(/\n/gim, '<br />');
|
||||
|
@ -854,7 +854,7 @@ struct server_context {
|
||||
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
||||
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
|
||||
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
|
||||
slot.params.seed = json_value(data, "seed", default_params.seed);
|
||||
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
|
||||
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
|
||||
@ -1028,7 +1028,6 @@ struct server_context {
|
||||
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
}
|
||||
llama_set_rng_seed(ctx, slot.params.seed);
|
||||
}
|
||||
|
||||
slot.command = SLOT_COMMAND_LOAD_PROMPT;
|
||||
@ -1118,7 +1117,7 @@ struct server_context {
|
||||
|
||||
bool process_token(completion_token_output & result, server_slot & slot) {
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
const std::string token_str = llama_token_to_piece(ctx, result.tok);
|
||||
const std::string token_str = llama_token_to_piece(ctx, result.tok, false);
|
||||
slot.sampled = result.tok;
|
||||
|
||||
// search stop word and delete it
|
||||
@ -1201,13 +1200,34 @@ struct server_context {
|
||||
});
|
||||
}
|
||||
|
||||
if (result.tok == llama_token_eos(model)) {
|
||||
if (llama_token_is_eog(model, result.tok)) {
|
||||
slot.stopped_eos = true;
|
||||
slot.has_next_token = false;
|
||||
|
||||
LOG_VERBOSE("eos token found", {});
|
||||
}
|
||||
|
||||
auto n_ctx_train = llama_n_ctx_train(model);
|
||||
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1
|
||||
&& slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
|
||||
LOG_WARNING("n_predict is not set and self-context extend is disabled."
|
||||
" Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop", {
|
||||
{ "id_slot", slot.id },
|
||||
{ "params.n_predict", slot.params.n_predict },
|
||||
{ "slot.n_prompt_tokens", slot.n_prompt_tokens },
|
||||
{ "slot.n_decoded", slot.n_decoded },
|
||||
{ "slot.n_predict", slot.n_predict },
|
||||
{ "n_slots", params.n_parallel },
|
||||
{ "slot.n_ctx", slot.n_ctx },
|
||||
{ "n_ctx", n_ctx },
|
||||
{ "n_ctx_train", n_ctx_train },
|
||||
{ "ga_n", slot.ga_n },
|
||||
});
|
||||
slot.truncated = true;
|
||||
slot.stopped_limit = true;
|
||||
slot.has_next_token = false; // stop prediction
|
||||
}
|
||||
|
||||
LOG_VERBOSE("next token", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
@ -2142,7 +2162,7 @@ struct server_context {
|
||||
});
|
||||
|
||||
// process the created batch of tokens
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
|
||||
for (auto & slot : slots) {
|
||||
@ -2372,7 +2392,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
|
||||
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
|
||||
printf(" --chat-template JINJA_TEMPLATE\n");
|
||||
@ -2803,43 +2823,11 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
char * sep = strchr(argv[i], '=');
|
||||
if (sep == nullptr || sep - argv[i] >= 128) {
|
||||
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
|
||||
struct llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, argv[i], sep - argv[i]);
|
||||
kvo.key[sep - argv[i]] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if (!parse_kv_override(argv[i], params.kv_overrides)) {
|
||||
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.kv_overrides.push_back(kvo);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
server_print_usage(argv[0], default_params, default_sparams);
|
||||
|
@ -29,7 +29,7 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
|
||||
cd ../../..
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ../
|
||||
cmake -DLLAMA_CURL=ON ../
|
||||
cmake --build . --target server
|
||||
```
|
||||
|
||||
|
57
examples/server/tests/features/results.feature
Normal file
57
examples/server/tests/features/results.feature
Normal file
@ -0,0 +1,57 @@
|
||||
@llama.cpp
|
||||
@results
|
||||
Feature: Results
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
|
||||
And a model file test-model-00001-of-00003.gguf
|
||||
And 128 as batch size
|
||||
And 256 KV cache size
|
||||
And 128 max tokens to predict
|
||||
|
||||
Scenario Outline: Multi users completion
|
||||
Given <n_slots> slots
|
||||
And continuous batching
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all predictions are equal
|
||||
Examples:
|
||||
| n_slots |
|
||||
| 1 |
|
||||
| 2 |
|
@ -61,6 +61,7 @@ def step_server_config(context, server_fqdn, server_port):
|
||||
context.server_metrics = False
|
||||
context.server_process = None
|
||||
context.seed = None
|
||||
context.draft = None
|
||||
context.server_seed = None
|
||||
context.user_api_key = None
|
||||
context.response_format = None
|
||||
@ -107,6 +108,11 @@ def step_n_gpu_layer(context, ngl):
|
||||
context.n_gpu_layer = ngl
|
||||
|
||||
|
||||
@step('{draft:d} as draft')
|
||||
def step_draft(context, draft):
|
||||
context.draft = draft
|
||||
|
||||
|
||||
@step('{n_ctx:d} KV cache size')
|
||||
def step_n_ctx(context, n_ctx):
|
||||
context.n_ctx = n_ctx
|
||||
@ -254,6 +260,15 @@ def step_n_tokens_predicted(context, predicted_n):
|
||||
assert_n_tokens_predicted(context.completion, predicted_n)
|
||||
|
||||
|
||||
@step('all predictions are equal')
|
||||
@async_run_until_complete
|
||||
async def step_predictions_equal(context):
|
||||
n_completions = await gather_tasks_results(context)
|
||||
assert n_completions >= 2, "need at least 2 completions"
|
||||
assert_all_predictions_equal(context.tasks_result)
|
||||
context.tasks_result = []
|
||||
|
||||
|
||||
@step('the completion is truncated')
|
||||
def step_assert_completion_truncated(context):
|
||||
step_assert_completion_truncated(context, '')
|
||||
@ -1020,6 +1035,23 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
|
||||
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
|
||||
f' {n_predicted} <> {expected_predicted_n}')
|
||||
|
||||
def assert_all_predictions_equal(completion_responses):
|
||||
content_0 = completion_responses[0]['content']
|
||||
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"content 0: {content_0}")
|
||||
|
||||
i = 1
|
||||
for response in completion_responses[1:]:
|
||||
content = response['content']
|
||||
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"content {i}: {content}")
|
||||
|
||||
assert content == content_0, "contents not equal"
|
||||
|
||||
i += 1
|
||||
|
||||
|
||||
async def gather_tasks_results(context):
|
||||
n_tasks = len(context.concurrent_tasks)
|
||||
@ -1148,6 +1180,8 @@ def start_server_background(context):
|
||||
server_args.extend(['--ubatch-size', context.n_ubatch])
|
||||
if context.n_gpu_layer:
|
||||
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
|
||||
if context.draft is not None:
|
||||
server_args.extend(['--draft', context.draft])
|
||||
if context.server_continuous_batching:
|
||||
server_args.append('--cont-batching')
|
||||
if context.server_embeddings:
|
||||
|
@ -4,9 +4,8 @@ set -eu
|
||||
|
||||
if [ $# -lt 1 ]
|
||||
then
|
||||
# Start @llama.cpp scenario
|
||||
behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
# Start @llama.cpp scenario
|
||||
behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
else
|
||||
behave "$@"
|
||||
behave "$@"
|
||||
fi
|
||||
|
||||
|
@ -381,10 +381,6 @@ static json oaicompat_completion_params_parse(
|
||||
} else {
|
||||
llama_params["stop"] = json_value(body, "stop", json::array());
|
||||
}
|
||||
// Some chat templates don't use EOS token to stop generation
|
||||
// We must add their end sequences to list of stop words
|
||||
llama_params["stop"].push_back("<|im_end|>"); // chatml
|
||||
llama_params["stop"].push_back("<end_of_turn>"); // gemma
|
||||
|
||||
// Handle "response_format" field
|
||||
if (body.contains("response_format")) {
|
||||
|
@ -133,8 +133,8 @@ int main(int argc, char ** argv) {
|
||||
// sample the most likely token
|
||||
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream?
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
break;
|
||||
|
@ -360,7 +360,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if (token_id == llama_token_eos(model_tgt)) {
|
||||
if (llama_token_is_eog(model_tgt, token_id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
++n_predict;
|
||||
|
6
flake.lock
generated
6
flake.lock
generated
@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1712791164,
|
||||
"narHash": "sha256-3sbWO1mbpWsLepZGbWaMovSO7ndZeFqDSdX0hZ9nVyw=",
|
||||
"lastModified": 1714076141,
|
||||
"narHash": "sha256-Drmja/f5MRHZCskS6mvzFqxEaZMeciScCTFxWVLqWEY=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "1042fd8b148a9105f3c0aca3a6177fd1d9360ba5",
|
||||
"rev": "7bb2ccd8cdc44c91edba16c48d2c8f331fb3d856",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
16
ggml-alloc.c
16
ggml-alloc.c
@ -371,16 +371,16 @@ struct ggml_gallocr {
|
||||
};
|
||||
|
||||
ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
|
||||
ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
|
||||
ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr));
|
||||
GGML_ASSERT(galloc != NULL);
|
||||
|
||||
galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1);
|
||||
galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
|
||||
GGML_ASSERT(galloc->bufts != NULL);
|
||||
|
||||
galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1);
|
||||
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t) * n_bufs);
|
||||
GGML_ASSERT(galloc->buffers != NULL);
|
||||
|
||||
galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1);
|
||||
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
|
||||
GGML_ASSERT(galloc->buf_tallocs != NULL);
|
||||
|
||||
for (int i = 0; i < n_bufs; i++) {
|
||||
@ -646,8 +646,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
free(galloc->hash_set.keys);
|
||||
free(galloc->hash_values);
|
||||
galloc->hash_set.size = hash_size;
|
||||
galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size);
|
||||
galloc->hash_values = calloc(sizeof(struct hash_node), hash_size);
|
||||
galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *));
|
||||
galloc->hash_values = calloc(hash_size, sizeof(struct hash_node));
|
||||
GGML_ASSERT(galloc->hash_set.keys != NULL);
|
||||
GGML_ASSERT(galloc->hash_values != NULL);
|
||||
} else {
|
||||
@ -667,7 +667,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
// set the node_allocs from the hash table
|
||||
if (galloc->n_nodes < graph->n_nodes) {
|
||||
free(galloc->node_allocs);
|
||||
galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes);
|
||||
galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc));
|
||||
GGML_ASSERT(galloc->node_allocs != NULL);
|
||||
}
|
||||
galloc->n_nodes = graph->n_nodes;
|
||||
@ -697,7 +697,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
if (galloc->n_leafs < graph->n_leafs) {
|
||||
free(galloc->leaf_allocs);
|
||||
galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs);
|
||||
galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0]));
|
||||
GGML_ASSERT(galloc->leaf_allocs != NULL);
|
||||
}
|
||||
galloc->n_leafs = graph->n_leafs;
|
||||
|
@ -822,7 +822,11 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t
|
||||
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && op->type != GGML_TYPE_IQ1_S; // missing type_traits.from_float
|
||||
return
|
||||
op->type != GGML_TYPE_IQ2_XXS &&
|
||||
op->type != GGML_TYPE_IQ2_XS &&
|
||||
op->type != GGML_TYPE_IQ1_S &&
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
|
||||
default:
|
||||
@ -1721,23 +1725,23 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
|
||||
|
||||
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
|
||||
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
|
||||
|
||||
// initialize hash table
|
||||
sched->hash_set = ggml_hash_set_new(graph_size);
|
||||
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
|
||||
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
|
||||
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
|
||||
sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
|
||||
|
||||
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
||||
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), nodes_size);
|
||||
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size);
|
||||
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
|
||||
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
|
||||
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
||||
|
||||
const int initial_splits_capacity = 16;
|
||||
sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity);
|
||||
sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
|
||||
sched->splits_capacity = initial_splits_capacity;
|
||||
|
||||
for (int b = 0; b < n_backends; b++) {
|
||||
@ -1780,12 +1784,14 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
|
||||
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
// reset state for the next run
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
|
||||
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
|
||||
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
|
||||
if (!sched->is_reset) {
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
|
||||
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
|
||||
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
|
||||
|
||||
sched->is_reset = true;
|
||||
sched->is_reset = true;
|
||||
}
|
||||
sched->is_alloc = false;
|
||||
}
|
||||
|
||||
@ -1968,10 +1974,10 @@ static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_te
|
||||
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
struct ggml_hash_set hash_set = {
|
||||
/* .size = */ graph->visited_hash_table.size,
|
||||
/* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT
|
||||
/* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
|
||||
};
|
||||
struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT
|
||||
bool * node_init = calloc(sizeof(node_init[0]), hash_set.size);
|
||||
struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
|
||||
bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
|
||||
|
@ -5,16 +5,16 @@
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
|
||||
const int64_t i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
||||
const int64_t i = (int64_t)2*(blockDim.x*blockIdx.x + threadIdx.x);
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t ib = i/qk; // block index
|
||||
const int iqs = (i%qk)/qr; // quant index
|
||||
const int iybs = i - i%qk; // y block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
const int64_t iqs = (i%qk)/qr; // quant index
|
||||
const int64_t iybs = i - i%qk; // y block start index
|
||||
const int64_t y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
@ -29,7 +29,7 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h
|
||||
#if __CUDA_ARCH__ >= CC_PASCAL
|
||||
constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
|
||||
|
||||
const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
|
||||
const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
|
||||
const int * x0 = ((int *) vx) + blockIdx.x * nint;
|
||||
half2 * y2 = (half2 *) (y + i0);
|
||||
|
||||
@ -73,9 +73,9 @@ static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
// assume 32 threads
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8;
|
||||
const int64_t ir = tid%8;
|
||||
const int64_t ib = 8*i + ir;
|
||||
if (ib >= nb32) {
|
||||
return;
|
||||
@ -101,9 +101,9 @@ static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
// assume 32 threads
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8;
|
||||
const int64_t ir = tid%8;
|
||||
const int64_t ib = 8*i + ir;
|
||||
if (ib >= nb32) {
|
||||
return;
|
||||
@ -127,14 +127,14 @@ static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_q2_K * x = (const block_q2_K *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int n = tid/32;
|
||||
const int l = tid - 32*n;
|
||||
const int is = 8*n + l/16;
|
||||
const int64_t n = tid/32;
|
||||
const int64_t l = tid - 32*n;
|
||||
const int64_t is = 8*n + l/16;
|
||||
|
||||
const uint8_t q = x[i].qs[32*n + l];
|
||||
dst_t * y = yy + i*QK_K + 128*n;
|
||||
@ -146,8 +146,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
|
||||
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||
#else
|
||||
const int is = tid/16; // 0 or 1
|
||||
const int il = tid%16; // 0...15
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const int64_t il = tid%16; // 0...15
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
float dall = __low2half(x[i].dm);
|
||||
@ -161,19 +161,19 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_q3_K * x = (const block_q3_K *) vx;
|
||||
|
||||
#if QK_K == 256
|
||||
const int r = threadIdx.x/4;
|
||||
const int tid = r/2;
|
||||
const int is0 = r%2;
|
||||
const int l0 = 16*is0 + 4*(threadIdx.x%4);
|
||||
const int n = tid / 4;
|
||||
const int j = tid - 4*n;
|
||||
const int64_t r = threadIdx.x/4;
|
||||
const int64_t tid = r/2;
|
||||
const int64_t is0 = r%2;
|
||||
const int64_t l0 = 16*is0 + 4*(threadIdx.x%4);
|
||||
const int64_t n = tid / 4;
|
||||
const int64_t j = tid - 4*n;
|
||||
|
||||
uint8_t m = 1 << (4*n + j);
|
||||
int is = 8*n + 2*j + is0;
|
||||
int64_t is = 8*n + 2*j + is0;
|
||||
int shift = 2*j;
|
||||
|
||||
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
||||
@ -189,11 +189,11 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
|
||||
|
||||
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||
#else
|
||||
const int tid = threadIdx.x;
|
||||
const int is = tid/16; // 0 or 1
|
||||
const int il = tid%16; // 0...15
|
||||
const int im = il/8; // 0...1
|
||||
const int in = il%8; // 0...7
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const int64_t il = tid%16; // 0...15
|
||||
const int64_t im = il/8; // 0...1
|
||||
const int64_t in = il%8; // 0...7
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
|
||||
@ -227,15 +227,15 @@ template<typename dst_t>
|
||||
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const block_q4_K * x = (const block_q4_K *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 32 threads
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int is = 2*il;
|
||||
const int n = 4;
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8;
|
||||
const int64_t ir = tid%8;
|
||||
const int64_t is = 2*il;
|
||||
const int64_t n = 4;
|
||||
|
||||
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
||||
|
||||
@ -254,7 +254,7 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
|
||||
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||
}
|
||||
#else
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
const uint8_t * q = x[i].qs;
|
||||
dst_t * y = yy + i*QK_K;
|
||||
const float d = (float)x[i].dm[0];
|
||||
@ -268,14 +268,14 @@ template<typename dst_t>
|
||||
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const block_q5_K * x = (const block_q5_K *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/16; // il is in 0...3
|
||||
const int ir = tid%16; // ir is in 0...15
|
||||
const int is = 2*il; // is is in 0...6
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/16; // il is in 0...3
|
||||
const int64_t ir = tid%16; // ir is in 0...15
|
||||
const int64_t is = 2*il; // is is in 0...6
|
||||
|
||||
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
||||
|
||||
@ -298,11 +298,11 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
|
||||
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||
#else
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
const uint8_t q = x[i].qs[tid];
|
||||
const int im = tid/8; // 0...3
|
||||
const int in = tid%8; // 0...7
|
||||
const int is = tid/16; // 0 or 1
|
||||
const int64_t im = tid/8; // 0...3
|
||||
const int64_t in = tid%8; // 0...7
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const uint8_t h = x[i].qh[in] >> im;
|
||||
const float d = x[i].d;
|
||||
dst_t * y = yy + i*QK_K + tid;
|
||||
@ -359,13 +359,13 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||
const uint8_t * aux8 = (const uint8_t *)q2;
|
||||
@ -383,13 +383,13 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
|
||||
@ -405,13 +405,13 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
@ -426,13 +426,13 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * q3 = x[i].qs + 8*ib;
|
||||
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
||||
@ -454,13 +454,13 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * qs = x[i].qs + 8*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
||||
@ -480,13 +480,13 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
|
||||
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
|
||||
@ -506,18 +506,18 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||
iq1m_scale_t scale;
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
|
||||
const int64_t ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
|
||||
const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
|
||||
const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
@ -537,12 +537,12 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[ib].qs + 4*il;
|
||||
const float d = (float)x[ib].d;
|
||||
@ -556,12 +556,12 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst
|
||||
#if QK_K != 64
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const int i = blockIdx.x;
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq4_xs * x = (const block_iq4_xs *)vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
|
||||
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
|
||||
|
@ -28,7 +28,7 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f
|
||||
extern __shared__ float data_soft_max_f32[];
|
||||
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
||||
// shared memory buffer to cache values between iterations:
|
||||
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
|
||||
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols;
|
||||
|
||||
float max_val = -INFINITY;
|
||||
|
||||
@ -40,8 +40,8 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f
|
||||
break;
|
||||
}
|
||||
|
||||
const int ix = rowx*ncols + col;
|
||||
const int iy = rowy*ncols + col;
|
||||
const int64_t ix = (int64_t)rowx*ncols + col;
|
||||
const int64_t iy = (int64_t)rowy*ncols + col;
|
||||
|
||||
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
|
||||
|
||||
@ -109,7 +109,7 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f
|
||||
return;
|
||||
}
|
||||
|
||||
const int idst = rowx*ncols + col;
|
||||
const int64_t idst = (int64_t)rowx*ncols + col;
|
||||
dst[idst] = vals[col] * inv_sum;
|
||||
}
|
||||
}
|
||||
|
266
ggml-impl.h
266
ggml-impl.h
@ -11,6 +11,12 @@
|
||||
#include <string.h> // memcpy
|
||||
#include <math.h> // fabsf
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -45,7 +51,7 @@ extern "C" {
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
#if defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
@ -53,8 +59,262 @@ extern "C" {
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
|
||||
|
||||
#else
|
||||
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
|
||||
|
||||
#endif // _MSC_VER
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 32-bit ARM compatibility
|
||||
|
||||
// vaddvq_s16
|
||||
// vpaddq_s16
|
||||
// vpaddq_s32
|
||||
// vaddvq_s32
|
||||
// vaddvq_f32
|
||||
// vmaxvq_f32
|
||||
// vcvtnq_s32_f32
|
||||
// vzip1_u8
|
||||
// vzip2_u8
|
||||
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
|
||||
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
|
||||
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
|
||||
return vcombine_s32(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
int32x4_t res;
|
||||
|
||||
res[0] = roundf(vgetq_lane_f32(v, 0));
|
||||
res[1] = roundf(vgetq_lane_f32(v, 1));
|
||||
res[2] = roundf(vgetq_lane_f32(v, 2));
|
||||
res[3] = roundf(vgetq_lane_f32(v, 3));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[0]; res[1] = b[0];
|
||||
res[2] = a[1]; res[3] = b[1];
|
||||
res[4] = a[2]; res[5] = b[2];
|
||||
res[6] = a[3]; res[7] = b[3];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[4]; res[1] = b[4];
|
||||
res[2] = a[5]; res[3] = b[5];
|
||||
res[4] = a[6]; res[5] = b[6];
|
||||
res[6] = a[7]; res[7] = b[7];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// vld1q_s16_x2
|
||||
// vld1q_u8_x2
|
||||
// vld1q_u8_x4
|
||||
// vld1q_s8_x2
|
||||
// vld1q_s8_x4
|
||||
// TODO: double-check these work correctly
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s16(ptr + 0);
|
||||
res.val[1] = vld1q_s16(ptr + 8);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
res.val[2] = vld1q_u8(ptr + 32);
|
||||
res.val[3] = vld1q_u8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x2_t {
|
||||
int8x16_t val[2];
|
||||
} ggml_int8x16x2_t;
|
||||
|
||||
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
||||
ggml_int8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
res.val[2] = vld1q_s8(ptr + 32);
|
||||
res.val[3] = vld1q_s8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
|
||||
uint8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_int16x8x2_t int16x8x2_t
|
||||
#define ggml_uint8x16x2_t uint8x16x2_t
|
||||
#define ggml_uint8x16x4_t uint8x16x4_t
|
||||
#define ggml_int8x16x2_t int8x16x2_t
|
||||
#define ggml_int8x16x4_t int8x16x4_t
|
||||
|
||||
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
||||
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
||||
#define ggml_vqtbl1q_u8 vqtbl1q_u8
|
||||
|
||||
#endif // !defined(__aarch64__)
|
||||
|
||||
#if !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
||||
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||
|
||||
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
|
||||
|
||||
#endif // !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
#endif // defined(__ARM_NEON)
|
||||
|
||||
#if defined(__ARM_NEON) && !defined(__MSC_VER)
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
@ -75,8 +335,6 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
|
||||
#else
|
||||
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
@ -221,7 +479,7 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
|
||||
#endif // __F16C__
|
||||
|
||||
#endif // __ARM_NEON
|
||||
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
|
||||
|
||||
// precomputed f32 table for f16 (256 KB)
|
||||
// defined in ggml.c, initialized in ggml_init()
|
||||
|
577
ggml-quants.c
577
ggml-quants.c
@ -14,47 +14,6 @@
|
||||
#include <stdlib.h> // for qsort
|
||||
#include <stdio.h> // for GGML_ASSERT
|
||||
|
||||
#ifdef __ARM_NEON
|
||||
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#else
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
|
||||
#include <altivec.h>
|
||||
#undef bool
|
||||
#define bool _Bool
|
||||
#else
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
|
||||
#if !defined(__riscv)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
// some compilers don't provide _mm256_set_m128i, e.g. gcc 7
|
||||
@ -276,258 +235,6 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
|
||||
#endif // __AVX__ || __AVX2__ || __AVX512F__
|
||||
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 64-bit compatibility
|
||||
|
||||
// vaddvq_s16
|
||||
// vpaddq_s16
|
||||
// vpaddq_s32
|
||||
// vaddvq_s32
|
||||
// vaddvq_f32
|
||||
// vmaxvq_f32
|
||||
// vcvtnq_s32_f32
|
||||
// vzip1_u8
|
||||
// vzip2_u8
|
||||
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
|
||||
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
|
||||
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
|
||||
return vcombine_s32(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
int32x4_t res;
|
||||
|
||||
res[0] = roundf(vgetq_lane_f32(v, 0));
|
||||
res[1] = roundf(vgetq_lane_f32(v, 1));
|
||||
res[2] = roundf(vgetq_lane_f32(v, 2));
|
||||
res[3] = roundf(vgetq_lane_f32(v, 3));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[0]; res[1] = b[0];
|
||||
res[2] = a[1]; res[3] = b[1];
|
||||
res[4] = a[2]; res[5] = b[2];
|
||||
res[6] = a[3]; res[7] = b[3];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[4]; res[1] = b[4];
|
||||
res[2] = a[5]; res[3] = b[5];
|
||||
res[4] = a[6]; res[5] = b[6];
|
||||
res[6] = a[7]; res[7] = b[7];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// vld1q_s16_x2
|
||||
// vld1q_u8_x2
|
||||
// vld1q_u8_x4
|
||||
// vld1q_s8_x2
|
||||
// vld1q_s8_x4
|
||||
// TODO: double-check these work correctly
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s16(ptr + 0);
|
||||
res.val[1] = vld1q_s16(ptr + 8);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
res.val[2] = vld1q_u8(ptr + 32);
|
||||
res.val[3] = vld1q_u8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x2_t {
|
||||
int8x16_t val[2];
|
||||
} ggml_int8x16x2_t;
|
||||
|
||||
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
||||
ggml_int8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
res.val[2] = vld1q_s8(ptr + 32);
|
||||
res.val[3] = vld1q_s8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
|
||||
uint8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_int16x8x2_t int16x8x2_t
|
||||
#define ggml_uint8x16x2_t uint8x16x2_t
|
||||
#define ggml_uint8x16x4_t uint8x16x4_t
|
||||
#define ggml_int8x16x2_t int8x16x2_t
|
||||
#define ggml_int8x16x4_t int8x16x4_t
|
||||
|
||||
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
||||
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
||||
#define ggml_vqtbl1q_u8 vqtbl1q_u8
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
||||
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||
|
||||
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) || defined(__wasm_simd128__)
|
||||
#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
|
||||
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
|
||||
@ -12676,3 +12383,287 @@ void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k)
|
||||
block_iq2_s * restrict y = vy;
|
||||
quantize_row_iq2_s_reference(x, y, k);
|
||||
}
|
||||
|
||||
static bool validate_float(float f, size_t i) {
|
||||
if (isinf(f)) {
|
||||
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (isnan(f)) {
|
||||
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool isinf_fp16(ggml_fp16_t f) {
|
||||
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
|
||||
}
|
||||
|
||||
static bool isnan_fp16(ggml_fp16_t f) {
|
||||
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
|
||||
}
|
||||
|
||||
static bool validate_fp16(ggml_fp16_t f, size_t i) {
|
||||
if (isinf_fp16(f)) {
|
||||
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (isnan_fp16(f)) {
|
||||
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
|
||||
const type * q = (const type *) (data); \
|
||||
for (size_t i = 0; i < (nb); ++i) { \
|
||||
if (!validate_fp16(q[i].d, i)) { \
|
||||
return false; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
|
||||
const type * q = (const type *) (data); \
|
||||
for (size_t i = 0; i < (nb); ++i) { \
|
||||
if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
|
||||
return false; \
|
||||
} \
|
||||
}
|
||||
|
||||
bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
|
||||
if (type < 0 || type >= GGML_TYPE_COUNT) {
|
||||
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (nbytes % ggml_type_size(type) != 0) {
|
||||
fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t nb = nbytes/ggml_type_size(type);
|
||||
|
||||
switch (type) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
const ggml_fp16_t * f = (const ggml_fp16_t *) data;
|
||||
size_t i = 0;
|
||||
#if defined(__AVX2__)
|
||||
for (; i + 15 < nb; i += 16) {
|
||||
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
|
||||
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
|
||||
__m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
|
||||
int mask = _mm256_movemask_epi8(cmp);
|
||||
if (mask) {
|
||||
for (size_t j = 0; j < 16; ++j) {
|
||||
if (!validate_fp16(f[i + j], i + j)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
}
|
||||
#elif defined(__ARM_NEON)
|
||||
for (; i + 7 < nb; i += 8) {
|
||||
uint16x8_t v = vld1q_u16(f + i);
|
||||
uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
|
||||
uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
|
||||
uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
|
||||
if (mask) {
|
||||
for (size_t j = 0; j < 8; ++j) {
|
||||
if (!validate_fp16(f[i + j], i + j)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for (; i < nb; ++i) {
|
||||
if (!validate_fp16(f[i], i)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
const float * f = (const float *) data;
|
||||
size_t i = 0;
|
||||
#if defined(__AVX2__)
|
||||
for (; i + 7 < nb; i += 8) {
|
||||
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
|
||||
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
|
||||
__m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
|
||||
int mask = _mm256_movemask_epi8(cmp);
|
||||
if (mask) {
|
||||
for (size_t j = 0; j < 8; ++j) {
|
||||
if (!validate_float(f[i + j], i + j)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
}
|
||||
#elif defined(__ARM_NEON)
|
||||
for (; i + 3 < nb; i += 4) {
|
||||
uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
|
||||
uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
|
||||
uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
|
||||
uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
|
||||
if (mask) {
|
||||
for (size_t j = 0; j < 4; ++j) {
|
||||
if (!validate_float(f[i + j], i + j)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for (; i < nb; ++i) {
|
||||
if (!validate_float(f[i], i)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_F64:
|
||||
{
|
||||
const double * f = (const double *) data;
|
||||
for (size_t i = 0; i < nb; ++i) {
|
||||
if (!validate_float(f[i], i)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
{
|
||||
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
{
|
||||
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
|
||||
} break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
{
|
||||
#ifdef GGML_QKK_64
|
||||
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]);
|
||||
#else
|
||||
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
|
||||
#endif
|
||||
} break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
{
|
||||
#ifdef GGML_QKK_64
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb);
|
||||
#else
|
||||
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
|
||||
#endif
|
||||
} break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_Q8_K:
|
||||
{
|
||||
const block_q8_K * q = (const block_q8_K *) data;
|
||||
for (size_t i = 0; i < nb; ++i) {
|
||||
if (!validate_float(q[i].d, i)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
{
|
||||
const block_iq1_m * q = (const block_iq1_m *) data;
|
||||
for (size_t i = 0; i < nb; ++i) {
|
||||
#if QK_K == 64
|
||||
if (!validate_fp16(q[i].d, i)) {
|
||||
return false;
|
||||
}
|
||||
#else
|
||||
iq1m_scale_t scale;
|
||||
const uint16_t * sc = (const uint16_t *)q[i].scales;
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
if (!validate_fp16(scale.f16, i)) {
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
|
||||
} break;
|
||||
|
||||
case GGML_TYPE_IQ3_S:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
#if QK_K != 64
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
|
||||
} break;
|
||||
#endif
|
||||
// with QK_K == 64, iq4_xs is iq4_nl
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
case GGML_TYPE_I64:
|
||||
// nothing to validate
|
||||
break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -13416,11 +13416,16 @@ void print_device_detail(int id, sycl::device &device, std::string device_type)
|
||||
version += std::to_string(prop.get_minor_version());
|
||||
|
||||
device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
|
||||
std::string name = std::string(prop.get_name());
|
||||
name = std::regex_replace(name, std::regex("\\(R\\)"), "");
|
||||
name = std::regex_replace(name, std::regex("\\(TM\\)"), "");
|
||||
|
||||
fprintf(stderr, "|%2d|%18s|%45s|%10s|%11d|%8d|%7d|%15lu|\n", id, device_type.c_str(),
|
||||
prop.get_name(), version.c_str(), prop.get_max_compute_units(),
|
||||
auto global_mem_size = prop.get_global_mem_size()/1000000;
|
||||
|
||||
fprintf(stderr, "|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(),
|
||||
name.c_str(), version.c_str(), prop.get_max_compute_units(),
|
||||
prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
|
||||
prop.get_global_mem_size());
|
||||
global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str());
|
||||
}
|
||||
|
||||
void ggml_backend_sycl_print_sycl_devices() {
|
||||
@ -13428,9 +13433,10 @@ void ggml_backend_sycl_print_sycl_devices() {
|
||||
int device_count = dpct::dev_mgr::instance().device_count();
|
||||
std::map<std::string, size_t> DeviceNums;
|
||||
fprintf(stderr, "found %d SYCL devices:\n", device_count);
|
||||
fprintf(stderr, "| | | |Compute |Max compute|Max work|Max sub| |\n");
|
||||
fprintf(stderr, "|ID| Device Type| Name|capability|units |group |group |Global mem size|\n");
|
||||
fprintf(stderr, "|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|\n");
|
||||
fprintf(stderr, "| | | | |Max | |Max |Global | |\n");
|
||||
fprintf(stderr, "| | | | |compute|Max work|sub |mem | |\n");
|
||||
fprintf(stderr, "|ID| Device Type| Name|Version|units |group |group|size | Driver version|\n");
|
||||
fprintf(stderr, "|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|\n");
|
||||
for (int id = 0; id < device_count; ++id) {
|
||||
sycl::device device = dpct::dev_mgr::instance().get_device(id);
|
||||
sycl::backend backend = device.get_backend();
|
||||
|
63
ggml.c
63
ggml.c
@ -858,18 +858,6 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
|
||||
// simd mappings
|
||||
//
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 64-bit compatibility
|
||||
|
||||
inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// we define a common set of C macros which map to specific intrinsics based on the current architecture
|
||||
// we then implement the fundamental computation operations below using only these macros
|
||||
// adding support for new architectures requires to define the corresponding SIMD macros
|
||||
@ -10825,7 +10813,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
#endif
|
||||
|
||||
#if GGML_USE_LLAMAFILE
|
||||
if (nb10 == ggml_type_size(src1->type)) {
|
||||
if (src1_cont) {
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++)
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++)
|
||||
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
|
||||
@ -10878,15 +10866,13 @@ UseGgmlGemm1:;
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
|
||||
#if GGML_USE_LLAMAFILE
|
||||
if (nb10 == ggml_type_size(src1->type) || src1->type != vec_dot_type) {
|
||||
if (src1->type != vec_dot_type) {
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++)
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++)
|
||||
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
|
||||
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
|
||||
nb01/ggml_type_size(src0->type),
|
||||
(const char *)wdata + ggml_row_size(vec_dot_type,
|
||||
nb12/ggml_type_size(src1->type)*i12 +
|
||||
nb13/ggml_type_size(src1->type)*i13),
|
||||
(const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
|
||||
row_size/ggml_type_size(vec_dot_type),
|
||||
(char *)dst->data + i12*nb2 + i13*nb3,
|
||||
nb1/ggml_type_size(dst->type),
|
||||
@ -20628,7 +20614,7 @@ static void gguf_free_kv(struct gguf_kv * kv) {
|
||||
}
|
||||
|
||||
struct gguf_context * gguf_init_empty(void) {
|
||||
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
|
||||
struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
|
||||
|
||||
memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
|
||||
ctx->header.version = GGUF_VERSION;
|
||||
@ -20673,7 +20659,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
|
||||
bool ok = true;
|
||||
|
||||
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
|
||||
struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
|
||||
|
||||
// read the header
|
||||
{
|
||||
@ -20710,9 +20696,13 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
|
||||
// read the kv pairs
|
||||
{
|
||||
ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
|
||||
const uint64_t n_kv = ctx->header.n_kv;
|
||||
|
||||
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
|
||||
// header.n_kv will hold the actual value of pairs that were successfully read in the loop below
|
||||
ctx->header.n_kv = 0;
|
||||
ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
|
||||
|
||||
for (uint64_t i = 0; i < n_kv; ++i) {
|
||||
struct gguf_kv * kv = &ctx->kv[i];
|
||||
|
||||
//fprintf(stderr, "%s: reading kv %d\n", __func__, i);
|
||||
@ -20761,7 +20751,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
return NULL;
|
||||
}
|
||||
|
||||
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
|
||||
kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
|
||||
|
||||
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
|
||||
} break;
|
||||
@ -20775,7 +20765,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
return NULL;
|
||||
}
|
||||
|
||||
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
|
||||
kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
|
||||
|
||||
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
|
||||
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
|
||||
@ -20791,6 +20781,8 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
if (!ok) {
|
||||
break;
|
||||
}
|
||||
|
||||
ctx->header.n_kv++;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
@ -20803,7 +20795,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
|
||||
// read the tensor infos
|
||||
{
|
||||
ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
|
||||
ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
|
||||
|
||||
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||||
@ -20824,8 +20816,17 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
|
||||
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
|
||||
|
||||
// TODO: return an error instead of crashing with GGML_ASSERT
|
||||
gguf_tensor_info_sanitize(info);
|
||||
|
||||
// make sure there is no duplicated tensor names
|
||||
for (uint64_t j = 0; j < i; ++j) {
|
||||
if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
|
||||
fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
|
||||
fclose(file);
|
||||
@ -20994,7 +20995,7 @@ void gguf_free(struct gguf_context * ctx) {
|
||||
GGML_FREE(ctx->infos);
|
||||
}
|
||||
|
||||
GGML_ALIGNED_FREE(ctx);
|
||||
GGML_FREE(ctx);
|
||||
}
|
||||
|
||||
const char * gguf_type_name(enum gguf_type type) {
|
||||
@ -21305,7 +21306,7 @@ void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_ty
|
||||
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
|
||||
ctx->kv[idx].value.arr.type = type;
|
||||
ctx->kv[idx].value.arr.n = n;
|
||||
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
|
||||
ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
|
||||
memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
|
||||
}
|
||||
|
||||
@ -21315,7 +21316,7 @@ void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char **
|
||||
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
|
||||
ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
|
||||
ctx->kv[idx].value.arr.n = n;
|
||||
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
|
||||
ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
|
||||
for (int i = 0; i < n; i++) {
|
||||
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
|
||||
str->n = strlen(data[i]);
|
||||
@ -21342,7 +21343,7 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
|
||||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
|
||||
const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
|
||||
const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
|
||||
for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
|
||||
data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
|
||||
}
|
||||
@ -21362,6 +21363,10 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
|
||||
void gguf_add_tensor(
|
||||
struct gguf_context * ctx,
|
||||
const struct ggml_tensor * tensor) {
|
||||
if (gguf_find_tensor(ctx, tensor->name) != -1) {
|
||||
GGML_ASSERT(false && "duplicated tensor name");
|
||||
}
|
||||
|
||||
const int idx = ctx->header.n_tensors;
|
||||
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
|
||||
|
||||
@ -21430,7 +21435,7 @@ struct gguf_buf {
|
||||
|
||||
static struct gguf_buf gguf_buf_init(size_t size) {
|
||||
struct gguf_buf buf = {
|
||||
/*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
|
||||
/*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
|
||||
/*buf.size =*/ size,
|
||||
/*buf.offset =*/ 0,
|
||||
};
|
||||
|
2
ggml.h
2
ggml.h
@ -762,6 +762,8 @@ extern "C" {
|
||||
// use this to compute the memory overhead of a tensor
|
||||
GGML_API size_t ggml_tensor_overhead(void);
|
||||
|
||||
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
|
||||
|
||||
// main
|
||||
|
||||
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
||||
|
@ -124,6 +124,7 @@ class MODEL_ARCH(IntEnum):
|
||||
QWEN2 = auto()
|
||||
QWEN2MOE = auto()
|
||||
PHI2 = auto()
|
||||
PHI3 = auto()
|
||||
PLAMO = auto()
|
||||
CODESHELL = auto()
|
||||
ORION = auto()
|
||||
@ -200,6 +201,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.QWEN2: "qwen2",
|
||||
MODEL_ARCH.QWEN2MOE: "qwen2moe",
|
||||
MODEL_ARCH.PHI2: "phi2",
|
||||
MODEL_ARCH.PHI3: "phi3",
|
||||
MODEL_ARCH.PLAMO: "plamo",
|
||||
MODEL_ARCH.CODESHELL: "codeshell",
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
@ -550,6 +552,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.PHI3: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.CODESHELL: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.POS_EMBD,
|
||||
@ -872,6 +888,7 @@ GGML_QUANT_SIZES = {
|
||||
GGMLQuantizationType.I32: (1, 4),
|
||||
GGMLQuantizationType.I64: (1, 8),
|
||||
GGMLQuantizationType.F64: (1, 8),
|
||||
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
|
||||
}
|
||||
|
||||
|
||||
|
@ -234,8 +234,14 @@ class GGUFReader:
|
||||
|
||||
def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
|
||||
tensors = []
|
||||
tensor_names = set() # keep track of name to prevent duplicated tensors
|
||||
for field in fields:
|
||||
_name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts
|
||||
# check if there's any tensor having same name already in the list
|
||||
tensor_name = str(bytes(name_data), encoding = 'utf-8')
|
||||
if tensor_name in tensor_names:
|
||||
raise ValueError(f'Found duplicated tensor with name {tensor_name}')
|
||||
tensor_names.add(tensor_name)
|
||||
ggml_type = GGMLQuantizationType(raw_dtype[0])
|
||||
n_elems = np.prod(dims)
|
||||
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
|
||||
@ -267,7 +273,7 @@ class GGUFReader:
|
||||
item_count = n_bytes
|
||||
item_type = np.uint8
|
||||
tensors.append(ReaderTensor(
|
||||
name = str(bytes(name_data), encoding = 'utf-8'),
|
||||
name = tensor_name,
|
||||
tensor_type = ggml_type,
|
||||
shape = dims,
|
||||
n_elements = n_elems,
|
||||
|
@ -63,6 +63,7 @@ class GGUFWriter:
|
||||
self.kv_data_count = 0
|
||||
self.ti_data = bytearray()
|
||||
self.ti_data_count = 0
|
||||
self.ti_names = set()
|
||||
self.use_temp_file = use_temp_file
|
||||
self.temp_file = None
|
||||
self.tensors = []
|
||||
@ -197,6 +198,10 @@ class GGUFWriter:
|
||||
if self.state is not WriterState.EMPTY:
|
||||
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
||||
|
||||
if name in self.ti_names:
|
||||
raise ValueError(f'Duplicated tensor name {name}')
|
||||
self.ti_names.add(name)
|
||||
|
||||
encoded_name = name.encode("utf8")
|
||||
self.ti_data += self._pack("Q", len(encoded_name))
|
||||
self.ti_data += encoded_name
|
||||
|
@ -117,6 +117,7 @@ class TensorNameMap:
|
||||
"h.{bid}.attn.c_attn", # gpt2
|
||||
"transformer.h.{bid}.mixer.Wqkv", # phi2
|
||||
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
|
||||
"model.layers.{bid}.self_attn.qkv_proj" # phi3
|
||||
),
|
||||
|
||||
# Attention query
|
||||
@ -234,6 +235,7 @@ class TensorNameMap:
|
||||
"h.{bid}.mlp.c_fc", # gpt2
|
||||
"transformer.h.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.{bid}.mlp.gate_up_proj", # phi3
|
||||
"model.layers.layers.{bid}.mlp.up_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w3", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
||||
|
44
llama.h
44
llama.h
@ -195,15 +195,19 @@ extern "C" {
|
||||
LLAMA_KV_OVERRIDE_TYPE_INT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_BOOL,
|
||||
LLAMA_KV_OVERRIDE_TYPE_STR,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
char key[128];
|
||||
enum llama_model_kv_override_type tag;
|
||||
|
||||
char key[128];
|
||||
|
||||
union {
|
||||
int64_t int_value;
|
||||
double float_value;
|
||||
bool bool_value;
|
||||
int64_t val_i64;
|
||||
double val_f64;
|
||||
bool val_bool;
|
||||
char val_str[128];
|
||||
};
|
||||
};
|
||||
|
||||
@ -232,9 +236,10 @@ extern "C" {
|
||||
const struct llama_model_kv_override * kv_overrides;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool check_tensors; // validate model tensor data
|
||||
};
|
||||
|
||||
struct llama_context_params {
|
||||
@ -288,6 +293,7 @@ extern "C" {
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
bool pure; // quantize all tensors to the default type
|
||||
bool keep_split; // quantize to the same number of shards
|
||||
void * imatrix; // pointer to importance matrix data
|
||||
void * kv_overrides; // pointer to vector containing overrides
|
||||
} llama_model_quantize_params;
|
||||
@ -390,8 +396,10 @@ extern "C" {
|
||||
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||||
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||||
|
||||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||
@ -783,6 +791,9 @@ extern "C" {
|
||||
|
||||
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
|
||||
|
||||
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
|
||||
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||||
@ -796,7 +807,7 @@ extern "C" {
|
||||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||||
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
|
||||
|
||||
// codellama infill tokens
|
||||
// Codellama infill tokens
|
||||
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
||||
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
|
||||
LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
|
||||
@ -825,11 +836,13 @@ extern "C" {
|
||||
// Uses the vocabulary in the provided context.
|
||||
// Does not write null terminator to the buffer.
|
||||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||||
// @param special If true, special tokens are rendered in the output.
|
||||
LLAMA_API int32_t llama_token_to_piece(
|
||||
const struct llama_model * model,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length);
|
||||
int32_t length,
|
||||
bool special);
|
||||
|
||||
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||||
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||||
@ -982,7 +995,7 @@ extern "C" {
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
|
||||
LLAMA_API llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
@ -1069,8 +1082,9 @@ extern "C" {
|
||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||
#ifdef LLAMA_API_INTERNAL
|
||||
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct ggml_tensor;
|
||||
|
||||
@ -1107,6 +1121,10 @@ std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
||||
const std::string & src,
|
||||
llama_partial_utf8 partial_start);
|
||||
|
||||
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
|
||||
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
|
||||
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
|
||||
|
||||
#endif // LLAMA_API_INTERNAL
|
||||
|
||||
#endif // LLAMA_H
|
||||
|
BIN
media/matmul.png
Normal file
BIN
media/matmul.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 260 KiB |
1238
media/matmul.svg
Normal file
1238
media/matmul.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 51 KiB |
16
scripts/xxd.cmake
Normal file
16
scripts/xxd.cmake
Normal file
@ -0,0 +1,16 @@
|
||||
# CMake equivalent of `xxd -i ${INPUT} ${OUTPUT}`
|
||||
# Usage: cmake -DINPUT=examples/server/public/index.html -DOUTPUT=examples/server/index.html.hpp -P scripts/xxd.cmake
|
||||
|
||||
SET(INPUT "" CACHE STRING "Input File")
|
||||
SET(OUTPUT "" CACHE STRING "Output File")
|
||||
|
||||
get_filename_component(filename "${INPUT}" NAME)
|
||||
string(REGEX REPLACE "\\.|-" "_" name "${filename}")
|
||||
|
||||
file(READ "${INPUT}" hex_data HEX)
|
||||
string(REGEX REPLACE "([0-9a-f][0-9a-f])" "0x\\1," hex_sequence "${hex_data}")
|
||||
|
||||
string(LENGTH ${hex_data} hex_len)
|
||||
math(EXPR len "${hex_len} / 2")
|
||||
|
||||
file(WRITE "${OUTPUT}" "unsigned char ${name}[] = {${hex_sequence}};\nunsigned int ${name}_len = ${len};\n")
|
6
sgemm.h
6
sgemm.h
@ -1,11 +1,13 @@
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
bool llamafile_sgemm(int, int, int, const void *, int, const void *, int,
|
||||
void *, int, int, int, int, int, int, int);
|
||||
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
|
||||
const void *, int64_t, void *, int64_t, int, int,
|
||||
int, int, int, int);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -46,7 +46,11 @@ int main(void) {
|
||||
// No template included in tokenizer_config.json, so this template likely needs to be manually set.
|
||||
"{%- for message in messages %}{%- if message['role'] == 'system' -%}{{-'SYSTEM: ' + message['content'] + '\n' -}}{%- else -%}{%- if message['role'] == 'user' -%}{{-'USER: ' + message['content'] + '\n'-}}{%- else -%}{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{-'ASSISTANT:'-}}{%- endif -%}",
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
|
||||
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}",
|
||||
// Llama-3
|
||||
"{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
||||
// Phi-3
|
||||
"{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + ' ' + message['content'] + '<|end|> ' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|> ' }}{% else %}{{ eos_token }}{% endif %}"
|
||||
};
|
||||
std::vector<std::string> expected_output = {
|
||||
// teknium/OpenHermes-2.5-Mistral-7B
|
||||
@ -73,6 +77,10 @@ int main(void) {
|
||||
"SYSTEM: You are a helpful assistant\nUSER: Hello\nASSISTANT: Hi there</s>\nUSER: Who are you\nASSISTANT: I am an assistant </s>\nUSER: Another question\nASSISTANT:",
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
|
||||
// Llama 3
|
||||
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
|
||||
// Phi 3
|
||||
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\nI am an assistant<|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
|
||||
};
|
||||
std::vector<char> formatted_chat(1024);
|
||||
int32_t res;
|
||||
|
Loading…
Reference in New Issue
Block a user