diff --git a/main.cpp b/main.cpp index 105dd91ee..a95e2e721 100644 --- a/main.cpp +++ b/main.cpp @@ -176,8 +176,6 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab } } - const ggml_type wtype2 = GGML_TYPE_F32; - auto & ctx = model.ctx; size_t ctx_size = 0; @@ -237,7 +235,6 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); @@ -539,9 +536,7 @@ bool llama_eval( const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_embd/hparams.n_head; - const int d_key = n_embd/n_head; - - // TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case + // TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case // static size_t buf_size = hparams.n_ctx*1024*1024; static size_t buf_size = 512u*1024*1024; static void * buf = malloc(buf_size); @@ -792,7 +787,7 @@ int main(int argc, char ** argv) { if (gpt_params_parse(argc, argv, params) == false) { return 1; } - + if (params.n_ctx > 2048) { fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);" "expect poor results\n", __func__, params.n_ctx); @@ -820,7 +815,7 @@ int main(int argc, char ** argv) { // load the model { const int64_t t_start_us = ggml_time_us(); - if (!llama_model_load(params.model, model, vocab, params.n_ctx)) { + if (!llama_model_load(params.model, model, vocab, params.n_ctx)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return 1; } @@ -849,9 +844,25 @@ int main(int argc, char ** argv) { params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); + // prefix & suffix for instruct mode + const std::vector inp_pfx = ::llama_tokenize(vocab, "\n\n### Instruction:\n\n", true); + const std::vector inp_sfx = ::llama_tokenize(vocab, "\n\n### Response:\n\n", false); + + // in instruct mode, we inject a prefix and a suffix to each input by the user + if (params.instruct) { + fprintf(stderr, "== Instruction mode enabled ==\n"); + params.interactive = true; + params.antiprompt = "### Instruction:\n\n"; + } + // tokenize the reverse prompt std::vector antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false); + // enable interactive mode if reverse prompt is specified + if (!antiprompt_inp.empty()) { + params.interactive = true; + } + fprintf(stderr, "\n"); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); @@ -872,7 +883,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: interactive mode on.\n", __func__); - if(antiprompt_inp.size()) { + if (antiprompt_inp.size()) { fprintf(stderr, "%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str()); fprintf(stderr, "%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size()); for (int i = 0; i < (int) antiprompt_inp.size(); i++) { @@ -894,31 +905,27 @@ int main(int argc, char ** argv) { std::vector last_n_tokens(last_n_size); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); - if (params.interactive) { fprintf(stderr, "== Running in interactive mode. ==\n" #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) " - Press Ctrl+C to interject at any time.\n" #endif " - Press Return to return control to LLaMa.\n" - " - If you want to submit another line, end your input in '\\'.\n"); + " - If you want to submit another line, end your input in '\\'.\n\n"); + is_interacting = true; } - int remaining_tokens = params.n_predict; int input_consumed = 0; bool input_noecho = false; - // prompt user immediately after the starting prompt has been loaded - if (params.interactive_start) { - is_interacting = true; - } + int remaining_tokens = params.n_predict; // set the color for the prompt which will be output initially if (params.use_color) { printf(ANSI_COLOR_YELLOW); } - while (remaining_tokens > 0) { + while (remaining_tokens > 0 || params.interactive) { // predict if (embd.size() > 0) { const int64_t t_start_us = ggml_time_us(); @@ -971,13 +978,13 @@ int main(int argc, char ** argv) { last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(embd_inp[input_consumed]); ++input_consumed; - if (embd.size() > params.n_batch) { + if ((int) embd.size() > params.n_batch) { break; } } // reset color to default if we there is no pending user input - if (!input_noecho && params.use_color && embd_inp.size() == input_consumed) { + if (!input_noecho && params.use_color && (int) embd_inp.size() == input_consumed) { printf(ANSI_COLOR_RESET); } } @@ -999,19 +1006,26 @@ int main(int argc, char ** argv) { is_interacting = true; } if (is_interacting) { + if (params.instruct) { + input_consumed = embd_inp.size(); + embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); + + printf("\n> "); + } + // currently being interactive - bool another_line=true; + bool another_line = true; while (another_line) { fflush(stdout); char buf[256] = {0}; int n_read; - if(params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN); + if (params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN); if (scanf("%255[^\n]%n%*c", buf, &n_read) <= 0) { // presumable empty line, consume the newline std::ignore = scanf("%*c"); n_read=0; } - if(params.use_color) printf(ANSI_COLOR_RESET); + if (params.use_color) printf(ANSI_COLOR_RESET); if (n_read > 0 && buf[n_read-1]=='\\') { another_line = true; @@ -1026,6 +1040,10 @@ int main(int argc, char ** argv) { std::vector line_inp = ::llama_tokenize(vocab, buf, false); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); + if (params.instruct) { + embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); + } + remaining_tokens -= line_inp.size(); input_noecho = true; // do not echo this again @@ -1037,8 +1055,12 @@ int main(int argc, char ** argv) { // end of text token if (embd.back() == 2) { - fprintf(stderr, " [end of text]\n"); - break; + if (params.interactive) { + is_interacting = true; + } else { + fprintf(stderr, " [end of text]\n"); + break; + } } } diff --git a/prompts/alpaca.txt b/prompts/alpaca.txt new file mode 100644 index 000000000..2224bdeb0 --- /dev/null +++ b/prompts/alpaca.txt @@ -0,0 +1 @@ +Below is an instruction that describes a task. Write a response that appropriately completes the request. diff --git a/prompts/chat-with-bob.txt b/prompts/chat-with-bob.txt new file mode 100644 index 000000000..009da39ae --- /dev/null +++ b/prompts/chat-with-bob.txt @@ -0,0 +1,7 @@ +Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. + +User: Hello, Bob. +Bob: Hello. How may I help you today? +User: Please tell me the largest city in Europe. +Bob: Sure. The largest city in Europe is Moscow, the capital of Russia. +User: diff --git a/utils.cpp b/utils.cpp index efa2e3c35..be81c6cd0 100644 --- a/utils.cpp +++ b/utils.cpp @@ -38,13 +38,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; } else if (arg == "-f" || arg == "--file") { - std::ifstream file(argv[++i]); - - std::copy(std::istreambuf_iterator(file), - std::istreambuf_iterator(), - back_inserter(params.prompt)); - + std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); } else if (arg == "-n" || arg == "--n_predict") { params.n_predict = std::stoi(argv[++i]); } else if (arg == "--top_k") { @@ -65,9 +60,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { params.model = argv[++i]; } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; - } else if (arg == "--interactive-start") { - params.interactive = true; - params.interactive_start = true; + } else if (arg == "-ins" || arg == "--instruct") { + params.instruct = true; } else if (arg == "--color") { params.use_color = true; } else if (arg == "-r" || arg == "--reverse-prompt") { @@ -85,13 +79,13 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { return true; } -void gpt_print_usage(int argc, char ** argv, const gpt_params & params) { +void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -i, --interactive run in interactive mode\n"); - fprintf(stderr, " --interactive-start run in interactive mode and poll user input at startup\n"); + fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n"); fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n"); fprintf(stderr, " in interactive mode, poll user input upon seeing PROMPT\n"); fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n"); @@ -398,7 +392,7 @@ gpt_vocab::id llama_sample_top_p_top_k( logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i)); } else { logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i)); - } + } } else { logits_id.push_back(std::make_pair(logits[i]*scale, i)); } diff --git a/utils.h b/utils.h index c1a8498a7..e329ba168 100644 --- a/utils.h +++ b/utils.h @@ -27,14 +27,14 @@ struct gpt_params { int32_t n_batch = 8; // batch size for prompt processing - std::string model = "models/lamma-7B/ggml-model.bin"; // model path - std::string prompt; + std::string model = "models/lamma-7B/ggml-model.bin"; // model path + std::string prompt = ""; + std::string antiprompt = ""; // string upon seeing which more user input is prompted bool use_color = false; // use color to distinguish generations and inputs bool interactive = false; // interactive mode - bool interactive_start = false; // reverse prompt immediately - std::string antiprompt = ""; // string upon seeing which more user input is prompted + bool instruct = false; // instruction mode (used for Alpaca models) }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params);