mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
ggml : move all type info to ggml_type_traits (#2663)
This commit is contained in:
parent
5e9ff54a67
commit
9e232f0234
245
ggml.c
245
ggml.c
@ -1643,11 +1643,37 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
||||
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
|
||||
static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_I8] = {
|
||||
.type_name = "i8",
|
||||
.blck_size = 1,
|
||||
.type_size = sizeof(int8_t),
|
||||
.is_quantized = false,
|
||||
},
|
||||
[GGML_TYPE_I16] = {
|
||||
.type_name = "i16",
|
||||
.blck_size = 1,
|
||||
.type_size = sizeof(int16_t),
|
||||
.is_quantized = false,
|
||||
},
|
||||
[GGML_TYPE_I32] = {
|
||||
.type_name = "i32",
|
||||
.blck_size = 1,
|
||||
.type_size = sizeof(int32_t),
|
||||
.is_quantized = false,
|
||||
},
|
||||
[GGML_TYPE_F32] = {
|
||||
.type_name = "f32",
|
||||
.blck_size = 1,
|
||||
.type_size = sizeof(float),
|
||||
.is_quantized = false,
|
||||
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
|
||||
.vec_dot_type = GGML_TYPE_F32,
|
||||
},
|
||||
[GGML_TYPE_F16] = {
|
||||
.type_name = "f16",
|
||||
.blck_size = 1,
|
||||
.type_size = sizeof(ggml_fp16_t),
|
||||
.is_quantized = false,
|
||||
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
|
||||
.from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
|
||||
.from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
|
||||
@ -1655,6 +1681,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_F16,
|
||||
},
|
||||
[GGML_TYPE_Q4_0] = {
|
||||
.type_name = "q4_0",
|
||||
.blck_size = QK4_0,
|
||||
.type_size = sizeof(block_q4_0),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q4_0,
|
||||
.from_float = quantize_row_q4_0,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
|
||||
@ -1662,6 +1692,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
},
|
||||
[GGML_TYPE_Q4_1] = {
|
||||
.type_name = "q4_1",
|
||||
.blck_size = QK4_1,
|
||||
.type_size = sizeof(block_q4_1),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q4_1,
|
||||
.from_float = quantize_row_q4_1,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
|
||||
@ -1669,6 +1703,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_1,
|
||||
},
|
||||
[GGML_TYPE_Q5_0] = {
|
||||
.type_name = "q5_0",
|
||||
.blck_size = QK5_0,
|
||||
.type_size = sizeof(block_q5_0),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q5_0,
|
||||
.from_float = quantize_row_q5_0,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
|
||||
@ -1676,6 +1714,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
},
|
||||
[GGML_TYPE_Q5_1] = {
|
||||
.type_name = "q5_1",
|
||||
.blck_size = QK5_1,
|
||||
.type_size = sizeof(block_q5_1),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q5_1,
|
||||
.from_float = quantize_row_q5_1,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
|
||||
@ -1683,6 +1725,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_1,
|
||||
},
|
||||
[GGML_TYPE_Q8_0] = {
|
||||
.type_name = "q8_0",
|
||||
.blck_size = QK8_0,
|
||||
.type_size = sizeof(block_q8_0),
|
||||
.is_quantized = true,
|
||||
.to_float = dequantize_row_q8_0,
|
||||
.from_float = quantize_row_q8_0,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
|
||||
@ -1690,12 +1736,20 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
},
|
||||
[GGML_TYPE_Q8_1] = {
|
||||
.type_name = "q8_1",
|
||||
.blck_size = QK8_1,
|
||||
.type_size = sizeof(block_q8_1),
|
||||
.is_quantized = true,
|
||||
.from_float = quantize_row_q8_1,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
|
||||
.vec_dot_type = GGML_TYPE_Q8_1,
|
||||
},
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
[GGML_TYPE_Q2_K] = {
|
||||
.type_name = "q2_K",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_q2_K),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q2_K,
|
||||
.from_float = quantize_row_q2_K,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
|
||||
@ -1703,6 +1757,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_Q3_K] = {
|
||||
.type_name = "q3_K",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_q3_K),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q3_K,
|
||||
.from_float = quantize_row_q3_K,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
|
||||
@ -1710,6 +1768,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_Q4_K] = {
|
||||
.type_name = "q4_K",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_q4_K),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q4_K,
|
||||
.from_float = quantize_row_q4_K,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
|
||||
@ -1717,6 +1779,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_Q5_K] = {
|
||||
.type_name = "q5_K",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_q5_K),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q5_K,
|
||||
.from_float = quantize_row_q5_K,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
|
||||
@ -1724,6 +1790,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_Q6_K] = {
|
||||
.type_name = "q6_K",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_q6_K),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_q6_K,
|
||||
.from_float = quantize_row_q6_K,
|
||||
.from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
|
||||
@ -1731,15 +1801,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_Q8_K] = {
|
||||
.type_name = "q8_K",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_q8_K),
|
||||
.is_quantized = true,
|
||||
.from_float = quantize_row_q8_K,
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
// For internal test use
|
||||
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
|
||||
GGML_ASSERT(i < GGML_TYPE_COUNT);
|
||||
return type_traits[i];
|
||||
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
|
||||
GGML_ASSERT(type < GGML_TYPE_COUNT);
|
||||
return type_traits[type];
|
||||
}
|
||||
|
||||
|
||||
@ -3648,99 +3722,6 @@ inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
|
||||
*s = idx;
|
||||
}
|
||||
|
||||
//
|
||||
// data types
|
||||
//
|
||||
|
||||
static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_F32] = 1,
|
||||
[GGML_TYPE_F16] = 1,
|
||||
[GGML_TYPE_Q4_0] = QK4_0,
|
||||
[GGML_TYPE_Q4_1] = QK4_1,
|
||||
[GGML_TYPE_Q5_0] = QK5_0,
|
||||
[GGML_TYPE_Q5_1] = QK5_1,
|
||||
[GGML_TYPE_Q8_0] = QK8_0,
|
||||
[GGML_TYPE_Q8_1] = QK8_1,
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
[GGML_TYPE_Q2_K] = QK_K,
|
||||
[GGML_TYPE_Q3_K] = QK_K,
|
||||
[GGML_TYPE_Q4_K] = QK_K,
|
||||
[GGML_TYPE_Q5_K] = QK_K,
|
||||
[GGML_TYPE_Q6_K] = QK_K,
|
||||
[GGML_TYPE_Q8_K] = QK_K,
|
||||
#endif
|
||||
[GGML_TYPE_I8] = 1,
|
||||
[GGML_TYPE_I16] = 1,
|
||||
[GGML_TYPE_I32] = 1,
|
||||
};
|
||||
static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
|
||||
|
||||
static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_F32] = sizeof(float),
|
||||
[GGML_TYPE_F16] = sizeof(ggml_fp16_t),
|
||||
[GGML_TYPE_Q4_0] = sizeof(block_q4_0),
|
||||
[GGML_TYPE_Q4_1] = sizeof(block_q4_1),
|
||||
[GGML_TYPE_Q5_0] = sizeof(block_q5_0),
|
||||
[GGML_TYPE_Q5_1] = sizeof(block_q5_1),
|
||||
[GGML_TYPE_Q8_0] = sizeof(block_q8_0),
|
||||
[GGML_TYPE_Q8_1] = sizeof(block_q8_1),
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
[GGML_TYPE_Q2_K] = sizeof(block_q2_K),
|
||||
[GGML_TYPE_Q3_K] = sizeof(block_q3_K),
|
||||
[GGML_TYPE_Q4_K] = sizeof(block_q4_K),
|
||||
[GGML_TYPE_Q5_K] = sizeof(block_q5_K),
|
||||
[GGML_TYPE_Q6_K] = sizeof(block_q6_K),
|
||||
[GGML_TYPE_Q8_K] = sizeof(block_q8_K),
|
||||
#endif
|
||||
[GGML_TYPE_I8] = sizeof(int8_t),
|
||||
[GGML_TYPE_I16] = sizeof(int16_t),
|
||||
[GGML_TYPE_I32] = sizeof(int32_t),
|
||||
};
|
||||
static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
|
||||
|
||||
|
||||
static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_F32] = "f32",
|
||||
[GGML_TYPE_F16] = "f16",
|
||||
[GGML_TYPE_Q4_0] = "q4_0",
|
||||
[GGML_TYPE_Q4_1] = "q4_1",
|
||||
[GGML_TYPE_Q5_0] = "q5_0",
|
||||
[GGML_TYPE_Q5_1] = "q5_1",
|
||||
[GGML_TYPE_Q8_0] = "q8_0",
|
||||
[GGML_TYPE_Q8_1] = "q8_1",
|
||||
[GGML_TYPE_Q2_K] = "q2_K",
|
||||
[GGML_TYPE_Q3_K] = "q3_K",
|
||||
[GGML_TYPE_Q4_K] = "q4_K",
|
||||
[GGML_TYPE_Q5_K] = "q5_K",
|
||||
[GGML_TYPE_Q6_K] = "q6_K",
|
||||
[GGML_TYPE_Q8_K] = "q8_K",
|
||||
[GGML_TYPE_I8] = "i8",
|
||||
[GGML_TYPE_I16] = "i16",
|
||||
[GGML_TYPE_I32] = "i32",
|
||||
};
|
||||
static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
|
||||
|
||||
static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_F32] = false,
|
||||
[GGML_TYPE_F16] = false,
|
||||
[GGML_TYPE_Q4_0] = true,
|
||||
[GGML_TYPE_Q4_1] = true,
|
||||
[GGML_TYPE_Q5_0] = true,
|
||||
[GGML_TYPE_Q5_1] = true,
|
||||
[GGML_TYPE_Q8_0] = true,
|
||||
[GGML_TYPE_Q8_1] = true,
|
||||
[GGML_TYPE_Q2_K] = true,
|
||||
[GGML_TYPE_Q3_K] = true,
|
||||
[GGML_TYPE_Q4_K] = true,
|
||||
[GGML_TYPE_Q5_K] = true,
|
||||
[GGML_TYPE_Q6_K] = true,
|
||||
[GGML_TYPE_Q8_K] = true,
|
||||
[GGML_TYPE_I8] = false,
|
||||
[GGML_TYPE_I16] = false,
|
||||
[GGML_TYPE_I32] = false,
|
||||
};
|
||||
static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
|
||||
|
||||
static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"NONE",
|
||||
|
||||
@ -4110,29 +4091,33 @@ size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
||||
//
|
||||
// is enough, but just in case, adding the second part
|
||||
|
||||
return GGML_PAD(MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]), GGML_MEM_ALIGN);
|
||||
return GGML_PAD(MAX(tensor->ne[3]*tensor->nb[3], ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type), GGML_MEM_ALIGN);
|
||||
}
|
||||
|
||||
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
|
||||
return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
|
||||
}
|
||||
|
||||
int ggml_blck_size(enum ggml_type type) {
|
||||
return GGML_BLCK_SIZE[type];
|
||||
return type_traits[type].blck_size;
|
||||
}
|
||||
|
||||
size_t ggml_type_size(enum ggml_type type) {
|
||||
return GGML_TYPE_SIZE[type];
|
||||
return type_traits[type].type_size;
|
||||
}
|
||||
|
||||
float ggml_type_sizef(enum ggml_type type) {
|
||||
return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
|
||||
return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
|
||||
}
|
||||
|
||||
const char * ggml_type_name(enum ggml_type type) {
|
||||
return GGML_TYPE_NAME[type];
|
||||
return type_traits[type].type_name;
|
||||
}
|
||||
|
||||
bool ggml_is_quantized(enum ggml_type type) {
|
||||
return type_traits[type].is_quantized;
|
||||
}
|
||||
|
||||
const char * ggml_op_name(enum ggml_op op) {
|
||||
@ -4144,7 +4129,7 @@ const char * ggml_op_symbol(enum ggml_op op) {
|
||||
}
|
||||
|
||||
size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
||||
return GGML_TYPE_SIZE[tensor->type];
|
||||
return ggml_type_size(tensor->type);
|
||||
}
|
||||
|
||||
static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
|
||||
@ -4182,10 +4167,6 @@ static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct
|
||||
(t0->ne[3] == t1->ne[3]);
|
||||
}
|
||||
|
||||
bool ggml_is_quantized(enum ggml_type type) {
|
||||
return GGML_IS_QUANTIZED[type];
|
||||
}
|
||||
|
||||
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
||||
enum ggml_type wtype = GGML_TYPE_COUNT;
|
||||
|
||||
@ -4223,8 +4204,8 @@ bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return
|
||||
tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
|
||||
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
|
||||
tensor->nb[0] == ggml_type_size(tensor->type) &&
|
||||
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
|
||||
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
||||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||
}
|
||||
@ -4233,7 +4214,7 @@ static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * te
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return
|
||||
tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
|
||||
tensor->nb[0] == ggml_type_size(tensor->type) &&
|
||||
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
||||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||
}
|
||||
@ -4248,7 +4229,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return
|
||||
tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
|
||||
tensor->nb[0] == ggml_type_size(tensor->type) &&
|
||||
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
||||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||
}
|
||||
@ -4567,7 +4548,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
size_t data_size = 0;
|
||||
|
||||
if (data == NULL && !ctx->no_alloc) {
|
||||
data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
|
||||
data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
|
||||
for (int i = 1; i < n_dims; i++) {
|
||||
data_size *= ne[i];
|
||||
}
|
||||
@ -4622,8 +4603,8 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
result->ne[i] = ne[i];
|
||||
}
|
||||
|
||||
result->nb[0] = GGML_TYPE_SIZE[type];
|
||||
result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
|
||||
result->nb[0] = ggml_type_size(type);
|
||||
result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
|
||||
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
||||
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
|
||||
}
|
||||
@ -7745,7 +7726,7 @@ static void ggml_compute_forward_dup_same_cont(
|
||||
memcpy(
|
||||
((char *) dst->data + ie0*nb0),
|
||||
((char *) src0->data + ie0*nb00),
|
||||
(ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
|
||||
(ie1 - ie0) * ggml_type_size(src0->type));
|
||||
}
|
||||
|
||||
}
|
||||
@ -7779,7 +7760,7 @@ static void ggml_compute_forward_dup_f16(
|
||||
|
||||
if (src0->type == dst->type &&
|
||||
ne00 == ne0 &&
|
||||
nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
|
||||
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
|
||||
// copy by rows
|
||||
const size_t rs = ne00*nb00;
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
@ -7837,7 +7818,7 @@ static void ggml_compute_forward_dup_f16(
|
||||
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
||||
|
||||
size_t id = 0;
|
||||
size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
|
||||
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
||||
char * dst_ptr = (char *) dst->data;
|
||||
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
@ -8050,7 +8031,7 @@ static void ggml_compute_forward_dup_f32(
|
||||
|
||||
if (src0->type == dst->type &&
|
||||
ne00 == ne0 &&
|
||||
nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
|
||||
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
|
||||
// copy by rows
|
||||
const size_t rs = ne00*nb00;
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
@ -8089,7 +8070,7 @@ static void ggml_compute_forward_dup_f32(
|
||||
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
|
||||
|
||||
size_t id = 0;
|
||||
size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
|
||||
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
||||
char * dst_ptr = (char *) dst->data;
|
||||
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
@ -8501,7 +8482,7 @@ static void ggml_compute_forward_add_q_f32(
|
||||
ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
@ -8775,7 +8756,7 @@ static void ggml_compute_forward_add1_q_f32(
|
||||
ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
|
||||
|
||||
// we don't support permuted src0
|
||||
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
@ -10629,7 +10610,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
@ -10712,7 +10693,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (src1->type != vec_dot_type) {
|
||||
char * wdata = params->wdata;
|
||||
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
@ -10732,7 +10713,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
}
|
||||
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
const int64_t nr1 = ne11*ne12*ne13; // src1 rows
|
||||
@ -11205,7 +11186,7 @@ static void ggml_compute_forward_get_rows_q(
|
||||
|
||||
assert( dst->ne[0] == nc);
|
||||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
|
||||
assert(src0->nb[0] == ggml_type_size(type));
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
@ -16382,7 +16363,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
|
||||
size_t cur = 0;
|
||||
if (ggml_is_quantized(node->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
|
||||
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
@ -16395,7 +16376,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
size_t cur = 0;
|
||||
|
||||
if (ggml_is_quantized(node->src[0]->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
|
||||
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
@ -16407,7 +16388,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
size_t cur = 0;
|
||||
|
||||
if (ggml_is_quantized(node->src[0]->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
|
||||
cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
@ -16490,12 +16471,12 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
// the threads are still spinning
|
||||
if (node->src[0]->type != GGML_TYPE_F32) {
|
||||
// here we need memory just for single 2D matrix from src0
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
|
||||
cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
if (node->src[1]->type != vec_dot_type) {
|
||||
cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
|
||||
cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
|
||||
} else {
|
||||
cur = 0;
|
||||
}
|
||||
@ -18301,8 +18282,8 @@ enum ggml_opt_result ggml_opt_resume(
|
||||
struct ggml_tensor * f) {
|
||||
|
||||
// build forward + backward compute graphs
|
||||
struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
|
||||
struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
|
||||
struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
|
||||
struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
|
||||
|
||||
struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
|
||||
struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
|
||||
|
6
ggml.h
6
ggml.h
@ -1740,6 +1740,10 @@ extern "C" {
|
||||
typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
||||
|
||||
typedef struct {
|
||||
const char * type_name;
|
||||
int blck_size;
|
||||
size_t type_size;
|
||||
bool is_quantized;
|
||||
ggml_to_float_t to_float;
|
||||
ggml_from_float_t from_float;
|
||||
ggml_from_float_t from_float_reference;
|
||||
@ -1747,7 +1751,7 @@ extern "C" {
|
||||
enum ggml_type vec_dot_type;
|
||||
} ggml_type_traits_t;
|
||||
|
||||
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
|
||||
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user