mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-19 08:20:10 +01:00
gguf : refactor gptneox conversion script
This commit is contained in:
parent
22c61c5b45
commit
9f02694c91
@ -13,6 +13,8 @@ from pathlib import Path
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||||
|
|
||||||
|
|
||||||
def bytes_to_unicode():
|
def bytes_to_unicode():
|
||||||
"""
|
"""
|
||||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||||
@ -34,6 +36,7 @@ def bytes_to_unicode():
|
|||||||
cs = [chr(n) for n in cs]
|
cs = [chr(n) for n in cs]
|
||||||
return dict(zip(bs, cs))
|
return dict(zip(bs, cs))
|
||||||
|
|
||||||
|
|
||||||
def count_model_parts(dir_model: str) -> int:
|
def count_model_parts(dir_model: str) -> int:
|
||||||
num_parts = 0
|
num_parts = 0
|
||||||
for filename in os.listdir(dir_model):
|
for filename in os.listdir(dir_model):
|
||||||
@ -44,6 +47,7 @@ def count_model_parts(dir_model: str) -> int:
|
|||||||
print("gguf: found " + str(num_parts) + " model parts")
|
print("gguf: found " + str(num_parts) + " model parts")
|
||||||
return num_parts
|
return num_parts
|
||||||
|
|
||||||
|
|
||||||
if len(sys.argv) < 3:
|
if len(sys.argv) < 3:
|
||||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||||
print(" ftype == 0 -> float32")
|
print(" ftype == 0 -> float32")
|
||||||
@ -58,7 +62,7 @@ last_dir = os.path.basename(os.path.normpath(dir_model))
|
|||||||
# possible tensor data types
|
# possible tensor data types
|
||||||
# ftype == 0 -> float32
|
# ftype == 0 -> float32
|
||||||
# ftype == 1 -> float16
|
# ftype == 1 -> float16
|
||||||
#
|
|
||||||
# map from ftype to string
|
# map from ftype to string
|
||||||
ftype_str = ["f32", "f16"]
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
@ -67,6 +71,7 @@ if len(sys.argv) > 2:
|
|||||||
ftype = int(sys.argv[2])
|
ftype = int(sys.argv[2])
|
||||||
if ftype < 0 or ftype > 1:
|
if ftype < 0 or ftype > 1:
|
||||||
print("Invalid ftype: " + str(ftype))
|
print("Invalid ftype: " + str(ftype))
|
||||||
|
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||||
@ -77,30 +82,30 @@ with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
|
||||||
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
|
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
|
||||||
print("Model architecture not supported: " + hparams["architectures"][0] )
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||||
|
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
# get number of model parts
|
# get number of model parts
|
||||||
num_parts = count_model_parts(dir_model)
|
num_parts = count_model_parts(dir_model)
|
||||||
|
|
||||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
llm_arch = "gptneox"
|
||||||
|
gguf_writer = gguf.GGUFWriter(fname_out, arch=llm_arch)
|
||||||
|
|
||||||
print("gguf: get model metadata")
|
print("gguf: get model metadata")
|
||||||
|
|
||||||
llm_arch = "gptneox"
|
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
gguf_writer.add_architecture(llm_arch)
|
gguf_writer.add_architecture()
|
||||||
gguf_writer.add_name(last_dir)
|
gguf_writer.add_name(last_dir)
|
||||||
gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
|
gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
gguf_writer.add_block_count(block_count)
|
||||||
gguf_writer.add_block_count(llm_arch, block_count)
|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
|
||||||
gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
|
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||||
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
|
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||||
gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
|
||||||
gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
|
|
||||||
|
|
||||||
# TOKENIZATION
|
# TOKENIZATION
|
||||||
|
|
||||||
@ -124,14 +129,14 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
|||||||
|
|
||||||
print("gguf: get gpt2 tokenizer vocab")
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
vocab_size = len( tokenizer_json["model"]["vocab"] )
|
vocab_size = len(tokenizer_json["model"]["vocab"])
|
||||||
|
|
||||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
byte_encoder = bytes_to_unicode()
|
byte_encoder = bytes_to_unicode()
|
||||||
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||||
|
|
||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i in reverse_vocab:
|
if i in reverse_vocab:
|
||||||
@ -146,8 +151,9 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
|||||||
text.extend(c.encode('utf-8'))
|
text.extend(c.encode('utf-8'))
|
||||||
else:
|
else:
|
||||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
||||||
padding_token = f"[PAD{i}]".encode("utf8")
|
pad_token = f"[PAD{i}]".encode("utf8")
|
||||||
text = bytearray(padding_token)
|
text = bytearray(pad_token)
|
||||||
|
|
||||||
tokens.append(text)
|
tokens.append(text)
|
||||||
|
|
||||||
gguf_writer.add_token_list(tokens)
|
gguf_writer.add_token_list(tokens)
|
||||||
@ -201,7 +207,7 @@ else:
|
|||||||
)
|
)
|
||||||
|
|
||||||
for part_name in part_names:
|
for part_name in part_names:
|
||||||
print("gguf: loading model part '"+ part_name + "'")
|
print("gguf: loading model part '" + part_name + "'")
|
||||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||||
|
|
||||||
for name in model_part.keys():
|
for name in model_part.keys():
|
||||||
@ -223,11 +229,12 @@ for part_name in part_names:
|
|||||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||||
name = tensor_map[name[:-5]] + ".bias"
|
name = tensor_map[name[:-5]] + ".bias"
|
||||||
else:
|
else:
|
||||||
print( "Can not map tensor '" + name + "'" )
|
print("Can not map tensor '" + name + "'")
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
data_dtype = data.dtype
|
data_dtype = data.dtype
|
||||||
|
old_dtype = data_dtype
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
# if f32 desired, convert any float16 to float32
|
||||||
if ftype == 0 and data.dtype == np.float16:
|
if ftype == 0 and data.dtype == np.float16:
|
||||||
@ -241,77 +248,21 @@ for part_name in part_names:
|
|||||||
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
data_dtype = np.float16
|
data_dtype = np.float16
|
||||||
|
|
||||||
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
|
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data_dtype))
|
||||||
|
|
||||||
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
|
data = data.astype(data_dtype)
|
||||||
|
|
||||||
|
gguf_writer.add_tensor(name, data)
|
||||||
|
|
||||||
|
|
||||||
print("gguf: write header")
|
print("gguf: write header")
|
||||||
gguf_writer.write_header_to_file()
|
gguf_writer.write_header_to_file()
|
||||||
print("gguf: write metadata")
|
print("gguf: write metadata")
|
||||||
gguf_writer.write_kv_data_to_file()
|
gguf_writer.write_kv_data_to_file()
|
||||||
print("gguf: write tensor metadata")
|
print("gguf: write tensors")
|
||||||
gguf_writer.write_ti_data_to_file()
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
# tensor data
|
|
||||||
print("gguf: convert and write tensor data")
|
|
||||||
|
|
||||||
if num_parts == 0:
|
|
||||||
part_names = ("pytorch_model.bin",)
|
|
||||||
else:
|
|
||||||
part_names = (
|
|
||||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
|
||||||
)
|
|
||||||
|
|
||||||
for part_name in part_names:
|
|
||||||
print("gguf: loading model part '"+ part_name + "'")
|
|
||||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
|
||||||
|
|
||||||
for name in model_part.keys():
|
|
||||||
data = model_part[name]
|
|
||||||
|
|
||||||
old_dtype = data.dtype
|
|
||||||
|
|
||||||
# we don't need these
|
|
||||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
|
||||||
continue
|
|
||||||
|
|
||||||
# convert any unsupported data types to float32
|
|
||||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
|
||||||
data = data.to(torch.float32)
|
|
||||||
|
|
||||||
data = data.squeeze().numpy()
|
|
||||||
|
|
||||||
# map tensor names
|
|
||||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
|
||||||
name = tensor_map[name[:-7]] + ".weight"
|
|
||||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
|
||||||
name = tensor_map[name[:-5]] + ".bias"
|
|
||||||
else:
|
|
||||||
print( "Can not map tensor '" + name + "'" )
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
|
||||||
data_dtype = data.dtype
|
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
|
||||||
if ftype == 0 and data.dtype == np.float16:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
|
|
||||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
||||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
|
|
||||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
||||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
||||||
data = data.astype(np.float16)
|
|
||||||
|
|
||||||
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
|
||||||
|
|
||||||
gguf_writer.write_tensor_to_file(data)
|
|
||||||
|
|
||||||
gguf_writer.close()
|
gguf_writer.close()
|
||||||
|
|
||||||
|
print("gguf: model successfully exported to '" + fname_out + "'")
|
||||||
print("gguf: model successfully exported to '" + fname_out + "'" )
|
|
||||||
print("")
|
print("")
|
||||||
|
Loading…
Reference in New Issue
Block a user