gguf : refactor gptneox conversion script

This commit is contained in:
M. Yusuf Sarıgöz 2023-08-17 19:45:06 +03:00
parent 22c61c5b45
commit 9f02694c91

View File

@ -13,6 +13,8 @@ from pathlib import Path
from transformers import AutoTokenizer from transformers import AutoTokenizer
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode(): def bytes_to_unicode():
""" """
Returns list of utf-8 byte and a corresponding list of unicode strings. Returns list of utf-8 byte and a corresponding list of unicode strings.
@ -34,6 +36,7 @@ def bytes_to_unicode():
cs = [chr(n) for n in cs] cs = [chr(n) for n in cs]
return dict(zip(bs, cs)) return dict(zip(bs, cs))
def count_model_parts(dir_model: str) -> int: def count_model_parts(dir_model: str) -> int:
num_parts = 0 num_parts = 0
for filename in os.listdir(dir_model): for filename in os.listdir(dir_model):
@ -44,6 +47,7 @@ def count_model_parts(dir_model: str) -> int:
print("gguf: found " + str(num_parts) + " model parts") print("gguf: found " + str(num_parts) + " model parts")
return num_parts return num_parts
if len(sys.argv) < 3: if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n") print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32") print(" ftype == 0 -> float32")
@ -58,7 +62,7 @@ last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types # possible tensor data types
# ftype == 0 -> float32 # ftype == 0 -> float32
# ftype == 1 -> float16 # ftype == 1 -> float16
#
# map from ftype to string # map from ftype to string
ftype_str = ["f32", "f16"] ftype_str = ["f32", "f16"]
@ -67,6 +71,7 @@ if len(sys.argv) > 2:
ftype = int(sys.argv[2]) ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1: if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype)) print("Invalid ftype: " + str(ftype))
sys.exit(1) sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
@ -77,30 +82,30 @@ with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f) hparams = json.load(f)
if hparams["architectures"][0] != "GPTNeoXForCausalLM": if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] ) print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit() sys.exit()
# get number of model parts # get number of model parts
num_parts = count_model_parts(dir_model) num_parts = count_model_parts(dir_model)
gguf_writer = gguf.GGUFWriter.open(fname_out) llm_arch = "gptneox"
gguf_writer = gguf.GGUFWriter(fname_out, arch=llm_arch)
print("gguf: get model metadata") print("gguf: get model metadata")
llm_arch = "gptneox"
block_count = hparams["num_hidden_layers"] block_count = hparams["num_hidden_layers"]
gguf_writer.add_architecture(llm_arch) gguf_writer.add_architecture()
gguf_writer.add_name(last_dir) gguf_writer.add_name(last_dir)
gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32") gguf_writer.add_context_length(hparams["max_position_embeddings"])
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.add_block_count(block_count)
gguf_writer.add_block_count(llm_arch, block_count) gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) ) gguf_writer.add_head_count(hparams["num_attention_heads"])
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"]) gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
# TOKENIZATION # TOKENIZATION
@ -124,14 +129,14 @@ if Path(dir_model + "/tokenizer.json").is_file():
print("gguf: get gpt2 tokenizer vocab") print("gguf: get gpt2 tokenizer vocab")
vocab_size = len( tokenizer_json["model"]["vocab"] ) vocab_size = len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model) tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode() byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()} byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size): for i in range(vocab_size):
if i in reverse_vocab: if i in reverse_vocab:
@ -146,8 +151,9 @@ if Path(dir_model + "/tokenizer.json").is_file():
text.extend(c.encode('utf-8')) text.extend(c.encode('utf-8'))
else: else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
padding_token = f"[PAD{i}]".encode("utf8") pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(padding_token) text = bytearray(pad_token)
tokens.append(text) tokens.append(text)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
@ -201,7 +207,7 @@ else:
) )
for part_name in part_names: for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'") print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys(): for name in model_part.keys():
@ -223,11 +229,12 @@ for part_name in part_names:
elif name.endswith(".bias") and name[:-5] in tensor_map: elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias" name = tensor_map[name[:-5]] + ".bias"
else: else:
print( "Can not map tensor '" + name + "'" ) print("Can not map tensor '" + name + "'")
sys.exit() sys.exit()
n_dims = len(data.shape) n_dims = len(data.shape)
data_dtype = data.dtype data_dtype = data.dtype
old_dtype = data_dtype
# if f32 desired, convert any float16 to float32 # if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16: if ftype == 0 and data.dtype == np.float16:
@ -241,77 +248,21 @@ for part_name in part_names:
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data_dtype = np.float16 data_dtype = np.float16
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data_dtype))
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) data = data.astype(data_dtype)
gguf_writer.add_tensor(name, data)
print("gguf: write header") print("gguf: write header")
gguf_writer.write_header_to_file() gguf_writer.write_header_to_file()
print("gguf: write metadata") print("gguf: write metadata")
gguf_writer.write_kv_data_to_file() gguf_writer.write_kv_data_to_file()
print("gguf: write tensor metadata") print("gguf: write tensors")
gguf_writer.write_ti_data_to_file() gguf_writer.write_tensors_to_file()
# tensor data
print("gguf: convert and write tensor data")
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.write_tensor_to_file(data)
gguf_writer.close() gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("gguf: model successfully exported to '" + fname_out + "'" )
print("") print("")