examples : add example for batched decoding

This commit is contained in:
Georgi Gerganov 2023-09-28 17:32:04 +03:00
parent d008733e6b
commit a207561503
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
8 changed files with 315 additions and 125 deletions

1
.gitignore vendored
View File

@ -51,6 +51,7 @@ models-mnt
/save-load-state /save-load-state
/server /server
/simple /simple
/batched
/speculative /speculative
/parallel /parallel
/train-text-from-scratch /train-text-from-scratch

View File

@ -1,5 +1,5 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel tests/test-c.o BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel tests/test-c.o
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
@ -519,6 +519,9 @@ main: examples/main/main.cpp build-info.h ggml.
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS) simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
batched: examples/batched/batched.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS) quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)

View File

@ -23,6 +23,7 @@ else()
add_subdirectory(train-text-from-scratch) add_subdirectory(train-text-from-scratch)
add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(simple) add_subdirectory(simple)
add_subdirectory(batched)
add_subdirectory(speculative) add_subdirectory(speculative)
add_subdirectory(parallel) add_subdirectory(parallel)
add_subdirectory(embd-input) add_subdirectory(embd-input)

View File

@ -0,0 +1,5 @@
set(TARGET batched)
add_executable(${TARGET} batched.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -0,0 +1,44 @@
# llama.cpp/example/batched
The example demonstrates batched generation from a given prompt
```bash
./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4
...
main: n_len = 32, n_ctx = 2048, n_parallel = 4, n_kv_req = 113
Hello my name is
main: generating 4 sequences ...
main: stream 0 finished
main: stream 1 finished
main: stream 2 finished
main: stream 3 finished
sequence 0:
Hello my name is Shirley. I am a 25-year-old female who has been working for over 5 years as a b
sequence 1:
Hello my name is Renee and I'm a 32 year old female from the United States. I'm looking for a man between
sequence 2:
Hello my name is Diana. I am looking for a housekeeping job. I have experience with children and have my own transportation. I am
sequence 3:
Hello my name is Cody. I am a 3 year old neutered male. I am a very friendly cat. I am very playful and
main: decoded 108 tokens in 3.57 s, speed: 30.26 t/s
llama_print_timings: load time = 587.00 ms
llama_print_timings: sample time = 2.56 ms / 112 runs ( 0.02 ms per token, 43664.72 tokens per second)
llama_print_timings: prompt eval time = 4089.11 ms / 118 tokens ( 34.65 ms per token, 28.86 tokens per second)
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_print_timings: total time = 4156.04 ms
```

View File

@ -0,0 +1,243 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]);
return 1 ;
}
int n_parallel = 1;
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (argc >= 4) {
n_parallel = std::atoi(argv[3]);
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
// total length of the sequences including the prompt
const int n_len = 32;
// init LLM
llama_backend_init(params.numa);
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_parallel, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
return 1;
}
// print the prompt token-by-token
fprintf(stderr, "\n");
for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
// create a llama_batch with size 512
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(512, 0);
// evaluate the initial prompt
batch.n_tokens = tokens_list.size();
for (int32_t i = 0; i < batch.n_tokens; i++) {
batch.token[i] = tokens_list[i];
batch.pos[i] = i;
batch.seq_id[i] = 0;
batch.logits[i] = false;
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
if (llama_decode(ctx, batch, params.n_threads) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
// assign the system KV cache to all parallel sequences
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
for (int32_t i = 1; i < n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
}
if (n_parallel > 1) {
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
}
// main loop
// we will store the parallel decoded sequences in this vector
std::vector<std::string> streams(n_parallel);
// remember the batch index of the last token for each parallel sequence
// we need this to determine which logits to sample from
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
int n_cur = batch.n_tokens;
int n_decode = 0;
const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) {
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch, params.n_threads)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
// prepare the next batch
batch.n_tokens = 0;
// sample the next token for each parallel sequence / stream
for (int32_t i = 0; i < n_parallel; ++i) {
if (i_batch[i] < 0) {
// the stream has already finished
continue;
}
auto n_vocab = llama_n_vocab(ctx);
auto logits = llama_get_logits_ith(ctx, i_batch[i]);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
const int top_k = 40;
const float top_p = 0.9f;
const float temp = 0.4f;
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temp (ctx, &candidates_p, temp);
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished
if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
i_batch[i] = -1;
LOG_TEE("\n");
if (n_parallel > 1) {
LOG_TEE("%s: stream %d finished", __func__, i);
}
continue;
}
// if there is only one stream, we print immediately to stdout
if (n_parallel == 1) {
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
fflush(stdout);
}
streams[i] += llama_token_to_piece(ctx, new_token_id);
// push this new token for next evaluation
batch.token [batch.n_tokens] = new_token_id;
batch.pos [batch.n_tokens] = n_cur;
batch.seq_id[batch.n_tokens] = i;
batch.logits[batch.n_tokens] = true;
i_batch[i] = batch.n_tokens;
batch.n_tokens += 1;
n_decode += 1;
}
// all streams are finished
if (batch.n_tokens == 0) {
break;
}
n_cur += 1;
}
LOG_TEE("\n");
if (n_parallel > 1) {
LOG_TEE("\n");
for (int32_t i = 0; i < n_parallel; ++i) {
LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
}
}
const auto t_main_end = ggml_time_us();
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}

View File

@ -1,12 +1,9 @@
# llama.cpp/example/simple # llama.cpp/example/simple
The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt. The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt.
The example demonstrates single-batch as well as parallel generation.
## Single-batch generation
```bash ```bash
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 1 ./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is"
... ...
@ -22,46 +19,3 @@ llama_print_timings: prompt eval time = 655.63 ms / 10 tokens ( 65.56 ms
llama_print_timings: eval time = 2180.97 ms / 27 runs ( 80.78 ms per token, 12.38 tokens per second) llama_print_timings: eval time = 2180.97 ms / 27 runs ( 80.78 ms per token, 12.38 tokens per second)
llama_print_timings: total time = 2891.13 ms llama_print_timings: total time = 2891.13 ms
``` ```
## Parallel generation
```bash
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4
...
main: n_len = 32, n_ctx = 2048, n_parallel = 4, n_kv_req = 113
Hello my name is
main: generating 4 sequences ...
main: stream 0 finished
main: stream 1 finished
main: stream 2 finished
main: stream 3 finished
sequence 0:
Hello my name is Shirley. I am a 25-year-old female who has been working for over 5 years as a b
sequence 1:
Hello my name is Renee and I'm a 32 year old female from the United States. I'm looking for a man between
sequence 2:
Hello my name is Diana. I am looking for a housekeeping job. I have experience with children and have my own transportation. I am
sequence 3:
Hello my name is Cody. I am a 3 year old neutered male. I am a very friendly cat. I am very playful and
main: decoded 108 tokens in 3.57 s, speed: 30.26 t/s
llama_print_timings: load time = 587.00 ms
llama_print_timings: sample time = 2.56 ms / 112 runs ( 0.02 ms per token, 43664.72 tokens per second)
llama_print_timings: prompt eval time = 4089.11 ms / 118 tokens ( 34.65 ms per token, 28.86 tokens per second)
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_print_timings: total time = 4156.04 ms
```

View File

@ -10,12 +10,10 @@ int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (argc == 1 || argv[1][0] == '-') { if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]); printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
return 1 ; return 1 ;
} }
int n_parallel = 1;
if (argc >= 2) { if (argc >= 2) {
params.model = argv[1]; params.model = argv[1];
} }
@ -24,15 +22,11 @@ int main(int argc, char ** argv) {
params.prompt = argv[2]; params.prompt = argv[2];
} }
if (argc >= 4) {
n_parallel = std::atoi(argv[3]);
}
if (params.prompt.empty()) { if (params.prompt.empty()) {
params.prompt = "Hello my name is"; params.prompt = "Hello my name is";
} }
// total length of the sequences including the prompt // total length of the sequence including the prompt
const int n_len = 32; const int n_len = 32;
// init LLM // init LLM
@ -64,9 +58,9 @@ int main(int argc, char ** argv) {
tokens_list = ::llama_tokenize(ctx, params.prompt, true); tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel; const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_parallel, n_kv_req); LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens // make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) { if (n_kv_req > n_ctx) {
@ -108,25 +102,8 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
// assign the system KV cache to all parallel sequences
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
for (int32_t i = 1; i < n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
}
if (n_parallel > 1) {
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
}
// main loop // main loop
// we will store the parallel decoded sequences in this vector
std::vector<std::string> streams(n_parallel);
// remember the batch index of the last token for each parallel sequence
// we need this to determine which logits to sample from
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
int n_cur = batch.n_tokens; int n_cur = batch.n_tokens;
int n_decode = 0; int n_decode = 0;
@ -139,18 +116,10 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
// prepare the next batch // sample the next token
batch.n_tokens = 0; {
// sample the next token for each parallel sequence / stream
for (int32_t i = 0; i < n_parallel; ++i) {
if (i_batch[i] < 0) {
// the stream has already finished
continue;
}
auto n_vocab = llama_n_vocab(ctx); auto n_vocab = llama_n_vocab(ctx);
auto logits = llama_get_logits_ith(ctx, i_batch[i]); auto logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab); candidates.reserve(n_vocab);
@ -161,68 +130,38 @@ int main(int argc, char ** argv) {
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
const int top_k = 40; // sample the most likely token
const float top_p = 0.9f; const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
const float temp = 0.4f;
llama_sample_top_k(ctx, &candidates_p, top_k, 1); // is it an end of stream?
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temp (ctx, &candidates_p, temp);
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished
if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) { if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
i_batch[i] = -1;
LOG_TEE("\n"); LOG_TEE("\n");
if (n_parallel > 1) {
LOG_TEE("%s: stream %d finished", __func__, i); break;
} }
continue;
}
// if there is only one stream, we print immediately to stdout
if (n_parallel == 1) {
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
fflush(stdout); fflush(stdout);
}
streams[i] += llama_token_to_piece(ctx, new_token_id); // prepare the next batch
batch.n_tokens = 0;
// push this new token for next evaluation // push this new token for next evaluation
batch.token [batch.n_tokens] = new_token_id; batch.token [batch.n_tokens] = new_token_id;
batch.pos [batch.n_tokens] = n_cur; batch.pos [batch.n_tokens] = n_cur;
batch.seq_id[batch.n_tokens] = i; batch.seq_id[batch.n_tokens] = 0;
batch.logits[batch.n_tokens] = true; batch.logits[batch.n_tokens] = true;
i_batch[i] = batch.n_tokens;
batch.n_tokens += 1; batch.n_tokens += 1;
n_decode += 1; n_decode += 1;
} }
// all streams are finished
if (batch.n_tokens == 0) {
break;
}
n_cur += 1; n_cur += 1;
} }
LOG_TEE("\n"); LOG_TEE("\n");
if (n_parallel > 1) {
LOG_TEE("\n");
for (int32_t i = 0; i < n_parallel; ++i) {
LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
}
}
const auto t_main_end = ggml_time_us(); const auto t_main_end = ggml_time_us();
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",