mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
Overhaul the examples structure
- main -> examples - utils -> examples (renamed to "common") - quantize -> examples - separate tools for "perplexity" and "embedding" Hope I didn't break something !
This commit is contained in:
parent
ecbe466a36
commit
a316a425d0
1
.gitignore
vendored
1
.gitignore
vendored
@ -19,6 +19,7 @@ models/*
|
||||
/main
|
||||
/quantize
|
||||
/result
|
||||
/perplexity
|
||||
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
|
@ -211,17 +211,6 @@ endif()
|
||||
# Build libraries
|
||||
#
|
||||
|
||||
add_library(utils OBJECT
|
||||
utils.cpp
|
||||
utils.h)
|
||||
|
||||
target_include_directories(utils PUBLIC .)
|
||||
target_compile_features(utils PUBLIC cxx_std_11) # don't bump
|
||||
target_link_libraries(utils PRIVATE ${LLAMA_EXTRA_LIBS})
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(utils PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
add_library(ggml OBJECT
|
||||
ggml.c
|
||||
ggml.h)
|
||||
@ -239,22 +228,12 @@ add_library(llama
|
||||
|
||||
target_include_directories(llama PUBLIC .)
|
||||
target_compile_features(llama PUBLIC cxx_std_11) # don't bump
|
||||
target_link_libraries(llama PRIVATE utils ggml ${LLAMA_EXTRA_LIBS})
|
||||
target_link_libraries(llama PRIVATE ggml ${LLAMA_EXTRA_LIBS})
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||||
endif()
|
||||
|
||||
#
|
||||
# Executables
|
||||
#
|
||||
|
||||
add_executable(main main.cpp)
|
||||
target_link_libraries(main PRIVATE llama ggml utils)
|
||||
|
||||
add_executable(quantize quantize.cpp)
|
||||
target_link_libraries(quantize PRIVATE llama ggml utils)
|
||||
|
||||
#
|
||||
# programs, examples and tests
|
||||
#
|
||||
@ -264,6 +243,6 @@ if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
add_subdirectory(tests)
|
||||
endif ()
|
||||
|
||||
#if (LLAMA_BUILD_EXAMPLES)
|
||||
# add_subdirectory(examples)
|
||||
#endif()
|
||||
if (LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
endif()
|
||||
|
19
Makefile
19
Makefile
@ -212,7 +212,7 @@ $(info I CC: $(CCV))
|
||||
$(info I CXX: $(CXXV))
|
||||
$(info )
|
||||
|
||||
default: main quantize
|
||||
default: main quantize perplexity
|
||||
|
||||
#
|
||||
# Build library
|
||||
@ -224,20 +224,23 @@ ggml.o: ggml.c ggml.h
|
||||
llama.o: llama.cpp llama.h
|
||||
$(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o
|
||||
|
||||
utils.o: utils.cpp utils.h
|
||||
$(CXX) $(CXXFLAGS) -c utils.cpp -o utils.o
|
||||
common.o: examples/common.cpp examples/common.h
|
||||
$(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o
|
||||
|
||||
clean:
|
||||
rm -f *.o main quantize
|
||||
rm -vf *.o main quantize perplexity
|
||||
|
||||
main: main.cpp ggml.o llama.o utils.o
|
||||
$(CXX) $(CXXFLAGS) main.cpp ggml.o llama.o utils.o -o main $(LDFLAGS)
|
||||
main: examples/main/main.cpp ggml.o llama.o common.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS)
|
||||
@echo
|
||||
@echo '==== Run ./main -h for help. ===='
|
||||
@echo
|
||||
|
||||
quantize: quantize.cpp ggml.o llama.o utils.o
|
||||
$(CXX) $(CXXFLAGS) quantize.cpp ggml.o llama.o utils.o -o quantize $(LDFLAGS)
|
||||
quantize: examples/quantize/quantize.cpp ggml.o llama.o
|
||||
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp ggml.o llama.o -o quantize $(LDFLAGS)
|
||||
|
||||
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o
|
||||
$(CXX) $(CXXFLAGS) examples/perplexity/perplexity.cpp ggml.o llama.o common.o -o perplexity $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Tests
|
||||
|
36
examples/CMakeLists.txt
Normal file
36
examples/CMakeLists.txt
Normal file
@ -0,0 +1,36 @@
|
||||
# dependencies
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# third-party
|
||||
|
||||
# ...
|
||||
|
||||
# common
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
add_library(${TARGET} OBJECT
|
||||
common.h
|
||||
common.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features(${TARGET} PUBLIC cxx_std_11)
|
||||
target_link_libraries(${TARGET} PRIVATE llama)
|
||||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(embedding)
|
||||
endif()
|
@ -1,6 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "common.h"
|
||||
|
||||
#include "utils.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
4
examples/embedding/CMakeLists.txt
Normal file
4
examples/embedding/CMakeLists.txt
Normal file
@ -0,0 +1,4 @@
|
||||
set(TARGET embedding)
|
||||
add_executable(${TARGET} embedding.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
3
examples/embedding/README.md
Normal file
3
examples/embedding/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
# embedding
|
||||
|
||||
TODO
|
106
examples/embedding/embedding.cpp
Normal file
106
examples/embedding/embedding.cpp
Normal file
@ -0,0 +1,106 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.embedding = true;
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
|
||||
if (params.seed <= 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_context * ctx;
|
||||
|
||||
// load the model
|
||||
{
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_parts = params.n_parts;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.embedding = params.embedding;
|
||||
|
||||
ctx = llama_init_from_file(params.model.c_str(), lparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
}
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
// Add a space in front of the first character to match OG llama tokenizer behavior
|
||||
params.prompt.insert(0, 1, ' ');
|
||||
|
||||
// tokenize the prompt
|
||||
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
// determine newline token
|
||||
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
if (params.embedding){
|
||||
if (embd_inp.size() > 0) {
|
||||
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const auto embeddings = llama_get_embeddings(ctx);
|
||||
|
||||
// TODO: print / use the embeddings
|
||||
}
|
||||
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
4
examples/main/CMakeLists.txt
Normal file
4
examples/main/CMakeLists.txt
Normal file
@ -0,0 +1,4 @@
|
||||
set(TARGET main)
|
||||
add_executable(${TARGET} main.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
3
examples/main/README.md
Normal file
3
examples/main/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
# main
|
||||
|
||||
TODO
|
@ -1,5 +1,4 @@
|
||||
#include "utils.h"
|
||||
#include "ggml.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
@ -65,79 +64,6 @@ void set_console_state(console_state new_st)
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<double> softmax(const std::vector<float>& logits) {
|
||||
std::vector<double> probs(logits.size());
|
||||
float max_logit = logits[0];
|
||||
for (float v : logits) max_logit = std::max(max_logit, v);
|
||||
double sum_exp = 0.0;
|
||||
for (size_t i = 0; i < logits.size(); i++) {
|
||||
// Subtract the maximum logit value from the current logit value for numerical stability
|
||||
float logit = logits[i] - max_logit;
|
||||
double exp_logit = std::exp(logit);
|
||||
sum_exp += exp_logit;
|
||||
probs[i] = exp_logit;
|
||||
}
|
||||
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
|
||||
return probs;
|
||||
}
|
||||
|
||||
void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
int seq_count = tokens.size() / params.n_ctx;
|
||||
|
||||
fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
|
||||
|
||||
for (int i = 0; i < seq_count; ++i) {
|
||||
int start = i * params.n_ctx;
|
||||
int end = start + params.n_ctx - 1;
|
||||
std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
|
||||
auto start_t = std::chrono::high_resolution_clock::now();
|
||||
if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
}
|
||||
auto end_t = std::chrono::high_resolution_clock::now();
|
||||
if (i == 0) {
|
||||
double seconds = std::chrono::duration<double>(end_t - start_t).count();
|
||||
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
|
||||
}
|
||||
// We get the logits for all the tokens in the context window (params.n_ctx)
|
||||
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
||||
// calculate the perplexity over the last half the window (so the model always has
|
||||
// some context to predict the token).
|
||||
//
|
||||
// We rely on the fact that attention in the forward pass only looks at previous
|
||||
// tokens here, so the logits returned for each token are an accurate representation
|
||||
// of what the model would have predicted at that point.
|
||||
//
|
||||
// Example, we have a context window of 512, we will compute perplexity for each of the
|
||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||
// process the entire prompt.
|
||||
|
||||
auto logits = llama_get_logits(ctx);
|
||||
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
|
||||
// Calculate probability of next token, given the previous ones.
|
||||
int n_vocab = llama_n_vocab(ctx);
|
||||
std::vector<float> tok_logits(
|
||||
logits + j * n_vocab,
|
||||
logits + (j + 1) * n_vocab);
|
||||
double prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||
nll += -std::log(prob);
|
||||
++count;
|
||||
}
|
||||
// perplexity is e^(average negative log-likelihood)
|
||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
fflush(stdout);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static bool is_interacting = false;
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
@ -155,9 +81,6 @@ void sigint_handler(int signo) {
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
// has to be called once at the start of the program to init ggml stuff
|
||||
ggml_time_init();
|
||||
|
||||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
|
||||
@ -165,6 +88,14 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.perplexity) {
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
printf("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
@ -198,9 +129,7 @@ int main(int argc, char ** argv) {
|
||||
lparams.n_parts = params.n_parts;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.embedding = params.embedding;
|
||||
|
||||
ctx = llama_init_from_file(params.model.c_str(), lparams);
|
||||
|
||||
@ -236,11 +165,6 @@ int main(int argc, char ** argv) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.perplexity) {
|
||||
perplexity(ctx, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
// Add a space in front of the first character to match OG llama tokenizer behavior
|
||||
@ -346,27 +270,6 @@ int main(int argc, char ** argv) {
|
||||
// the first thing we will do is to output the prompt, so set color accordingly
|
||||
set_console_state(CONSOLE_STATE_PROMPT);
|
||||
|
||||
if (params.embedding){
|
||||
embd = embd_inp;
|
||||
|
||||
if (embd.size() > 0) {
|
||||
if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const auto embeddings = llama_get_embeddings(ctx);
|
||||
|
||||
// TODO: print / use the embeddings
|
||||
|
||||
if (params.use_color) {
|
||||
printf(ANSI_COLOR_RESET);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
while (remaining_tokens > 0 || params.interactive) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
@ -392,10 +295,6 @@ int main(int argc, char ** argv) {
|
||||
auto logits = llama_get_logits(ctx);
|
||||
|
||||
if (params.ignore_eos) {
|
||||
// set the logit of the eos token to zero to avoid sampling it
|
||||
//logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
|
||||
// TODO: this does not work of params.logits_all == true
|
||||
assert(params.perplexity == false);
|
||||
logits[llama_token_eos()] = 0;
|
||||
}
|
||||
|
4
examples/perplexity/CMakeLists.txt
Normal file
4
examples/perplexity/CMakeLists.txt
Normal file
@ -0,0 +1,4 @@
|
||||
set(TARGET perplexity)
|
||||
add_executable(${TARGET} perplexity.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
3
examples/perplexity/README.md
Normal file
3
examples/perplexity/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
# perplexity
|
||||
|
||||
TODO
|
146
examples/perplexity/perplexity.cpp
Normal file
146
examples/perplexity/perplexity.cpp
Normal file
@ -0,0 +1,146 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
std::vector<double> softmax(const std::vector<float>& logits) {
|
||||
std::vector<double> probs(logits.size());
|
||||
float max_logit = logits[0];
|
||||
for (float v : logits) max_logit = std::max(max_logit, v);
|
||||
double sum_exp = 0.0;
|
||||
for (size_t i = 0; i < logits.size(); i++) {
|
||||
// Subtract the maximum logit value from the current logit value for numerical stability
|
||||
float logit = logits[i] - max_logit;
|
||||
double exp_logit = std::exp(logit);
|
||||
sum_exp += exp_logit;
|
||||
probs[i] = exp_logit;
|
||||
}
|
||||
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
|
||||
return probs;
|
||||
}
|
||||
|
||||
void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
int seq_count = tokens.size() / params.n_ctx;
|
||||
|
||||
fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
|
||||
|
||||
for (int i = 0; i < seq_count; ++i) {
|
||||
int start = i * params.n_ctx;
|
||||
int end = start + params.n_ctx - 1;
|
||||
std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
|
||||
auto start_t = std::chrono::high_resolution_clock::now();
|
||||
if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
}
|
||||
auto end_t = std::chrono::high_resolution_clock::now();
|
||||
if (i == 0) {
|
||||
double seconds = std::chrono::duration<double>(end_t - start_t).count();
|
||||
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
|
||||
}
|
||||
// We get the logits for all the tokens in the context window (params.n_ctx)
|
||||
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
||||
// calculate the perplexity over the last half the window (so the model always has
|
||||
// some context to predict the token).
|
||||
//
|
||||
// We rely on the fact that attention in the forward pass only looks at previous
|
||||
// tokens here, so the logits returned for each token are an accurate representation
|
||||
// of what the model would have predicted at that point.
|
||||
//
|
||||
// Example, we have a context window of 512, we will compute perplexity for each of the
|
||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||
// process the entire prompt.
|
||||
|
||||
auto logits = llama_get_logits(ctx);
|
||||
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
|
||||
// Calculate probability of next token, given the previous ones.
|
||||
int n_vocab = llama_n_vocab(ctx);
|
||||
std::vector<float> tok_logits(
|
||||
logits + j * n_vocab,
|
||||
logits + (j + 1) * n_vocab);
|
||||
double prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||
nll += -std::log(prob);
|
||||
++count;
|
||||
}
|
||||
// perplexity is e^(average negative log-likelihood)
|
||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
fflush(stdout);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.perplexity = true;
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
|
||||
if (params.seed <= 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_context * ctx;
|
||||
|
||||
// load the model
|
||||
{
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_parts = params.n_parts;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.embedding = params.embedding;
|
||||
|
||||
ctx = llama_init_from_file(params.model.c_str(), lparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
}
|
||||
|
||||
perplexity(ctx, params);
|
||||
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
4
examples/quantize/CMakeLists.txt
Normal file
4
examples/quantize/CMakeLists.txt
Normal file
@ -0,0 +1,4 @@
|
||||
set(TARGET quantize)
|
||||
add_executable(${TARGET} quantize.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
3
examples/quantize/README.md
Normal file
3
examples/quantize/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
# quantize
|
||||
|
||||
TODO
|
26
ggml.c
26
ggml.c
@ -5741,8 +5741,8 @@ static bool ggml_compute_forward_mul_mat_use_blas(
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
//const int ne00 = src0->ne[0];
|
||||
//const int ne01 = src0->ne[1];
|
||||
|
||||
const int ne10 = src1->ne[0];
|
||||
|
||||
@ -5776,16 +5776,16 @@ static void ggml_compute_forward_mul_mat_f32(
|
||||
|
||||
const int ne10 = src1->ne[0];
|
||||
const int ne11 = src1->ne[1];
|
||||
const int ne12 = src1->ne[2];
|
||||
const int ne13 = src1->ne[3];
|
||||
//const int ne12 = src1->ne[2];
|
||||
//const int ne13 = src1->ne[3];
|
||||
|
||||
const int ne0 = dst->ne[0];
|
||||
const int ne1 = dst->ne[1];
|
||||
const int ne2 = dst->ne[2];
|
||||
const int ne3 = dst->ne[3];
|
||||
const int ne = ne0*ne1*ne2*ne3;
|
||||
//const int ne0 = dst->ne[0];
|
||||
//const int ne1 = dst->ne[1];
|
||||
//const int ne2 = dst->ne[2];
|
||||
//const int ne3 = dst->ne[3];
|
||||
//const int ne = ne0*ne1*ne2*ne3;
|
||||
|
||||
const int nb00 = src0->nb[0];
|
||||
//const int nb00 = src0->nb[0];
|
||||
const int nb01 = src0->nb[1];
|
||||
const int nb02 = src0->nb[2];
|
||||
const int nb03 = src0->nb[3];
|
||||
@ -5947,7 +5947,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
||||
const int ne1 = dst->ne[1];
|
||||
const int ne2 = dst->ne[2];
|
||||
const int ne3 = dst->ne[3];
|
||||
const int ne = ne0*ne1*ne2*ne3;
|
||||
//const int ne = ne0*ne1*ne2*ne3;
|
||||
|
||||
const int nb00 = src0->nb[0];
|
||||
const int nb01 = src0->nb[1];
|
||||
@ -6137,7 +6137,7 @@ static void ggml_compute_forward_mul_mat_q4_0_f32(
|
||||
const int ne1 = dst->ne[1];
|
||||
const int ne2 = dst->ne[2];
|
||||
const int ne3 = dst->ne[3];
|
||||
const int ne = ne0*ne1*ne2*ne3;
|
||||
//const int ne = ne0*ne1*ne2*ne3;
|
||||
|
||||
const int nb00 = src0->nb[0];
|
||||
const int nb01 = src0->nb[1];
|
||||
@ -6322,7 +6322,7 @@ static void ggml_compute_forward_mul_mat_q4_1_f32(
|
||||
const int ne1 = dst->ne[1];
|
||||
const int ne2 = dst->ne[2];
|
||||
const int ne3 = dst->ne[3];
|
||||
const int ne = ne0*ne1*ne2*ne3;
|
||||
//const int ne = ne0*ne1*ne2*ne3;
|
||||
|
||||
const int nb00 = src0->nb[0];
|
||||
const int nb01 = src0->nb[1];
|
||||
|
@ -1,7 +1,7 @@
|
||||
function(llama_add_test source)
|
||||
get_filename_component(TEST_TARGET ${source} NAME_WE)
|
||||
add_executable(${TEST_TARGET} ${source})
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE llama ggml utils)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE llama)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
|
||||
endfunction()
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
#include "utils.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
static const std::map<std::string, std::vector<llama_token>> k_tests = {
|
||||
{ "Hello World", { 1, 10994, 2787, }, },
|
||||
@ -48,7 +48,9 @@ int main(int argc, char **argv) {
|
||||
}
|
||||
|
||||
for (const auto & test_kv : k_tests) {
|
||||
const auto res = ::llama_tokenize(ctx, test_kv.first, true);
|
||||
std::vector<llama_token> res(test_kv.first.size());
|
||||
const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), res.size(), true);
|
||||
res.resize(n);
|
||||
|
||||
bool correct = res.size() == test_kv.second.size();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user