diff --git a/ggml/src/ggml-vulkan.cpp b/ggml/src/ggml-vulkan.cpp index fa68360b9..d7fea78d0 100644 --- a/ggml/src/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan.cpp @@ -177,24 +177,33 @@ struct vk_device_struct { vk_pipeline pipeline_mul_mat_vec_nc_f16_f32; vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT]; vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT]; + vk_pipeline pipeline_add_f32, pipeline_add_f16_f32_f16; vk_pipeline pipeline_mul_f32; vk_pipeline pipeline_div_f32; - vk_pipeline pipeline_add_f32; + vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32; + vk_pipeline pipeline_upscale_f32; vk_pipeline pipeline_scale_f32; vk_pipeline pipeline_sqr_f32; vk_pipeline pipeline_clamp_f32; + vk_pipeline pipeline_pad_f32; vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16; vk_pipeline pipeline_norm_f32; + vk_pipeline pipeline_group_norm_f32; vk_pipeline pipeline_rms_norm_f32; vk_pipeline pipeline_gelu_f32; + vk_pipeline pipeline_gelu_quick_f32; vk_pipeline pipeline_silu_f32; vk_pipeline pipeline_relu_f32; + vk_pipeline pipeline_leaky_relu_f32; + vk_pipeline pipeline_tanh_f32; vk_pipeline pipeline_diag_mask_inf_f32; vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16; vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16; vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16; vk_pipeline pipeline_argsort_f32; vk_pipeline pipeline_sum_rows_f32; + vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16; + vk_pipeline pipeline_timestep_embedding_f32; std::vector pipelines; @@ -320,7 +329,7 @@ struct vk_op_binary_push_constants { uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13; uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23; uint32_t d_offset; - float param1; float param2; + float param1; float param2; int32_t param3; }; struct vk_op_diag_mask_push_constants { @@ -358,6 +367,25 @@ struct vk_op_argsort_push_constants { int32_t order; }; +struct vk_op_im2col_push_constants { + uint32_t batch_offset; uint32_t offset_delta; + uint32_t IC; + uint32_t IW; uint32_t IH; + uint32_t OW; uint32_t OH; + uint32_t KW; uint32_t KH; + uint32_t pelements; + uint32_t CHW; + int32_t s0; int32_t s1; + int32_t p0; int32_t p1; + int32_t d0; int32_t d1; +}; + +struct vk_op_timestep_embedding_push_constants { + uint32_t nb1; + uint32_t dim; + uint32_t max_period; +}; + // Allow pre-recording command buffers struct vk_staging_memcpy { vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {} @@ -367,28 +395,32 @@ struct vk_staging_memcpy { size_t n; }; -struct vk_context { - size_t idx; +struct vk_op_upscale_push_constants { + uint32_t ne; uint32_t d_offset; + uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; + uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; + float sf0; float sf1; float sf2; float sf3; +}; +struct vk_context_struct { vk_submission * s; std::vector seqs; - ggml_tensor * exit_tensor; + int exit_tensor_idx; std::vector in_memcpys; std::vector out_memcpys; vk_queue * q; }; +typedef std::shared_ptr vk_context; +typedef std::weak_ptr vk_context_ref; struct ggml_tensor_extra_gpu { - size_t ctx_idx; - vk_buffer_ref buffer_gpu; uint64_t offset; void reset() { - ctx_idx = 0; buffer_gpu.reset(); offset = 0; } @@ -459,8 +491,10 @@ struct ggml_backend_vk_context { vk_buffer buffer_pool[MAX_VK_BUFFERS]; - vk_context * compute_ctx; - vk_context * transfer_ctx; + vk_context_ref compute_ctx; + vk_context_ref transfer_ctx; + + std::vector tensor_ctxs; }; #ifdef GGML_VULKAN_MEMORY_DEBUG @@ -510,12 +544,12 @@ static vk_instance_t vk_instance; static size_t vk_skip_checks; static size_t vk_output_tensor; -static void ggml_vk_print_tensor(ggml_backend * ctx, const ggml_tensor * tensor, const char * name); -static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor); -static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * tensor); +static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name); +static void ggml_vk_check_results_0(ggml_tensor * tensor); +static void ggml_vk_check_results_1(ggml_tensor * tensor); #endif -typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend); @@ -708,11 +742,11 @@ static vk_submission ggml_vk_create_submission(vk_device& device, vk_queue& q, s return s; } -static void ggml_vk_submit(vk_context * ctx, vk::Fence fence) { - VK_LOG_DEBUG("ggml_vk_submit(" << ctx->seqs.size() << ", " << fence << ")"); +static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) { if (ctx->seqs.empty()) { return; } + VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")"); std::vector> tl_wait_vals; std::vector> tl_signal_vals; @@ -844,21 +878,17 @@ static void ggml_vk_create_queue(vk_device& device, vk_queue& q, uint32_t queue_ q.stage_flags = stage_flags; } -static vk_context * ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) { - VK_LOG_DEBUG("ggml_vk_create_context()"); - ctx->gc.contexts.emplace_back(); - vk_context * result = &ctx->gc.contexts[ctx->gc.contexts.size() - 1]; - memset((void *) result, 0, sizeof(vk_context)); - result->idx = ctx->gc.contexts.size() - 1; +static vk_context ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) { + vk_context result = std::make_shared(); + VK_LOG_DEBUG("ggml_vk_create_context(" << result << ")"); + ctx->gc.contexts.emplace_back(result); result->q = &q; return result; } -static vk_context * ggml_vk_create_temporary_context(vk_queue& q) { - VK_LOG_DEBUG("ggml_vk_create_temporary_context()"); - vk_context * result = new vk_context; - memset((void *) result, 0, sizeof(vk_context)); - result->idx = 0; +static vk_context ggml_vk_create_temporary_context(vk_queue& q) { + vk_context result = std::make_shared(); + VK_LOG_DEBUG("ggml_vk_create_temporary_context(" << result << ")"); result->q = &q; return result; } @@ -915,6 +945,10 @@ static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_pr static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")"); + if (size > device->max_memory_allocation_size) { + throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit"); + } + std::lock_guard guard(device->mutex); vk_buffer buf = std::make_shared(); @@ -1027,7 +1061,7 @@ static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) { return { buf, 0, VK_WHOLE_SIZE }; } -static void ggml_vk_sync_buffers(vk_context * ctx) { +static void ggml_vk_sync_buffers(vk_context& ctx) { VK_LOG_DEBUG("ggml_vk_sync_buffers()"); const std::vector mem_barriers{ { { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite }, { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite } } }; @@ -1041,7 +1075,7 @@ static void ggml_vk_sync_buffers(vk_context * ctx) { ); } -static void ggml_vk_wait_events(vk_context * ctx, std::vector&& events) { +static void ggml_vk_wait_events(vk_context& ctx, std::vector&& events) { VK_LOG_DEBUG("ggml_vk_wait_events()"); if (events.empty()) { return; @@ -1598,6 +1632,7 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); @@ -1605,20 +1640,31 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); - ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + + ggml_vk_create_pipeline(device, device->pipeline_upscale_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_sqr_f32, "sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1); @@ -1634,6 +1680,11 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); + + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + + ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1); } static vk_device ggml_vk_get_device(size_t idx) { @@ -2077,9 +2128,6 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) { ctx->staging_size = 0; ctx->staging_offset = 0; - ctx->compute_ctx = nullptr; - ctx->transfer_ctx = nullptr; - #ifdef GGML_VULKAN_CHECK_RESULTS const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS"); vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks)); @@ -2112,7 +2160,7 @@ static vk_pipeline ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type } static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type) { - VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_pipeline()"); + VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_pipeline(" << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")"); if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { return ctx->device->pipeline_matmul_f32; } @@ -2126,7 +2174,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte return ctx->device->pipeline_matmul_f16; } - GGML_ASSERT(src1_type == GGML_TYPE_F32); + if (src1_type != GGML_TYPE_F32) { + return nullptr; + } switch (src0_type) { case GGML_TYPE_Q4_0: @@ -2370,7 +2420,7 @@ static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bo return s; } -static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, std::vector&& buffers, size_t push_constant_size, const void* push_constants, std::array elements) { +static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, std::vector&& buffers, size_t push_constant_size, const void* push_constants, std::array elements) { const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]); const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]); const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]); @@ -2410,7 +2460,7 @@ static void ggml_vk_end_submission(vk_submission& s, std::vector w s.signal_semaphores = std::move(signal_semaphores); } -static void ggml_vk_ctx_end(vk_context * ctx) { +static void ggml_vk_ctx_end(vk_context& ctx) { VK_LOG_DEBUG("ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")"); if (ctx->s == nullptr) { return; @@ -2420,7 +2470,7 @@ static void ggml_vk_ctx_end(vk_context * ctx) { ctx->s = nullptr; } -static void ggml_vk_ctx_begin(vk_device& device, vk_context * subctx) { +static void ggml_vk_ctx_begin(vk_device& device, vk_context& subctx) { VK_LOG_DEBUG("ggml_vk_ctx_begin(" << device->name << ")"); if (subctx->s != nullptr) { ggml_vk_ctx_end(subctx); @@ -2453,7 +2503,7 @@ static void ggml_vk_ensure_sync_staging_buffer(vk_device& device, size_t size) { } } -static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) { +static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context& subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_nc_async(" << tensor << ")"); GGML_ASSERT(!ggml_is_contiguous(tensor)); // Buffer is already mapped @@ -2558,7 +2608,7 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont } } -static void ggml_vk_buffer_write_2d_async(vk_context * subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")"); // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { @@ -2623,7 +2673,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context * subctx, vk_buffer& dst, s } } -static void ggml_vk_buffer_write_async(vk_context * subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_write_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_async(" << size << ")"); return ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, size, size, 1, staging_buffer, staging_offset, sync_staging); } @@ -2638,7 +2688,7 @@ static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width); } } else { - vk_context * subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); + vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); ggml_vk_ctx_begin(dst->device, subctx); ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, spitch, width, height, nullptr, 0, true); ggml_vk_ctx_end(subctx); @@ -2650,8 +2700,6 @@ static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * ggml_vk_submit(subctx, dst->device->fence); VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences"); dst->device->device.resetFences({ dst->device->fence }); - - delete subctx; } } @@ -2660,12 +2708,14 @@ static void ggml_vk_buffer_write(vk_buffer& dst, size_t offset, const void * src ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1); } -static void ggml_vk_buffer_read_2d_async(vk_context * subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")"); GGML_ASSERT(width > 0); GGML_ASSERT(height > 0); GGML_ASSERT(src != nullptr); + // TODO: staging_offset is not used + // Check if dst is pinned memory vk_buffer buf = nullptr; size_t buf_offset; @@ -2714,18 +2764,18 @@ static void ggml_vk_buffer_read_2d_async(vk_context * subctx, vk_buffer& src, si deferred_memcpy(dst, staging_buffer->ptr, copy_size, &subctx->out_memcpys); } -static void ggml_vk_buffer_read_async(vk_context * subctx, vk_buffer& src, size_t offset, void * dst, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, staging_buffer, staging_offset, sync_staging); } static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_t size) { - VK_LOG_DEBUG("ggml_vk_buffer_read(" << offset << ", " << size << ")"); + VK_LOG_DEBUG("ggml_vk_buffer_read(" << src->buffer << ", " << offset << ", " << size << ")"); if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent); memcpy(dst, (uint8_t *) src->ptr + offset, size); } else { - vk_context * subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); + vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); ggml_vk_ctx_begin(src->device, subctx); ggml_vk_buffer_read_async(subctx, src, offset, dst, size, nullptr, 0, true); ggml_vk_ctx_end(subctx); @@ -2737,12 +2787,10 @@ static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_ for (auto& cpy : subctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - - delete subctx; } } -static void ggml_vk_buffer_copy_async(vk_context * ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { +static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { VK_LOG_DEBUG("ggml_vk_buffer_copy_async(" << size << ")"); // Make sure both buffers are on same device GGML_ASSERT(src->device == dst->device); @@ -2756,15 +2804,13 @@ static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& sr if (src->device == dst->device) { VK_LOG_DEBUG("ggml_vk_buffer_copy(SINGLE_DEVICE, " << size << ")"); // Copy within the device - vk_context * subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); + vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); ggml_vk_ctx_begin(src->device, subctx); ggml_vk_buffer_copy_async(subctx, dst, dst_offset, src, src_offset, size); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, src->device->fence); VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences"); src->device->device.resetFences({ src->device->fence }); - - delete subctx; } else { VK_LOG_DEBUG("ggml_vk_buffer_copy(MULTI_DEVICE, " << size << ")"); // Copy device to device @@ -2783,7 +2829,7 @@ static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& sr static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, size_t size) { VK_LOG_DEBUG("ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")"); - vk_context * subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); + vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); ggml_vk_ctx_begin(dst->device, subctx); subctx->s->buffer.fillBuffer(dst->buffer, offset, size, c); ggml_vk_ctx_end(subctx); @@ -2791,8 +2837,6 @@ static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, siz ggml_vk_submit(subctx, dst->device->fence); VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_memset waitForFences"); dst->device->device.resetFences({ dst->device->fence }); - - delete subctx; } static uint32_t ggml_vk_guess_split_k(int m, int n, int k) { @@ -2855,7 +2899,7 @@ static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ct } static void ggml_vk_matmul( - ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, + ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d, @@ -2879,7 +2923,7 @@ static void ggml_vk_matmul( } static void ggml_vk_matmul_id( - ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, + ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& ids, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d, @@ -2916,7 +2960,7 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, ggml_ GGML_ABORT("fatal error"); } -static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) { +static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) { VK_LOG_DEBUG("ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), "; std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")"); const int tensor_type_size = ggml_type_size(tensor->type); @@ -2934,7 +2978,7 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, { ne, 1, 1 }); } -static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); @@ -3107,7 +3151,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su ); // NOLINT } -static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); @@ -3272,7 +3316,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z }); } -static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_p021_f16_f32(" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); @@ -3343,7 +3387,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } -static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); @@ -3418,7 +3462,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } -static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")"); if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1) { ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst); @@ -3431,7 +3475,7 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, } } -static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { +static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3]; @@ -3618,7 +3662,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context * ); // NOLINT } -static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3]; @@ -3794,7 +3838,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z }); } -static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { +static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_id(" << src0 << ", " << src1 << ", " << src2 << ", " << dst << ")"); if (src2->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) { ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, src0, src1, src2, dst); @@ -3803,8 +3847,8 @@ static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context * subct } } -static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - // guaranteed to be an integer due to the check in ggml_can_repeat +static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + VK_LOG_DEBUG("ggml_vk_op_repeat(" << src0 << ", " << src1 << ", " << dst << ")"); const uint64_t ne0 = dst->ne[0]; const uint64_t ne1 = dst->ne[1]; const uint64_t ne2 = dst->ne[2]; @@ -3825,6 +3869,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx const uint64_t nb02 = src0->nb[2]; const uint64_t nb03 = src0->nb[3]; + // guaranteed to be an integer due to the check in ggml_can_repeat const uint64_t nr0 = ne0/ne00; const uint64_t nr1 = ne1/ne01; const uint64_t nr2 = ne2/ne02; @@ -3852,8 +3897,8 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx for (uint64_t k1 = 0; k1 < ne01; k1++) { for (uint64_t i0 = 0; i0 < nr0; i0++) { copies.push_back({ - src_offset + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0, - dst_offset + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01, + src_offset + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01, + dst_offset + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0, ne00*nb0, }); } @@ -3874,11 +3919,6 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) { switch (op) { - case GGML_OP_ADD: - if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { - return ctx->device->pipeline_add_f32; - } - return nullptr; case GGML_OP_GET_ROWS: GGML_ASSERT(src1->type == GGML_TYPE_I32); if (dst->type == GGML_TYPE_F16) { @@ -3888,6 +3928,14 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_get_rows_f32[src0->type]; } return nullptr; + case GGML_OP_ADD: + if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_add_f32; + } + if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) { + return ctx->device->pipeline_add_f16_f32_f16; + } + return nullptr; case GGML_OP_MUL: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_mul_f32; @@ -3898,6 +3946,22 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_div_f32; } return nullptr; + case GGML_OP_CONCAT: + if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_concat_f32; + } + if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { + return ctx->device->pipeline_concat_f16; + } + if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) { + return ctx->device->pipeline_concat_i32; + } + return nullptr; + case GGML_OP_UPSCALE: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_upscale_f32; + } + return nullptr; case GGML_OP_SCALE: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_scale_f32; @@ -3913,6 +3977,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_clamp_f32; } return nullptr; + case GGML_OP_PAD: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_pad_f32; + } + return nullptr; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: @@ -3922,6 +3991,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_norm_f32; } return nullptr; + case GGML_OP_GROUP_NORM: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_group_norm_f32; + } + return nullptr; case GGML_OP_RMS_NORM: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_rms_norm_f32; @@ -3939,11 +4013,21 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_gelu_f32; } break; + case GGML_UNARY_OP_GELU_QUICK: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_gelu_quick_f32; + } + break; case GGML_UNARY_OP_RELU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_relu_f32; } break; + case GGML_UNARY_OP_TANH: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_tanh_f32; + } + break; default: break; } @@ -3995,6 +4079,24 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_sum_rows_f32; } return nullptr; + case GGML_OP_IM2COL: + if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_im2col_f32; + } + if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) { + return ctx->device->pipeline_im2col_f32_f16; + } + return nullptr; + case GGML_OP_TIMESTEP_EMBEDDING: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_timestep_embedding_f32; + } + return nullptr; + case GGML_OP_LEAKY_RELU: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_leaky_relu_f32; + } + return nullptr; default: return nullptr; } @@ -4018,9 +4120,12 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: return true; default: return false; @@ -4028,7 +4133,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { } template -static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) { +static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) { VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; if (src1 != nullptr) { std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; @@ -4124,7 +4229,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c vk_buffer d_D = extra->buffer_gpu.lock(); // Workaround for tiny tensor inputs on ROPE - if (use_src1 && y_sz > d_D->size) { + if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) { y_sz = VK_WHOLE_SIZE; } @@ -4173,13 +4278,26 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c if (op_supports_incontiguous || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))) { ggml_pipeline_allocate_descriptor_sets(ctx->device, pipeline, 1); - switch (dst->op) { + switch (op) { case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: case GGML_OP_SUM_ROWS: - elements = { (uint32_t)ggml_nrows(src0), 1, 1 }; - break; + { + const uint32_t nr = ggml_nrows(src0); + if (nr > 262144) { + elements = { 512, 512, CEIL_DIV(nr, 262144) }; + } else if (nr > 512) { + elements = { 512, CEIL_DIV(nr, 512), 1 }; + } else { + elements = { nr, 1, 1 }; + } + } break; + case GGML_OP_GROUP_NORM: + { + const uint32_t num_groups = dst->op_params[0]; + elements = { num_groups * (uint32_t)src0->ne[3], 1, 1 }; + } break; case GGML_OP_DIAG_MASK_INF: case GGML_OP_ROPE: elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 }; @@ -4190,6 +4308,49 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c case GGML_OP_ARGSORT: elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; break; + case GGML_OP_IM2COL: + { + const bool is_2D = dst->op_params[6] == 1; + + const uint32_t IC = src1->ne[is_2D ? 2 : 1]; + + const uint32_t KH = is_2D ? src0->ne[1] : 1; + const uint32_t KW = src0->ne[0]; + + const uint32_t OH = is_2D ? dst->ne[2] : 1; + const uint32_t OW = dst->ne[1]; + + const uint32_t batch = src1->ne[3]; + + elements = { OW * KW * KH, OH, batch * IC }; + } break; + case GGML_OP_TIMESTEP_EMBEDDING: + { + const uint32_t dim = dst->op_params[0]; + uint32_t half_ceil = (dim + 1) / 2; + elements = { half_ceil, (uint32_t)src0->ne[0], 1 }; + } break; + case GGML_OP_ADD: + case GGML_OP_DIV: + case GGML_OP_MUL: + case GGML_OP_SCALE: + case GGML_OP_SQR: + case GGML_OP_CLAMP: + case GGML_OP_PAD: + case GGML_OP_CPY: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: + case GGML_OP_UNARY: + { + const uint32_t ne = ggml_nelements(dst); + if (ne > 262144) { + elements = { 512, 512, CEIL_DIV(ne, 262144) }; + } else if (ne > 512) { + elements = { 512, CEIL_DIV(ne, 512), 1 }; + } else { + elements = { ne, 1, 1 }; + } + } break; default: elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; break; @@ -4216,7 +4377,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c if (use_src1) { subbuf_y = { d_Y, y_buf_offset, y_sz }; } else { - subbuf_y = { d_X, 0, d_X->size }; + subbuf_y = { d_X, 0, x_sz }; } ggml_vk_sync_buffers(subctx); @@ -4227,11 +4388,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c if (use_src2) { subbuf_z = { d_Z, z_buf_offset, z_sz }; } else { - subbuf_z = { d_X, 0, d_X->size }; + subbuf_z = { d_X, 0, x_sz }; } ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } else if (op == GGML_OP_IM2COL) { + // im2col uses only src1 and dst buffers + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (use_src2) { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_Z, z_buf_offset, z_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); @@ -4249,8 +4414,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_pipeline_allocate_descriptor_sets(ctx->device, pipeline, ne02 * ne03); - switch (dst->op) { + switch (op) { case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: elements = { (uint32_t)ne01, 1, 1 }; break; @@ -4286,11 +4452,11 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c } } -static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); +static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, {}); } -static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4301,11 +4467,11 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, - 0.0f, 0.0f, + 0.0f, 0.0f, 0, }); } -static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4316,11 +4482,11 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, - 0.0f, 0.0f, + 0.0f, 0.0f, 0, }); } -static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4331,11 +4497,11 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, - 0.0f, 0.0f, + 0.0f, 0.0f, 0, }); } -static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4346,11 +4512,44 @@ static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context * subctx, cons (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, - 0.0f, 0.0f, + 0.0f, 0.0f, 0, }); } -static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + int * op_params = (int *)dst->op_params; + + const uint32_t src0_type_size = ggml_type_size(src0->type); + const uint32_t src1_type_size = ggml_type_size(src1->type); + const uint32_t dst_type_size = ggml_type_size(dst->type); + + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONCAT, { + (uint32_t)ggml_nelements(dst), + (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, + (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, + (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, + 0, + 0.0f, 0.0f, op_params[0], + }); +} + +static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + const uint32_t src0_type_size = ggml_type_size(src0->type); + + const float sf0 = (float)dst->ne[0] / src0->ne[0]; + const float sf1 = (float)dst->ne[1] / src0->ne[1]; + const float sf2 = (float)dst->ne[2] / src0->ne[2]; + const float sf3 = (float)dst->ne[3] / src0->ne[3]; + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, { + (uint32_t)ggml_nelements(dst), 0, + (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, + (uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3], + sf0, sf1, sf2, sf3, + }); +} + +static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4364,7 +4563,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co }); } -static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4377,7 +4576,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons }); } -static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4391,7 +4590,20 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co }); } -static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + const uint32_t src0_type_size = ggml_type_size(src0->type); + const uint32_t dst_type_size = ggml_type_size(dst->type); + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, { + (uint32_t)ggml_nelements(dst), + (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, + (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, + 0, + 0.0f, 0.0f, + }); +} + +static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4406,27 +4618,37 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons }); } -static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } -static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + int * op_params = (int *)dst->op_params; + + uint32_t num_groups = op_params[0]; + uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); + static const float eps = 1e-6f; + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }); +} + +static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } -static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); } -static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { int32_t * op_params = (int32_t *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); } -static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; float scale = op_params[0]; @@ -4451,7 +4673,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, }); } -static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { +static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { const int n_dims = ((int32_t *) dst->op_params)[1]; // const int mode = ((int32_t *) dst->op_params)[2]; // const int n_ctx = ((int32_t *) dst->op_params)[3]; @@ -4475,7 +4697,7 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con }); } -static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { int32_t * op_params = (int32_t *)dst->op_params; uint32_t ncols = src0->ne[0]; @@ -4494,10 +4716,59 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, }); } -static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }); } +static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int32_t s0 = dst->op_params[0]; + const int32_t s1 = dst->op_params[1]; + const int32_t p0 = dst->op_params[2]; + const int32_t p1 = dst->op_params[3]; + const int32_t d0 = dst->op_params[4]; + const int32_t d1 = dst->op_params[5]; + + const bool is_2D = dst->op_params[6] == 1; + + const uint32_t IC = src1->ne[is_2D ? 2 : 1]; + const uint32_t IH = is_2D ? src1->ne[1] : 1; + const uint32_t IW = src1->ne[0]; + + const uint32_t KH = is_2D ? src0->ne[1] : 1; + const uint32_t KW = src0->ne[0]; + + const uint32_t OH = is_2D ? dst->ne[2] : 1; + const uint32_t OW = dst->ne[1]; + + const uint32_t offset_delta = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32 + const uint32_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32 + + const uint32_t pelements = OW * KW * KH; + + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_IM2COL, { + batch_offset, offset_delta, + IC, IW, IH, OW, OH, KW, KH, + pelements, + IC * KH * KW, + s0, s1, p0, p1, d0, d1, + }); +} + +static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + const uint32_t dim = dst->op_params[0]; + const uint32_t max_period = dst->op_params[1]; + const uint32_t nb1 = dst->nb[1] / ggml_type_size(dst->type); + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, { + nb1, dim, max_period, + }); +} + +static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + const float * op_params = (const float *)dst->op_params; + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }); +} + #ifdef GGML_VULKAN_RUN_TESTS static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) { if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) { @@ -4686,7 +4957,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t ggml_vk_buffer_write(d_X, 0, x, sizeof(X_TYPE) * k * m * batch); ggml_vk_buffer_write(d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch); - vk_context * subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); for (size_t i = 0; i < num_it; i++) { ggml_vk_ctx_begin(ctx->device, subctx); ggml_vk_matmul( @@ -4894,7 +5165,7 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_ ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz); - vk_context * subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); ggml_vk_ctx_begin(ctx->device, subctx); const std::vector pc = { 1, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne }; ggml_vk_dispatch_pipeline(ctx, subctx, p, { { qx_buf, 0, qx_sz }, { x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1}); @@ -5027,7 +5298,7 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz); ggml_vk_buffer_write(y_buf, 0, y, y_sz); - vk_context * subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); for (size_t i = 0; i < num_it; i++) { ggml_vk_ctx_begin(ctx->device, subctx); ggml_vk_matmul( @@ -5175,7 +5446,7 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm const bool y_f32_kernel = use_src1 && src1->type == GGML_TYPE_F32 && !y_non_contig; - bool mmp = (use_src0 && use_src1 && src1_type == GGML_TYPE_F32) ? ggml_vk_get_mul_mat_mat_pipeline(ctx, src0_type, y_non_contig ? GGML_TYPE_F16 : src1->type) != nullptr : false; + bool mmp = (use_src0 && use_src1 && (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID)) ? ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type) != nullptr : false; const bool qx_needs_dequant = use_src0 && (!mmp || x_non_contig); const bool qy_needs_dequant = use_src1 && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig); @@ -5211,24 +5482,33 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_MUL: case GGML_OP_DIV: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: + case GGML_OP_IM2COL: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_TANH: break; default: return; @@ -5236,6 +5516,13 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm break; case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: + if ( + x_sz > ctx->device->max_memory_allocation_size || + y_sz > ctx->device->max_memory_allocation_size || + d_sz > ctx->device->max_memory_allocation_size || + split_k_size > ctx->device->max_memory_allocation_size) { + GGML_ABORT("Requested preallocation size is too large"); + } if (ctx->prealloc_size_x < x_sz) { ctx->prealloc_size_x = x_sz; } @@ -5430,7 +5717,7 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) { } } -static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){ +static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, bool last_node){ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; if (ggml_is_empty(node) || extra == nullptr) { @@ -5457,7 +5744,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_TANH: break; default: return; @@ -5468,13 +5757,17 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: @@ -5483,6 +5776,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_MUL_MAT_ID: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: + case GGML_OP_IM2COL: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: break; default: std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl; @@ -5490,102 +5786,137 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod return; } - if (ctx->compute_ctx == nullptr) { - ctx->compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); - ggml_vk_ctx_begin(ctx->device, ctx->compute_ctx); + vk_context compute_ctx; + + if (ctx->compute_ctx.expired()) { + compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + ctx->compute_ctx = compute_ctx; + ggml_vk_ctx_begin(ctx->device, compute_ctx); + } else { + compute_ctx = ctx->compute_ctx.lock(); } switch (node->op) { case GGML_OP_REPEAT: - ggml_vk_repeat(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_repeat(ctx, compute_ctx, src0, node); break; case GGML_OP_GET_ROWS: - ggml_vk_get_rows(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_ADD: - ggml_vk_add(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_add(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_MUL: - ggml_vk_mul(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_mul(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_DIV: - ggml_vk_div(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_div(ctx, compute_ctx, src0, src1, node); + + break; + case GGML_OP_CONCAT: + ggml_vk_concat(ctx, compute_ctx, src0, src1, node); + + break; + case GGML_OP_UPSCALE: + ggml_vk_upscale(ctx, compute_ctx, src0, node); break; case GGML_OP_SCALE: - ggml_vk_scale(ctx, ctx->compute_ctx, src0, node); + ggml_vk_scale(ctx, compute_ctx, src0, node); break; case GGML_OP_SQR: - ggml_vk_sqr(ctx, ctx->compute_ctx, src0, node); + ggml_vk_sqr(ctx, compute_ctx, src0, node); break; case GGML_OP_CLAMP: - ggml_vk_clamp(ctx, ctx->compute_ctx, src0, node); + ggml_vk_clamp(ctx, compute_ctx, src0, node); + + break; + case GGML_OP_PAD: + ggml_vk_pad(ctx, compute_ctx, src0, node); break; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: - ggml_vk_cpy(ctx, ctx->compute_ctx, src0, node); + ggml_vk_cpy(ctx, compute_ctx, src0, node); break; case GGML_OP_NORM: - ggml_vk_norm(ctx, ctx->compute_ctx, src0, node); + ggml_vk_norm(ctx, compute_ctx, src0, node); + + break; + case GGML_OP_GROUP_NORM: + ggml_vk_group_norm(ctx, compute_ctx, src0, node); break; case GGML_OP_RMS_NORM: - ggml_vk_rms_norm(ctx, ctx->compute_ctx, src0, node); + ggml_vk_rms_norm(ctx, compute_ctx, src0, node); break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: - ggml_vk_unary(ctx, ctx->compute_ctx, src0, node); + case GGML_UNARY_OP_TANH: + ggml_vk_unary(ctx, compute_ctx, src0, node); break; default: return; } break; case GGML_OP_DIAG_MASK_INF: - ggml_vk_diag_mask_inf(ctx, ctx->compute_ctx, src0, node); + ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node); break; case GGML_OP_SOFT_MAX: - ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_soft_max(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_ROPE: - ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, src2, node); + ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node); break; case GGML_OP_ARGSORT: - ggml_vk_argsort(ctx, ctx->compute_ctx, src0, node); + ggml_vk_argsort(ctx, compute_ctx, src0, node); break; case GGML_OP_SUM_ROWS: - ggml_vk_sum_rows(ctx, ctx->compute_ctx, src0, node); + ggml_vk_sum_rows(ctx, compute_ctx, src0, node); + + break; + case GGML_OP_IM2COL: + ggml_vk_im2col(ctx, compute_ctx, src0, src1, node); + + break; + case GGML_OP_TIMESTEP_EMBEDDING: + ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node); + + break; + case GGML_OP_LEAKY_RELU: + ggml_vk_leaky_relu(ctx, compute_ctx, src0, node); break; case GGML_OP_MUL_MAT: - ggml_vk_mul_mat(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_mul_mat(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_MUL_MAT_ID: - ggml_vk_mul_mat_id(ctx, ctx->compute_ctx, src0, src1, src2, node); + ggml_vk_mul_mat_id(ctx, compute_ctx, src0, src1, src2, node); break; default: return; } - extra->ctx_idx = ctx->compute_ctx->idx; + ctx->tensor_ctxs[node_idx] = compute_ctx; #ifdef GGML_VULKAN_CHECK_RESULTS // Force context reset on each node so that each tensor ends up in its own context @@ -5594,13 +5925,13 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod #endif if (last_node) { - ggml_vk_ctx_end(ctx->compute_ctx); - ctx->compute_ctx->exit_tensor = node; - ctx->compute_ctx = nullptr; + ggml_vk_ctx_end(compute_ctx); + compute_ctx->exit_tensor_idx = node_idx; + ctx->compute_ctx.reset(); } } -static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor){ +static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx){ ggml_tensor_extra_gpu * extra = nullptr; switch (tensor->op) { @@ -5608,13 +5939,17 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * case GGML_OP_GET_ROWS: case GGML_OP_MUL: case GGML_OP_DIV: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: @@ -5626,6 +5961,10 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * case GGML_OP_NONE: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: + case GGML_OP_IM2COL: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: + case GGML_OP_REPEAT: extra = (ggml_tensor_extra_gpu *) tensor->extra; break; @@ -5633,7 +5972,9 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_TANH: extra = (ggml_tensor_extra_gpu *) tensor->extra; break; default: @@ -5656,31 +5997,31 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")"); #ifdef GGML_VULKAN_CHECK_RESULTS - ggml_vk_check_results_0(ctx, tensor); + ggml_vk_check_results_0(tensor); #endif - vk_context& subctx = ctx->gc.contexts[extra->ctx_idx]; + vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock(); // Only run if ctx hasn't been submitted yet - if (!subctx.seqs.empty()) { + if (!subctx->seqs.empty()) { // Do staging buffer copies - for (auto& cpy : subctx.in_memcpys) { + for (auto& cpy : subctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - ggml_vk_submit(&subctx, ctx->fence); + ggml_vk_submit(subctx, ctx->fence); } - if (tensor == subctx.exit_tensor) { + if (tensor_idx == subctx->exit_tensor_idx) { VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences"); ctx->device->device.resetFences({ ctx->fence }); // Do staging buffer copies - for (auto& cpy : subctx.out_memcpys) { + for (auto& cpy : subctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - subctx.in_memcpys.clear(); - subctx.out_memcpys.clear(); + subctx->in_memcpys.clear(); + subctx->out_memcpys.clear(); } return true; @@ -5725,8 +6066,7 @@ static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) { ctx->staging_offset = 0; - ctx->compute_ctx = nullptr; - ctx->transfer_ctx = nullptr; + ctx->tensor_ctxs.clear(); ctx->gc.contexts.clear(); } @@ -6063,15 +6403,20 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - if (ctx->transfer_ctx == nullptr) { + vk_context transfer_ctx; + + if (ctx->transfer_ctx.expired()) { // Initialize new transfer context - ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); - ggml_vk_ctx_begin(ctx->device, ctx->transfer_ctx); + transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); + ctx->transfer_ctx = transfer_ctx; + ggml_vk_ctx_begin(ctx->device, transfer_ctx); + } else { + transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer buf = extra->buffer_gpu.lock(); - ggml_vk_buffer_write_async(ctx->transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); + ggml_vk_buffer_write_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); } GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { @@ -6081,15 +6426,20 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - if (ctx->transfer_ctx == nullptr) { + vk_context transfer_ctx; + + if (ctx->transfer_ctx.expired()) { // Initialize new transfer context - ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); - ggml_vk_ctx_begin(ctx->device, ctx->transfer_ctx); + transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); + ctx->transfer_ctx = transfer_ctx; + ggml_vk_ctx_begin(ctx->device, transfer_ctx); + } else { + transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer buf = extra->buffer_gpu.lock(); - ggml_vk_buffer_read_async(ctx->transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); + ggml_vk_buffer_read_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); } GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { @@ -6099,16 +6449,21 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - if (ctx->transfer_ctx == nullptr) { + vk_context transfer_ctx; + + if (ctx->transfer_ctx.expired()) { // Initialize new transfer context - ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); - ggml_vk_ctx_begin(ctx->device, ctx->transfer_ctx); + transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); + ctx->transfer_ctx = transfer_ctx; + ggml_vk_ctx_begin(ctx->device, transfer_ctx); + } else { + transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer src_buf = src_extra->buffer_gpu.lock(); vk_buffer dst_buf = dst_extra->buffer_gpu.lock(); - ggml_vk_buffer_copy_async(ctx->transfer_ctx, dst_buf, dst_extra->offset + dst->view_offs, src_buf, src_extra->offset + src->view_offs, ggml_nbytes(src)); + ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, dst_extra->offset + dst->view_offs, src_buf, src_extra->offset + src->view_offs, ggml_nbytes(src)); return true; } @@ -6118,25 +6473,27 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) { VK_LOG_DEBUG("ggml_backend_vk_synchronize()"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; - if(ctx->transfer_ctx == nullptr) { + if(ctx->transfer_ctx.expired()) { return; } - ggml_vk_ctx_end(ctx->transfer_ctx); + vk_context transfer_ctx = ctx->transfer_ctx.lock(); - for (auto& cpy : ctx->transfer_ctx->in_memcpys) { + ggml_vk_ctx_end(transfer_ctx); + + for (auto& cpy : transfer_ctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - ggml_vk_submit(ctx->transfer_ctx, ctx->fence); + ggml_vk_submit(transfer_ctx, ctx->fence); VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences"); ctx->device->device.resetFences({ ctx->fence }); - for (auto& cpy : ctx->transfer_ctx->out_memcpys) { + for (auto& cpy : transfer_ctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - ctx->transfer_ctx = nullptr; + ctx->transfer_ctx.reset(); } static bool ggml_vk_is_empty(ggml_tensor * node) { @@ -6159,8 +6516,11 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen last_node -= 1; } + // Reserve tensor context space for all nodes + ctx->tensor_ctxs.resize(cgraph->n_nodes); + for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_vk_build_graph(ctx,cgraph->nodes[i], i == last_node); + ggml_vk_build_graph(ctx, cgraph->nodes[i], i, i == last_node); } for (int i = 0; i < cgraph->n_nodes; i++) { @@ -6170,13 +6530,17 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen continue; } - bool ok = ggml_vk_compute_forward(ctx, node); + bool ok = ggml_vk_compute_forward(ctx, node, i); if (!ok) { - fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); + if (node->op == GGML_OP_UNARY) { + std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast(node->op_params[0])) << ")" << std::endl; + } else { + std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl; + } } #ifdef GGML_VULKAN_CHECK_RESULTS else { - ggml_vk_check_results_1(ctx, node); + ggml_vk_check_results_1(node); } #endif GGML_ASSERT(ok); @@ -6196,8 +6560,10 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_TANH: return ggml_is_contiguous(op->src[0]); default: return false; @@ -6270,11 +6636,11 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const } return false; } break; - // case GGML_OP_REPEAT: - // { - // ggml_type src0_type = op->src[0]->type; - // return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; - // } break; + case GGML_OP_REPEAT: + { + ggml_type src0_type = op->src[0]->type; + return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; + } break; case GGML_OP_ROPE: return ggml_is_contiguous(op->src[0]); case GGML_OP_NONE: @@ -6283,18 +6649,25 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: + case GGML_OP_RMS_NORM: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: - case GGML_OP_RMS_NORM: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: case GGML_OP_CONT: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: + case GGML_OP_IM2COL: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: return true; default: return false; @@ -6509,10 +6882,12 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d } } -static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) { +static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) { void * tensor_data = tensor->data; - if (ggml_backend_buffer_is_vk(tensor->buffer)) { + const bool is_gpu = tensor->buffer != nullptr && ggml_backend_buffer_is_vk(tensor->buffer); + + if (is_gpu) { const size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); @@ -6533,13 +6908,10 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0); std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0); - std::cerr << std::endl; std::vector done; ggml_vk_print_graph_origin(tensor, done); - if (ggml_backend_buffer_is_vk(tensor->buffer)) { + if (is_gpu) { free(tensor_data); } } @@ -6548,8 +6920,8 @@ void * comp_result; size_t comp_size; size_t comp_nb[GGML_MAX_DIMS]; size_t check_counter = 0; -static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor) { - if (tensor->op == GGML_OP_TRANSPOSE) { +static void ggml_vk_check_results_0(ggml_tensor * tensor) { + if (tensor->op == GGML_OP_TRANSPOSE) { return; } @@ -6565,7 +6937,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * ggml_tensor * src2 = tensor->src[2]; struct ggml_init_params iparams = { - /*.mem_size =*/ 1024*1024*1024, + /*.mem_size =*/ 2ul*1024ul*1024ul*1024ul, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; @@ -6624,7 +6996,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, src0, "src0"); + ggml_vk_print_tensor(src0, "src0"); } } if (src1 != nullptr) { @@ -6666,23 +7038,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, src1, "src1"); - std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl; - std::cerr << "src1_clone=" << tensor << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl; - if (src1->src[0] != nullptr) { - std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl; - } - if (src1->src[1] != nullptr) { - std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl; - } - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0); - std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 1, 0); - std::cerr << std::endl; - std::vector done; - ggml_vk_print_graph_origin(src1_clone, done); + ggml_vk_print_tensor(src1, "src1"); } } if (src2 != nullptr) { @@ -6724,23 +7080,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, src2, "src2"); - std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl; - std::cerr << "src2_clone=" << tensor << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl; - if (src2->src[0] != nullptr) { - std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl; - } - if (src2->src[1] != nullptr) { - std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl; - } - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0); - std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0); - std::cerr << std::endl; - std::vector done; - ggml_vk_print_graph_origin(src2_clone, done); + ggml_vk_print_tensor(src2, "src2"); } } @@ -6752,16 +7092,24 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor_clone = ggml_mul(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_DIV) { tensor_clone = ggml_div(ggml_ctx, src0_clone, src1_clone); + } else if (tensor->op == GGML_OP_CONCAT) { + tensor_clone = ggml_concat(ggml_ctx, src0_clone, src1_clone, *(int *)tensor->op_params); + } else if (tensor->op == GGML_OP_UPSCALE) { + tensor_clone = ggml_upscale_ext(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); } else if (tensor->op == GGML_OP_SCALE) { tensor_clone = ggml_scale(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0]); } else if (tensor->op == GGML_OP_SQR) { tensor_clone = ggml_sqr(ggml_ctx, src0_clone); } else if (tensor->op == GGML_OP_CLAMP) { tensor_clone = ggml_clamp(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); + } else if (tensor->op == GGML_OP_PAD) { + tensor_clone = ggml_pad(ggml_ctx, src0_clone, tensor->ne[0] - src0_clone->ne[0], tensor->ne[1] - src0_clone->ne[1], tensor->ne[2] - src0_clone->ne[2], tensor->ne[3] - src0_clone->ne[3]); } else if (tensor->op == GGML_OP_ADD) { tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_NORM) { tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); + } else if (tensor->op == GGML_OP_GROUP_NORM) { + tensor_clone = ggml_group_norm(ggml_ctx, src0_clone, *(int *)tensor->op_params); } else if (tensor->op == GGML_OP_RMS_NORM) { tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_SOFT_MAX) { @@ -6777,12 +7125,12 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * const int mode = ((int32_t *) tensor->op_params)[2]; //const int n_ctx_ggml = ((int32_t *) tensor->op_params)[3]; const int n_ctx_orig_ggml = ((int32_t *) tensor->op_params)[4]; - float freq_base = ((float *) tensor->op_params)[5]; - float freq_scale = ((float *) tensor->op_params)[6]; - float ext_factor = ((float *) tensor->op_params)[7]; - float attn_factor = ((float *) tensor->op_params)[8]; - float beta_fast = ((float *) tensor->op_params)[9]; - float beta_slow = ((float *) tensor->op_params)[10]; + const float freq_base = ((float *) tensor->op_params)[5]; + const float freq_scale = ((float *) tensor->op_params)[6]; + const float ext_factor = ((float *) tensor->op_params)[7]; + const float attn_factor = ((float *) tensor->op_params)[8]; + const float beta_fast = ((float *) tensor->op_params)[9]; + const float beta_slow = ((float *) tensor->op_params)[10]; tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); } else if (tensor->op == GGML_OP_UNARY) { switch (ggml_get_unary_op(tensor)) { @@ -6792,9 +7140,15 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * case GGML_UNARY_OP_GELU: tensor_clone = ggml_gelu(ggml_ctx, src0_clone); break; + case GGML_UNARY_OP_GELU_QUICK: + tensor_clone = ggml_gelu_quick(ggml_ctx, src0_clone); + break; case GGML_UNARY_OP_RELU: tensor_clone = ggml_relu(ggml_ctx, src0_clone); break; + case GGML_UNARY_OP_TANH: + tensor_clone = ggml_tanh(ggml_ctx, src0_clone); + break; default: std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ABORT("fatal error"); @@ -6823,6 +7177,23 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor_clone = ggml_argsort(ggml_ctx, src0_clone, (ggml_sort_order) *(int *)tensor->op_params); } else if (tensor->op == GGML_OP_SUM_ROWS) { tensor_clone = ggml_sum_rows(ggml_ctx, src0_clone); + } else if (tensor->op == GGML_OP_IM2COL) { + const int32_t s0 = tensor->op_params[0]; + const int32_t s1 = tensor->op_params[1]; + const int32_t p0 = tensor->op_params[2]; + const int32_t p1 = tensor->op_params[3]; + const int32_t d0 = tensor->op_params[4]; + const int32_t d1 = tensor->op_params[5]; + + const bool is_2D = tensor->op_params[6] == 1; + tensor_clone = ggml_im2col(ggml_ctx, src0_clone, src1_clone, s0, s1, p0, p1, d0, d1, is_2D, tensor->type); + } else if (tensor->op == GGML_OP_TIMESTEP_EMBEDDING) { + const int32_t dim = tensor->op_params[0]; + const int32_t max_period = tensor->op_params[1]; + tensor_clone = ggml_timestep_embedding(ggml_ctx, src0_clone, dim, max_period); + } else if (tensor->op == GGML_OP_LEAKY_RELU) { + const float * op_params = (const float *)tensor->op_params; + tensor_clone = ggml_leaky_relu(ggml_ctx, src0_clone, op_params[0], false); } else { std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ABORT("fatal error"); @@ -6834,7 +7205,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8); if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone"); + ggml_vk_print_tensor(tensor_clone, "tensor_clone"); } comp_size = ggml_nbytes(tensor_clone); @@ -6851,9 +7222,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * } ggml_free(ggml_ctx); + + VK_LOG_DEBUG("END ggml_vk_check_results_0(" << tensor->name << ")"); } -static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * tensor) { +static void ggml_vk_check_results_1(ggml_tensor * tensor) { if (tensor->op == GGML_OP_TRANSPOSE) { return; } @@ -6977,11 +7350,6 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0); std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0); - std::cerr << std::endl << "Correct:" << std::endl; - ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 1, 0); - std::cerr << std::endl; std::vector done; ggml_vk_print_graph_origin(tensor, done); } @@ -7018,5 +7386,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * if (ggml_backend_buffer_is_vk(tensor->buffer)) { free(tensor_data); } + + VK_LOG_DEBUG("END ggml_vk_check_results_1(" << tensor->name << ")"); } #endif diff --git a/ggml/src/vulkan-shaders/add.comp b/ggml/src/vulkan-shaders/add.comp index 8475b0119..3974845d6 100644 --- a/ggml/src/vulkan-shaders/add.comp +++ b/ggml/src/vulkan-shaders/add.comp @@ -4,9 +4,11 @@ #include "generic_binary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) + FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)])); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) + FLOAT_TYPE(data_b[src1_idx(idx)])); } diff --git a/ggml/src/vulkan-shaders/clamp.comp b/ggml/src/vulkan-shaders/clamp.comp index ca272e227..7071302a4 100644 --- a/ggml/src/vulkan-shaders/clamp.comp +++ b/ggml/src/vulkan-shaders/clamp.comp @@ -4,10 +4,12 @@ #include "generic_unary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]); - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val)); + const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val)); } diff --git a/ggml/src/vulkan-shaders/concat.comp b/ggml/src/vulkan-shaders/concat.comp new file mode 100644 index 000000000..08ab5514b --- /dev/null +++ b/ggml/src/vulkan-shaders/concat.comp @@ -0,0 +1,35 @@ +#version 450 + +#include "types.comp" +#include "generic_binary_head.comp" + +void main() { + const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + const int dim = p.param3; + + if (idx >= p.ne) { + return; + } + + const uint i3 = idx / (p.ne22*p.ne21*p.ne20); + const uint i3_offset = i3 * p.ne22*p.ne21*p.ne20; + const uint i2 = (idx - i3_offset) / (p.ne21*p.ne20); + const uint i2_offset = i2*p.ne21*p.ne20; + const uint i1 = (idx - i3_offset - i2_offset) / p.ne20; + const uint i0 = idx - i3_offset - i2_offset - i1*p.ne20; + + uint o[4] = {0, 0, 0, 0}; + o[dim] = dim == 0 ? p.ne00 : (dim == 1 ? p.ne01 : (dim == 2 ? p.ne02 : p.ne03)); + + const uint src0_idx = i3*p.nb03 + i2*p.nb02 + i1*p.nb01 + i0*p.nb00; + const uint src1_idx = (i3 - o[3])*p.nb13 + (i2 - o[2])*p.nb12 + (i1 - o[1])*p.nb11 + (i0 - o[0])*p.nb10; + const uint dst_idx = i3*p.nb23 + i2*p.nb22 + i1*p.nb21 + i0*p.nb20; + + const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03; + +#ifndef OPTIMIZATION_ERROR_WORKAROUND + data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : data_b[src1_idx]); +#else + data_d[p.d_offset + dst_idx] = is_src0 ? data_a[src0_idx] : data_b[src1_idx]; +#endif +} diff --git a/ggml/src/vulkan-shaders/copy.comp b/ggml/src/vulkan-shaders/copy.comp index efb55876e..c26917c0f 100644 --- a/ggml/src/vulkan-shaders/copy.comp +++ b/ggml/src/vulkan-shaders/copy.comp @@ -4,13 +4,15 @@ #include "generic_unary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } #ifndef OPTIMIZATION_ERROR_WORKAROUND - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx(idx)]); #else - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = data_a[src0_idx(gl_GlobalInvocationID.x)]; + data_d[p.d_offset + dst_idx(idx)] = data_a[src0_idx(idx)]; #endif } diff --git a/ggml/src/vulkan-shaders/div.comp b/ggml/src/vulkan-shaders/div.comp index 8ee4bfc73..8cfce58b1 100644 --- a/ggml/src/vulkan-shaders/div.comp +++ b/ggml/src/vulkan-shaders/div.comp @@ -4,9 +4,11 @@ #include "generic_binary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) / FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)])); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) / FLOAT_TYPE(data_b[src1_idx(idx)])); } diff --git a/ggml/src/vulkan-shaders/gelu.comp b/ggml/src/vulkan-shaders/gelu.comp index 9fe807cce..4cc7a68ca 100644 --- a/ggml/src/vulkan-shaders/gelu.comp +++ b/ggml/src/vulkan-shaders/gelu.comp @@ -13,7 +13,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const float GELU_COEF_A = 0.044715f; const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; - const uint i = gl_GlobalInvocationID.x; + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; if (i >= p.KX) { return; diff --git a/ggml/src/vulkan-shaders/gelu_quick.comp b/ggml/src/vulkan-shaders/gelu_quick.comp new file mode 100644 index 000000000..e6e6fcfd2 --- /dev/null +++ b/ggml/src/vulkan-shaders/gelu_quick.comp @@ -0,0 +1,23 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const float GELU_QUICK_COEF = -1.702f; + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (i >= p.KX) { + return; + } + + const float x = float(data_a[i]); + data_d[i] = D_TYPE(x * (1.0f / (1.0f + exp(GELU_QUICK_COEF * x)))); +} diff --git a/ggml/src/vulkan-shaders/generic_binary_head.comp b/ggml/src/vulkan-shaders/generic_binary_head.comp index ab45d2564..b6beaff1c 100644 --- a/ggml/src/vulkan-shaders/generic_binary_head.comp +++ b/ggml/src/vulkan-shaders/generic_binary_head.comp @@ -7,7 +7,7 @@ layout (push_constant) uniform parameter uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13; uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23; uint d_offset; - float param1; float param2; + float param1; float param2; int param3; } p; layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; @@ -16,6 +16,10 @@ layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; +uint get_idx() { + return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; +} + uint src0_idx(uint idx) { const uint i03 = idx / (p.ne02*p.ne01*p.ne00); const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00; diff --git a/ggml/src/vulkan-shaders/generic_unary_head.comp b/ggml/src/vulkan-shaders/generic_unary_head.comp index de08de7cd..eacdefc7d 100644 --- a/ggml/src/vulkan-shaders/generic_unary_head.comp +++ b/ggml/src/vulkan-shaders/generic_unary_head.comp @@ -14,6 +14,10 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; +uint get_idx() { + return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; +} + uint src0_idx(uint idx) { const uint i03 = idx / (p.ne02*p.ne01*p.ne00); const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00; diff --git a/ggml/src/vulkan-shaders/group_norm.comp b/ggml/src/vulkan-shaders/group_norm.comp new file mode 100644 index 000000000..5ad9b28da --- /dev/null +++ b/ggml/src/vulkan-shaders/group_norm.comp @@ -0,0 +1,66 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable +#define BLOCK_SIZE 512 + +layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +shared float tmp[BLOCK_SIZE]; + +void main() { + const uint group_size = p.KX; + const float eps = p.param1; + + const uint tid = gl_LocalInvocationID.x; + const uint start = gl_WorkGroupID.x * group_size + tid; + const uint end = start + group_size; + + tmp[tid] = 0.0f; + + // Calculate mean + [[unroll]] for (uint col = start; col < end; col += BLOCK_SIZE) { + tmp[tid] += float(data_a[col]); + } + + // tmp up partial tmps and write back result + barrier(); + [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(); + } + + const float mean = tmp[0] / group_size; + barrier(); + tmp[tid] = 0.0f; + + // Calculate variance + [[unroll]] for (uint col = start; col < end; col += BLOCK_SIZE) { + const float xi = float(data_a[col]) - mean; + data_d[col] = D_TYPE(xi); + tmp[tid] += xi * xi; + } + + // sum up partial sums and write back result + barrier(); + [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(); + } + + const float variance = tmp[0] / group_size; + const float scale = inversesqrt(variance + eps); + + [[unroll]] for (uint col = start; col < end; col += BLOCK_SIZE) { + data_d[col] *= D_TYPE(scale); + } +} diff --git a/ggml/src/vulkan-shaders/im2col.comp b/ggml/src/vulkan-shaders/im2col.comp new file mode 100644 index 000000000..4d48610a3 --- /dev/null +++ b/ggml/src/vulkan-shaders/im2col.comp @@ -0,0 +1,57 @@ +#version 450 + +#extension GL_EXT_shader_16bit_storage : require + +layout (push_constant) uniform parameter +{ + uint batch_offset; uint offset_delta; + uint IC; + uint IW; uint IH; + uint OW; uint OH; + uint KW; uint KH; + uint pelements; + uint CHW; + int s0; int s1; + int p0; int p1; + int d0; int d1; +} p; + +#include "types.comp" + +#define BLOCK_SIZE 256 + +layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_GlobalInvocationID.x; + if (i >= p.pelements) { + return; + } + + const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1); + const uint kx = i / ksize; + const uint kd = kx * ksize; + const uint ky = (i - kd) / p.OW; + const uint ix = i % p.OW; + + const uint oh = gl_GlobalInvocationID.y; + const uint batch = gl_GlobalInvocationID.z / p.IC; + const uint ic = gl_GlobalInvocationID.z % p.IC; + + const uint iiw = ix * p.s0 + kx * p.d0 - p.p0; + const uint iih = oh * p.s1 + ky * p.d1 - p.p1; + + const uint offset_dst = + ((batch * p.OH + oh) * p.OW + ix) * p.CHW + + (ic * (p.KW * p.KH) + ky * p.KW + kx); + + if (iih < 0 || iih >= p.IH || iiw < 0 || iiw >= p.IW) { + data_d[offset_dst] = D_TYPE(0.0f); + } else { + const uint offset_src = ic * p.offset_delta + batch * p.batch_offset; + data_d[offset_dst] = D_TYPE(data_a[offset_src + iih * p.IW + iiw]); + } +} diff --git a/ggml/src/vulkan-shaders/leaky_relu.comp b/ggml/src/vulkan-shaders/leaky_relu.comp new file mode 100644 index 000000000..d90a99aea --- /dev/null +++ b/ggml/src/vulkan-shaders/leaky_relu.comp @@ -0,0 +1,22 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (i >= p.KX) { + return; + } + + const float val = float(data_a[i]); + data_d[i] = D_TYPE(max(val, 0.0f) + min(val, 0.0f) * p.param1); +} diff --git a/ggml/src/vulkan-shaders/mul.comp b/ggml/src/vulkan-shaders/mul.comp index bbb0aa1d2..bfb61c92d 100644 --- a/ggml/src/vulkan-shaders/mul.comp +++ b/ggml/src/vulkan-shaders/mul.comp @@ -4,9 +4,11 @@ #include "generic_binary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)])); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) * FLOAT_TYPE(data_b[src1_idx(idx)])); } diff --git a/ggml/src/vulkan-shaders/norm.comp b/ggml/src/vulkan-shaders/norm.comp index 803dbdcb3..6627a50bd 100644 --- a/ggml/src/vulkan-shaders/norm.comp +++ b/ggml/src/vulkan-shaders/norm.comp @@ -14,7 +14,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; shared vec2 sum[BLOCK_SIZE]; void main() { - const uint row = gl_WorkGroupID.x; + const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint tid = gl_LocalInvocationID.x; sum[tid] = vec2(0.0f, 0.0f); diff --git a/ggml/src/vulkan-shaders/pad.comp b/ggml/src/vulkan-shaders/pad.comp new file mode 100644 index 000000000..a465cd52b --- /dev/null +++ b/ggml/src/vulkan-shaders/pad.comp @@ -0,0 +1,26 @@ +#version 450 + +#include "types.comp" +#include "generic_unary_head.comp" + +void main() { + const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (idx >= p.ne) { + return; + } + + const uint i3 = idx / (p.ne12*p.ne11*p.ne10); + const uint i3_offset = i3 * p.ne12*p.ne11*p.ne10; + const uint i2 = (idx - i3_offset) / (p.ne11*p.ne10); + const uint i2_offset = i2*p.ne11*p.ne10; + const uint i1 = (idx - i3_offset - i2_offset) / p.ne10; + const uint i0 = idx - i3_offset - i2_offset - i1*p.ne10; + + const uint src0_idx = i3*p.nb03 + i2*p.nb02 + i1*p.nb01 + i0*p.nb00; + const uint dst_idx = i3*p.nb13 + i2*p.nb12 + i1*p.nb11 + i0*p.nb10; + + const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03; + + data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : 0.0f); +} diff --git a/ggml/src/vulkan-shaders/relu.comp b/ggml/src/vulkan-shaders/relu.comp index 7e5baa5b8..52a19b62a 100644 --- a/ggml/src/vulkan-shaders/relu.comp +++ b/ggml/src/vulkan-shaders/relu.comp @@ -11,7 +11,7 @@ layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { - const uint i = gl_GlobalInvocationID.x; + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; if (i >= p.KX) { return; diff --git a/ggml/src/vulkan-shaders/rms_norm.comp b/ggml/src/vulkan-shaders/rms_norm.comp index cfd08d345..b554400ba 100644 --- a/ggml/src/vulkan-shaders/rms_norm.comp +++ b/ggml/src/vulkan-shaders/rms_norm.comp @@ -14,7 +14,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; shared FLOAT_TYPE sum[BLOCK_SIZE]; void main() { - const uint row = gl_WorkGroupID.x; + const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint tid = gl_LocalInvocationID.x; sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp diff --git a/ggml/src/vulkan-shaders/scale.comp b/ggml/src/vulkan-shaders/scale.comp index 510cb7237..5cd2f668d 100644 --- a/ggml/src/vulkan-shaders/scale.comp +++ b/ggml/src/vulkan-shaders/scale.comp @@ -4,9 +4,11 @@ #include "generic_unary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(p.param1)); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) * FLOAT_TYPE(p.param1)); } diff --git a/ggml/src/vulkan-shaders/silu.comp b/ggml/src/vulkan-shaders/silu.comp index 15920f06e..4d36f88e0 100644 --- a/ggml/src/vulkan-shaders/silu.comp +++ b/ggml/src/vulkan-shaders/silu.comp @@ -11,7 +11,7 @@ layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { - const uint i = gl_GlobalInvocationID.x; + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; if (i >= p.KX) { return; diff --git a/ggml/src/vulkan-shaders/soft_max.comp b/ggml/src/vulkan-shaders/soft_max.comp index 1b8419c7c..0bd51ecab 100644 --- a/ggml/src/vulkan-shaders/soft_max.comp +++ b/ggml/src/vulkan-shaders/soft_max.comp @@ -28,7 +28,7 @@ shared FLOAT_TYPE vals[BLOCK_SIZE]; void main() { const uint tid = gl_LocalInvocationID.x; - const uint rowx = gl_WorkGroupID.x; + const uint rowx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint rowy = rowx % p.KY; float slope = 1.0f; diff --git a/ggml/src/vulkan-shaders/square.comp b/ggml/src/vulkan-shaders/square.comp index 8dd19333d..1fa118c99 100644 --- a/ggml/src/vulkan-shaders/square.comp +++ b/ggml/src/vulkan-shaders/square.comp @@ -4,10 +4,12 @@ #include "generic_unary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]); - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val * val); + const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val * val); } diff --git a/ggml/src/vulkan-shaders/sum_rows.comp b/ggml/src/vulkan-shaders/sum_rows.comp index ce2f1e2f3..961e5ffa1 100644 --- a/ggml/src/vulkan-shaders/sum_rows.comp +++ b/ggml/src/vulkan-shaders/sum_rows.comp @@ -14,7 +14,7 @@ layout (constant_id = 0) const uint BLOCK_SIZE = 32; shared FLOAT_TYPE tmp[BLOCK_SIZE]; void main() { - const uint row = gl_WorkGroupID.x; + const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint col = gl_LocalInvocationID.x; tmp[col] = FLOAT_TYPE(0.0f); diff --git a/ggml/src/vulkan-shaders/tanh.comp b/ggml/src/vulkan-shaders/tanh.comp new file mode 100644 index 000000000..74630dc7f --- /dev/null +++ b/ggml/src/vulkan-shaders/tanh.comp @@ -0,0 +1,21 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (i >= p.KX) { + return; + } + + data_d[i] = D_TYPE(tanh(data_a[i])); +} diff --git a/ggml/src/vulkan-shaders/timestep_embedding.comp b/ggml/src/vulkan-shaders/timestep_embedding.comp new file mode 100644 index 000000000..79e065a93 --- /dev/null +++ b/ggml/src/vulkan-shaders/timestep_embedding.comp @@ -0,0 +1,41 @@ +#version 450 + +#extension GL_EXT_shader_16bit_storage : require + +layout (push_constant) uniform parameter +{ + uint nb1; + uint dim; + uint max_period; +} p; + +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable +#define BLOCK_SIZE 256 + +layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_WorkGroupID.y; + const uint j = gl_GlobalInvocationID.x; + const uint d_offset = i * p.nb1; + + if (p.dim % 2 != 0 && j == ((p.dim + 1) / 2)) { + data_d[d_offset + p.dim] = 0.f; + } + + const uint half_dim = p.dim / 2; + if (j >= half_dim) { + return; + } + + const float timestep = float(data_a[i]); + const float freq = float(exp(-log(p.max_period) * j / half_dim)); + const float arg = timestep * freq; + data_d[d_offset + j] = D_TYPE(cos(arg)); + data_d[d_offset + j + half_dim] = D_TYPE(sin(arg)); +} diff --git a/ggml/src/vulkan-shaders/types.comp b/ggml/src/vulkan-shaders/types.comp index d24c172ca..21dce72fc 100644 --- a/ggml/src/vulkan-shaders/types.comp +++ b/ggml/src/vulkan-shaders/types.comp @@ -6,7 +6,7 @@ #define QUANT_K 1 #define QUANT_R 1 -#ifndef LOAD_VEC_A +#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1 #define A_TYPE float #elif LOAD_VEC_A == 4 #define A_TYPE vec4 @@ -19,7 +19,7 @@ #define QUANT_K 1 #define QUANT_R 1 -#ifndef LOAD_VEC_A +#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1 #define A_TYPE float16_t #elif LOAD_VEC_A == 4 #define A_TYPE f16vec4 diff --git a/ggml/src/vulkan-shaders/upscale.comp b/ggml/src/vulkan-shaders/upscale.comp new file mode 100644 index 000000000..511a086ea --- /dev/null +++ b/ggml/src/vulkan-shaders/upscale.comp @@ -0,0 +1,36 @@ +#version 450 + +layout (push_constant) uniform parameter +{ + uint ne; uint d_offset; + uint nb00; uint nb01; uint nb02; uint nb03; + uint ne10; uint ne11; uint ne12; uint ne13; + float sf0; float sf1; float sf2; float sf3; +} p; + +#include "types.comp" + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (idx >= p.ne) { + return; + } + + const uint i10 = idx % p.ne10; + const uint i11 = (idx / p.ne10) % p.ne11; + const uint i12 = (idx / (p.ne10 * p.ne11)) % p.ne12; + const uint i13 = (idx / (p.ne10 * p.ne11 * p.ne12)) % p.ne13; + + const uint i00 = uint(i10 / p.sf0); + const uint i01 = uint(i11 / p.sf1); + const uint i02 = uint(i12 / p.sf2); + const uint i03 = uint(i13 / p.sf3); + + data_d[p.d_offset + idx] = D_TYPE(data_a[i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]); +} diff --git a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp index c9dbf9dfd..258a1933f 100644 --- a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp @@ -30,20 +30,6 @@ #define ASYNCIO_CONCURRENCY 64 -// define prototypes -void execute_command(const std::string& command, std::string& stdout_str, std::string& stderr_str); -bool directory_exists(const std::string& path); -bool create_directory(const std::string& path); -std::string to_uppercase(const std::string& input); -bool string_ends_with(const std::string& str, const std::string& suffix); -std::string join_paths(const std::string& path1, const std::string& path2); -std::string basename(const std::string &path); -void string_to_spv(const std::string& _name, const std::string& in_fname, const std::map& defines, bool fp16); -std::map merge_maps(const std::map& a, const std::map& b); -void matmul_shaders(std::vector>& tasks, bool fp16, bool matmul_id); -void process_shaders(std::vector>& tasks); -void write_output_files(); - std::mutex lock; std::vector> shader_fnames; @@ -52,7 +38,7 @@ std::string input_dir = "vulkan-shaders"; std::string output_dir = "/tmp"; std::string target_hpp = "ggml-vulkan-shaders.hpp"; std::string target_cpp = "ggml-vulkan-shaders.cpp"; -bool clean = true; +bool no_clean = false; const std::vector type_names = { "f32", @@ -283,9 +269,12 @@ void matmul_shaders(std::vector>& tasks, bool fp16, bool matmu for (const auto& tname : type_names) { std::string data_a_key = "DATA_A_" + to_uppercase(tname); + // For unaligned, load one at a time for f32/f16, or two at a time for quants + std::string load_vec_a_unaligned = (tname == "f32" || tname == "f16") ? "1" : "2"; + // For aligned matmul loads std::string load_vec_a = (tname == "f32" || tname == "f16") ? load_vec : "2"; tasks.push_back(std::async(std::launch::async, [=] { - string_to_spv(shader_name + "_" + tname + "_f32", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16); + string_to_spv(shader_name + "_" + tname + "_f32", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv(shader_name + "_" + tname + "_f32_aligned", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}}), fp16); @@ -354,6 +343,9 @@ void process_shaders(std::vector>& tasks) { tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("norm_f32", "norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); + tasks.push_back(std::async(std::launch::async, [=] { + string_to_spv("group_norm_f32", "group_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); + })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("rms_norm_f32", "rms_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); @@ -371,6 +363,9 @@ void process_shaders(std::vector>& tasks) { tasks.push_back(std::async(std::launch::async, [] { string_to_spv("add_f32", "add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}}); + })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}); @@ -396,15 +391,42 @@ void process_shaders(std::vector>& tasks) { string_to_spv("clamp_f32", "clamp.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("pad_f32", "pad.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("concat_f32", "concat.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("concat_f16", "concat.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("concat_i32", "concat.comp", {{"A_TYPE", "int"}, {"B_TYPE", "int"}, {"D_TYPE", "int"}}); + })); + + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("upscale_f32", "upscale.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { string_to_spv("gelu_f32", "gelu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("gelu_quick_f32", "gelu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("silu_f32", "silu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("relu_f32", "relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("tanh_f32", "tanh.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); @@ -438,6 +460,17 @@ void process_shaders(std::vector>& tasks) { tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("sum_rows_f32", "sum_rows.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); + + tasks.push_back(std::async(std::launch::async, [=] { + string_to_spv("im2col_f32", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); + })); + tasks.push_back(std::async(std::launch::async, [=] { + string_to_spv("im2col_f32_f16", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}})); + })); + + tasks.push_back(std::async(std::launch::async, [=] { + string_to_spv("timestep_embedding_f32", "timestep_embedding.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); + })); } void write_output_files() { @@ -478,9 +511,8 @@ void write_output_files() { } fprintf(src, "\n};\n\n"); - if (clean) { + if (!no_clean) { std::remove(path.c_str()); - // fprintf(stderr, "Removed: %s\n", path.c_str()); } } @@ -496,18 +528,6 @@ int main(int argc, char** argv) { } } - if (argc <= 1 || args.find("--help") != args.end()) { - std::cout << "Usage:\n" - "\tvulkan-shaders-gen [options]\n\n" - "Options:\n" - "\t--glslc Path to glslc executable (default: /usr/bin/glslc)\n" - "\t--input-dir Directory containing shader sources (required)\n" - "\t--output-dir Output directory for generated SPIR-V files and optional C++ headers\n" - "\t--target-hpp Path to generate a header file with shader declarations in C++ format\n" - "\t--target-cpp Path to generate a source code file implementing the declared shaders (optional)\n" - "\t--no-clean Keep temporary SPIR-V files after build (default: remove them)\n"; - return EXIT_SUCCESS; - } if (args.find("--glslc") != args.end()) { GLSLC = args["--glslc"]; // Path to glslc } @@ -524,7 +544,7 @@ int main(int argc, char** argv) { target_cpp = args["--target-cpp"]; // Path to generated cpp file } if (args.find("--no-clean") != args.end()) { - clean = false; // Keep temporary SPIR-V files in output-dir after build + no_clean = true; // Keep temporary SPIR-V files in output-dir after build } if (!directory_exists(input_dir)) {