From a9554e20b66546b0549aebe2e1034bc8afe9d809 Mon Sep 17 00:00:00 2001 From: luoyu-intel Date: Fri, 5 Jul 2024 05:06:13 +0000 Subject: [PATCH] [SYCL] Fix WARP_SIZE=16 bug of Intel GPU (#8266) * fix group_norm ut * split softmax * fix softmax * add concat support condition * revert debug code * move QK_WARP_SIZE to presets.hpp --- ggml/src/CMakeLists.txt | 2 +- ggml/src/ggml-sycl.cpp | 241 +------------------------------ ggml/src/ggml-sycl/backend.hpp | 1 + ggml/src/ggml-sycl/dmmv.cpp | 31 ++-- ggml/src/ggml-sycl/norm.cpp | 8 +- ggml/src/ggml-sycl/presets.hpp | 1 + ggml/src/ggml-sycl/softmax.cpp | 250 +++++++++++++++++++++++++++++++++ ggml/src/ggml-sycl/softmax.hpp | 24 ++++ 8 files changed, 301 insertions(+), 257 deletions(-) create mode 100644 ggml/src/ggml-sycl/softmax.cpp create mode 100644 ggml/src/ggml-sycl/softmax.hpp diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 08b71d410..8d96a04b5 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -490,7 +490,7 @@ if (GGML_SYCL) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda") add_compile_definitions(GGML_SYCL_WARP_SIZE=32) else() - add_compile_definitions(GGML_SYCL_WARP_SIZE=32) + add_compile_definitions(GGML_SYCL_WARP_SIZE=16) endif() file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp") diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp index dde55335b..053cc950a 100644 --- a/ggml/src/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl.cpp @@ -892,117 +892,6 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX; } - -template -static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par, - const int nrows_y, const float scale, const float max_bias, const float m0, - const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) { - const int ncols = ncols_template == 0 ? ncols_par : ncols_template; - - const int tid = item_ct1.get_local_id(2); - const int rowx = item_ct1.get_group(2); - const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension - - const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template; - - const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; - const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; - - float slope = 1.0f; - - // ALiBi - if (max_bias > 0.0f) { - const uint32_t h = rowx/nrows_y; // head index - - const float base = h < n_head_log2 ? m0 : m1; - const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; - - slope = sycl::pow(base, float(exp)); - } - - float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols; - float max_val = -INFINITY; - - for (int col0 = 0; col0 < ncols; col0 += block_size) { - const int col = col0 + tid; - - if (ncols_template == 0 && col >= ncols) { - break; - } - - const int ix = rowx*ncols + col; - const int iy = rowy*ncols + col; - - const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f); - - vals[col] = val; - max_val = sycl::max(max_val, val); - } - - // find the max value in the block - max_val = warp_reduce_max(max_val, item_ct1); - if (block_size > WARP_SIZE) { - if (warp_id == 0) { - buf[lane_id] = -INFINITY; - } - item_ct1.barrier(sycl::access::fence_space::local_space); - - if (lane_id == 0) { - buf[warp_id] = max_val; - } - item_ct1.barrier(sycl::access::fence_space::local_space); - - max_val = buf[lane_id]; - max_val = warp_reduce_max(max_val, item_ct1); - } - - float tmp = 0.f; - -#pragma unroll - for (int col0 = 0; col0 < ncols; col0 += block_size) { - const int col = col0 + tid; - if (ncols_template == 0 && col >= ncols) { - break; - } - - const float val = sycl::native::exp(vals[col] - max_val); - tmp += val; - vals[col] = val; - } - - // find the sum of exps in the block - tmp = warp_reduce_sum(tmp, item_ct1); - if (block_size > WARP_SIZE) { - item_ct1.barrier(sycl::access::fence_space::local_space); - if (warp_id == 0) { - buf[lane_id] = 0.f; - } - item_ct1.barrier(sycl::access::fence_space::local_space); - - if (lane_id == 0) { - buf[warp_id] = tmp; - } - item_ct1.barrier(sycl::access::fence_space::local_space); - - tmp = buf[lane_id]; - tmp = warp_reduce_sum(tmp, item_ct1); - } - - const float inv_sum = 1.f / tmp; - -#pragma unroll - for (int col0 = 0; col0 < ncols; col0 += block_size) { - const int col = col0 + tid; - - if (ncols_template == 0 && col >= ncols) { - return; - } - - const int idst = rowx*ncols + col; - dst[idst] = vals[col] * inv_sum; - } -} - static void scale_f32(const float * x, float * dst, const float scale, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + @@ -1890,106 +1779,6 @@ static void diag_mask_inf_f32_sycl(const float *x, float *dst, }); } -template -static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par, - const int nrows_y, const float scale, const float max_bias, const float m0, - const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims, - const size_t n_local_scratch, queue_ptr stream) { - stream->submit([&](sycl::handler &cgh) { - sycl::local_accessor local_buf_acc(n_local_scratch, cgh); - - cgh.parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { - soft_max_f32(x, mask, dst, ncols_par, - nrows_y, scale, max_bias, m0, - m1, n_head_log2, item_ct1, - local_buf_acc.get_pointer()); - }); - }); -} - -static void soft_max_f32_sycl(const float * x, const float * mask, - float * dst, const int ncols_x, const int nrows_x, - const int nrows_y, const float scale, const float max_bias, - queue_ptr stream, int device) { - int nth = WARP_SIZE; - int max_block_size = ggml_sycl_info().max_work_group_sizes[device]; - while (nth < ncols_x && nth < max_block_size) nth *= 2; - if (nth>max_block_size) nth = max_block_size; - - const sycl::range<3> block_dims(1, 1, nth); - const sycl::range<3> block_nums(1, 1, nrows_x); - const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE); - - const uint32_t n_head_kv = nrows_x/nrows_y; - const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); - - const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); - const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); - - const size_t local_mem_size = stream->get_device().get_info(); - if (n_local_scratch*sizeof(float) < local_mem_size) { - if (ncols_x > max_block_size) { - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - return; - } - switch (ncols_x) { - case 32: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - case 64: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - case 128: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - case 256: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - case 512: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - case 1024: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - case 2048: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - case 4096: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - default: - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, n_local_scratch, stream); - break; - } - } else { - soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, - max_bias, m0, m1, n_head_log2, block_nums, - block_dims, WARP_SIZE, stream); - } -} - template static void im2col_sycl(const float *x, T *dst, int IW, int IH, int OW, int OH, int KW, int KH, int IC, @@ -3009,33 +2798,6 @@ inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const gg (void) src1_dd; } -inline void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor *dst, - const float *src0_dd, const float *src1_dd, - float *dst_dd, - const queue_ptr &main_stream) { - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - -#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support") -#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") - GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional - - const int64_t ne00 = src0->ne[0]; - const int64_t nrows_x = ggml_nrows(src0); - const int64_t nrows_y = src0->ne[1]; - - float scale = 1.0f; - float max_bias = 0.0f; - - memcpy(&scale, dst->op_params + 0, sizeof(float)); - memcpy(&max_bias, dst->op_params + 1, sizeof(float)); - - soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, - nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device); -} - inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const float *src0_dd, const float *src1_dd, float *dst_dd, @@ -5532,7 +5294,8 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons case GGML_OP_CONCAT: { ggml_type src0_type = op->src[0]->type; - return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; + int dim = op->op_params[0]; + return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16 && dim == 2; } break; case GGML_OP_DUP: case GGML_OP_NONE: diff --git a/ggml/src/ggml-sycl/backend.hpp b/ggml/src/ggml-sycl/backend.hpp index 3afa33919..2a789edfc 100644 --- a/ggml/src/ggml-sycl/backend.hpp +++ b/ggml/src/ggml-sycl/backend.hpp @@ -21,5 +21,6 @@ #include "mmvq.hpp" #include "rope.hpp" #include "norm.hpp" +#include "softmax.hpp" #endif // GGML_SYCL_BACKEND_HPP diff --git a/ggml/src/ggml-sycl/dmmv.cpp b/ggml/src/ggml-sycl/dmmv.cpp index 927819281..70a94fc16 100644 --- a/ggml/src/ggml-sycl/dmmv.cpp +++ b/ggml/src/ggml-sycl/dmmv.cpp @@ -3,6 +3,7 @@ #include "dequantize.hpp" #include "presets.hpp" + static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){ const sycl::half *x = (const sycl::half *)vx; @@ -227,7 +228,7 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -346,7 +347,7 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -499,7 +500,7 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -633,7 +634,7 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -748,7 +749,7 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -873,10 +874,10 @@ static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y, const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -889,10 +890,10 @@ static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -905,10 +906,10 @@ static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -918,10 +919,10 @@ static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); - const sycl::range<3> block_dims(1, 1, WARP_SIZE); + const sycl::range<3> block_dims(1, 1, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1); }); } @@ -934,10 +935,10 @@ static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1); }); } diff --git a/ggml/src/ggml-sycl/norm.cpp b/ggml/src/ggml-sycl/norm.cpp index ed0fa7e31..e0c5dfeca 100644 --- a/ggml/src/ggml-sycl/norm.cpp +++ b/ggml/src/ggml-sycl/norm.cpp @@ -57,6 +57,7 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con const int nwarps = nthreads / WARP_SIZE; assert(nwarps % WARP_SIZE == 0); start += item_ct1.get_local_id(2); + int nreduce = nwarps / WARP_SIZE; if (end >= ne_elements) { end = ne_elements; @@ -87,7 +88,6 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con */ item_ct1.barrier(); tmp = 0.f; - int nreduce = nwarps / WARP_SIZE; for (size_t i = 0; i < nreduce; i += 1) { tmp += s_sum[lane_id + i * WARP_SIZE]; @@ -122,7 +122,11 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con better performance if there is no access to global memory. */ item_ct1.barrier(); - tmp = s_sum[lane_id]; + tmp = 0.f; + for (size_t i = 0; i < nreduce; i += 1) + { + tmp += s_sum[lane_id + i * WARP_SIZE]; + } tmp = warp_reduce_sum(tmp, item_ct1); } diff --git a/ggml/src/ggml-sycl/presets.hpp b/ggml/src/ggml-sycl/presets.hpp index c09c75dc7..15ddcac1f 100644 --- a/ggml/src/ggml-sycl/presets.hpp +++ b/ggml/src/ggml-sycl/presets.hpp @@ -62,4 +62,5 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA #define MUL_MAT_SRC1_COL_STRIDE 128 +#define QK_WARP_SIZE 32 #endif // GGML_SYCL_PRESETS_HPP diff --git a/ggml/src/ggml-sycl/softmax.cpp b/ggml/src/ggml-sycl/softmax.cpp new file mode 100644 index 000000000..e624b6ba3 --- /dev/null +++ b/ggml/src/ggml-sycl/softmax.cpp @@ -0,0 +1,250 @@ +#include "norm.hpp" + +template +static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par, + const int nrows_y, const float scale, const float max_bias, const float m0, + const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) { + const int ncols = ncols_template == 0 ? ncols_par : ncols_template; + + const int tid = item_ct1.get_local_id(2); + const int rowx = item_ct1.get_group(2); + const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension + + const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template; + + const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; + const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; + const int nthreads = block_size; + const int nwarps = nthreads / WARP_SIZE; + int nreduce = nwarps / WARP_SIZE; + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + const uint32_t h = rowx/nrows_y; // head index + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = sycl::pow(base, float(exp)); + } + + float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols; + float max_val = -INFINITY; + + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + + if (ncols_template == 0 && col >= ncols) { + break; + } + + const int ix = rowx*ncols + col; + const int iy = rowy*ncols + col; + + const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f); + + vals[col] = val; + max_val = sycl::max(max_val, val); + } + + // find the max value in the block + max_val = warp_reduce_max(max_val, item_ct1); + if (block_size > WARP_SIZE) { + if (warp_id == 0) { + buf[lane_id] = -INFINITY; + for (size_t i = 1; i < nreduce; i += 1) + buf[lane_id + i * WARP_SIZE] = -INFINITY; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + + if (lane_id == 0) { + buf[warp_id] = max_val; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + max_val = buf[lane_id]; + for (size_t i = 1; i < nreduce; i += 1) + { + max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]); + } + max_val = warp_reduce_max(max_val, item_ct1); + } + + float tmp = 0.f; +#pragma unroll + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + if (ncols_template == 0 && col >= ncols) { + break; + } + + const float val = sycl::native::exp(vals[col] - max_val); + tmp += val; + vals[col] = val; + } + + // find the sum of exps in the block + tmp = warp_reduce_sum(tmp, item_ct1); + if (block_size > WARP_SIZE) { + item_ct1.barrier(sycl::access::fence_space::local_space); + if (warp_id == 0) { + buf[lane_id] = 0.f; + for (size_t i = 1; i < nreduce; i += 1) + buf[lane_id + i * WARP_SIZE] = 0.f; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + + if (lane_id == 0) { + buf[warp_id] = tmp; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + + tmp = buf[lane_id]; + for (size_t i = 1; i < nreduce; i += 1) + { + tmp += buf[lane_id + i * WARP_SIZE]; + } + tmp = warp_reduce_sum(tmp, item_ct1); + } + + const float inv_sum = 1.f / tmp; + +#pragma unroll + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + + if (ncols_template == 0 && col >= ncols) { + return; + } + + const int idst = rowx*ncols + col; + dst[idst] = vals[col] * inv_sum; + } +} + +template +static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par, + const int nrows_y, const float scale, const float max_bias, const float m0, + const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims, + const size_t n_local_scratch, queue_ptr stream) { + stream->submit([&](sycl::handler &cgh) { + sycl::local_accessor local_buf_acc(n_local_scratch, cgh); + + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + soft_max_f32(x, mask, dst, ncols_par, + nrows_y, scale, max_bias, m0, + m1, n_head_log2, item_ct1, + local_buf_acc.get_pointer()); + }); + }); +} + +static void soft_max_f32_sycl(const float * x, const float * mask, + float * dst, const int ncols_x, const int nrows_x, + const int nrows_y, const float scale, const float max_bias, + queue_ptr stream, int device) { + int nth = WARP_SIZE; + int max_block_size = ggml_sycl_info().max_work_group_sizes[device]; + while (nth < ncols_x && nth < max_block_size) nth *= 2; + if (nth>max_block_size) nth = max_block_size; + + const sycl::range<3> block_dims(1, 1, nth); + const sycl::range<3> block_nums(1, 1, nrows_x); + const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE); + + const uint32_t n_head_kv = nrows_x/nrows_y; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + const size_t local_mem_size = stream->get_device().get_info(); + if (n_local_scratch*sizeof(float) < local_mem_size) { + if (ncols_x > max_block_size) { + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + return; + } + switch (ncols_x) { + case 32: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 64: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 128: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 256: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 512: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 1024: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 2048: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 4096: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + default: + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + } + } else { + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, WARP_SIZE, stream); + } +} + +void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, + const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, + float *dst_dd, + const queue_ptr &main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + +#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") + GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional + + const int64_t ne00 = src0->ne[0]; + const int64_t nrows_x = ggml_nrows(src0); + const int64_t nrows_y = src0->ne[1]; + + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, dst->op_params + 1, sizeof(float)); + + soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, + nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device); +} diff --git a/ggml/src/ggml-sycl/softmax.hpp b/ggml/src/ggml-sycl/softmax.hpp new file mode 100644 index 000000000..bdb8f712e --- /dev/null +++ b/ggml/src/ggml-sycl/softmax.hpp @@ -0,0 +1,24 @@ +// +// MIT license +// Copyright (C) 2024 Intel Corporation +// SPDX-License-Identifier: MIT +// + +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// + +#ifndef GGML_SYCL_SOFTMAX_HPP +#define GGML_SYCL_SOFTMAX_HPP + +#include "common.hpp" + +void ggml_sycl_op_soft_max(ggml_backend_sycl_context &ctx, const ggml_tensor *src0, + const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, + float *dst_dd, + const queue_ptr &main_stream); + +#endif // GGML_SYCL_SOFTMAX_HPP