mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 13:00:25 +01:00
code : normalize enum names (#5697)
* coda : normalize enum names ggml-ci * code : cont * code : cont
This commit is contained in:
parent
69917dfa55
commit
ab336a9d5e
@ -295,9 +295,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
std::string value(argv[i]);
|
std::string value(argv[i]);
|
||||||
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
|
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
|
||||||
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
|
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
|
||||||
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
|
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
|
||||||
else { invalid_param = true; break; }
|
else { invalid_param = true; break; }
|
||||||
} else if (arg == "--rope-scale") {
|
} else if (arg == "--rope-scale") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
@ -630,11 +630,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||||||
}
|
}
|
||||||
std::string arg_next = argv[i];
|
std::string arg_next = argv[i];
|
||||||
if (arg_next == "none") {
|
if (arg_next == "none") {
|
||||||
params.split_mode = LLAMA_SPLIT_NONE;
|
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||||
} else if (arg_next == "layer") {
|
} else if (arg_next == "layer") {
|
||||||
params.split_mode = LLAMA_SPLIT_LAYER;
|
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||||
} else if (arg_next == "row") {
|
} else if (arg_next == "row") {
|
||||||
params.split_mode = LLAMA_SPLIT_ROW;
|
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||||
} else {
|
} else {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
@ -837,15 +837,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||||||
sep++;
|
sep++;
|
||||||
if (strncmp(sep, "int:", 4) == 0) {
|
if (strncmp(sep, "int:", 4) == 0) {
|
||||||
sep += 4;
|
sep += 4;
|
||||||
kvo.tag = LLAMA_KV_OVERRIDE_INT;
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||||
kvo.int_value = std::atol(sep);
|
kvo.int_value = std::atol(sep);
|
||||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||||
sep += 6;
|
sep += 6;
|
||||||
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||||
kvo.float_value = std::atof(sep);
|
kvo.float_value = std::atof(sep);
|
||||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||||
sep += 5;
|
sep += 5;
|
||||||
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||||
if (std::strcmp(sep, "true") == 0) {
|
if (std::strcmp(sep, "true") == 0) {
|
||||||
kvo.bool_value = true;
|
kvo.bool_value = true;
|
||||||
} else if (std::strcmp(sep, "false") == 0) {
|
} else if (std::strcmp(sep, "false") == 0) {
|
||||||
|
@ -61,7 +61,7 @@ struct gpt_params {
|
|||||||
float p_split = 0.1f; // speculative decoding split probability
|
float p_split = 0.1f; // speculative decoding split probability
|
||||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||||
@ -75,7 +75,7 @@ struct gpt_params {
|
|||||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||||
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
|
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||||
|
|
||||||
// // sampling parameters
|
// // sampling parameters
|
||||||
|
@ -31,7 +31,7 @@ struct train_state * init_train_state() {
|
|||||||
|
|
||||||
state->opt = new struct ggml_opt_context;
|
state->opt = new struct ggml_opt_context;
|
||||||
state->opt->ctx = NULL;
|
state->opt->ctx = NULL;
|
||||||
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
state->opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||||
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||||
state->opt->loss_after = 0.0f;
|
state->opt->loss_after = 0.0f;
|
||||||
|
|
||||||
@ -556,7 +556,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
|
|||||||
std::string opt_type;
|
std::string opt_type;
|
||||||
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
|
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
|
||||||
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
|
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
|
||||||
opt->params.type = GGML_OPT_ADAM;
|
opt->params.type = GGML_OPT_TYPE_ADAM;
|
||||||
|
|
||||||
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
|
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
|
||||||
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
|
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
|
||||||
@ -568,7 +568,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
|
|||||||
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
|
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
|
||||||
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
|
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
|
||||||
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
|
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
|
||||||
opt->params.type = GGML_OPT_LBFGS;
|
opt->params.type = GGML_OPT_TYPE_LBFGS;
|
||||||
|
|
||||||
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
|
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
|
||||||
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
|
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
|
||||||
@ -603,7 +603,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
|
|||||||
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
|
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
|
||||||
|
|
||||||
switch (opt->params.type) {
|
switch (opt->params.type) {
|
||||||
case GGML_OPT_ADAM:
|
case GGML_OPT_TYPE_ADAM:
|
||||||
{
|
{
|
||||||
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
|
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
|
||||||
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
|
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
|
||||||
@ -622,7 +622,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
|
|||||||
gguf_add_tensor(fctx, opt->adam.pf);
|
gguf_add_tensor(fctx, opt->adam.pf);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
case GGML_OPT_LBFGS:
|
case GGML_OPT_TYPE_LBFGS:
|
||||||
{
|
{
|
||||||
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
|
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
|
||||||
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
|
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
|
||||||
|
@ -1547,7 +1547,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||||
|
|
||||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
|
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS);
|
||||||
opt_params_lbfgs.print_forward_graph = false;
|
opt_params_lbfgs.print_forward_graph = false;
|
||||||
opt_params_lbfgs.print_backward_graph = false;
|
opt_params_lbfgs.print_backward_graph = false;
|
||||||
opt_params_lbfgs.lbfgs.n_iter = 16;
|
opt_params_lbfgs.lbfgs.n_iter = 16;
|
||||||
|
@ -1531,7 +1531,7 @@ int main(int argc, char ** argv) {
|
|||||||
lora.hparams.n_rank_output = n_rank_output;
|
lora.hparams.n_rank_output = n_rank_output;
|
||||||
|
|
||||||
// set opt params from command line
|
// set opt params from command line
|
||||||
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||||
opt->params.print_forward_graph = false;
|
opt->params.print_forward_graph = false;
|
||||||
opt->params.print_backward_graph = false;
|
opt->params.print_backward_graph = false;
|
||||||
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||||
|
@ -157,9 +157,9 @@ static const char * output_format_str(output_formats format) {
|
|||||||
|
|
||||||
static const char * split_mode_str(llama_split_mode mode) {
|
static const char * split_mode_str(llama_split_mode mode) {
|
||||||
switch (mode) {
|
switch (mode) {
|
||||||
case LLAMA_SPLIT_NONE: return "none";
|
case LLAMA_SPLIT_MODE_NONE: return "none";
|
||||||
case LLAMA_SPLIT_LAYER: return "layer";
|
case LLAMA_SPLIT_MODE_LAYER: return "layer";
|
||||||
case LLAMA_SPLIT_ROW: return "row";
|
case LLAMA_SPLIT_MODE_ROW: return "row";
|
||||||
default: GGML_ASSERT(!"invalid split mode");
|
default: GGML_ASSERT(!"invalid split mode");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -193,7 +193,7 @@ static const cmd_params cmd_params_defaults = {
|
|||||||
/* type_v */ {GGML_TYPE_F16},
|
/* type_v */ {GGML_TYPE_F16},
|
||||||
/* n_threads */ {get_num_physical_cores()},
|
/* n_threads */ {get_num_physical_cores()},
|
||||||
/* n_gpu_layers */ {99},
|
/* n_gpu_layers */ {99},
|
||||||
/* split_mode */ {LLAMA_SPLIT_LAYER},
|
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||||
/* main_gpu */ {0},
|
/* main_gpu */ {0},
|
||||||
/* no_kv_offload */ {false},
|
/* no_kv_offload */ {false},
|
||||||
/* mul_mat_q */ {true},
|
/* mul_mat_q */ {true},
|
||||||
@ -358,11 +358,11 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||||||
for (const auto & m : p) {
|
for (const auto & m : p) {
|
||||||
llama_split_mode mode;
|
llama_split_mode mode;
|
||||||
if (m == "none") {
|
if (m == "none") {
|
||||||
mode = LLAMA_SPLIT_NONE;
|
mode = LLAMA_SPLIT_MODE_NONE;
|
||||||
} else if (m == "layer") {
|
} else if (m == "layer") {
|
||||||
mode = LLAMA_SPLIT_LAYER;
|
mode = LLAMA_SPLIT_MODE_LAYER;
|
||||||
} else if (m == "row") {
|
} else if (m == "row") {
|
||||||
mode = LLAMA_SPLIT_ROW;
|
mode = LLAMA_SPLIT_MODE_ROW;
|
||||||
} else {
|
} else {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
|
@ -152,7 +152,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
|||||||
|
|
||||||
ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
|
ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
|
||||||
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
||||||
if (newline_tmp->backend != GGML_BACKEND_CPU) {
|
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
|
||||||
if (newline_tmp->buffer == NULL) {
|
if (newline_tmp->buffer == NULL) {
|
||||||
printf("newline_tmp tensor buffer is NULL\n");
|
printf("newline_tmp tensor buffer is NULL\n");
|
||||||
}
|
}
|
||||||
|
@ -2086,9 +2086,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
std::string value(argv[i]);
|
std::string value(argv[i]);
|
||||||
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
|
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
|
||||||
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
|
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
|
||||||
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
|
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
|
||||||
else { invalid_param = true; break; }
|
else { invalid_param = true; break; }
|
||||||
}
|
}
|
||||||
else if (arg == "--rope-freq-base")
|
else if (arg == "--rope-freq-base")
|
||||||
@ -2212,15 +2212,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
std::string arg_next = argv[i];
|
std::string arg_next = argv[i];
|
||||||
if (arg_next == "none")
|
if (arg_next == "none")
|
||||||
{
|
{
|
||||||
params.split_mode = LLAMA_SPLIT_NONE;
|
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||||
}
|
}
|
||||||
else if (arg_next == "layer")
|
else if (arg_next == "layer")
|
||||||
{
|
{
|
||||||
params.split_mode = LLAMA_SPLIT_LAYER;
|
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||||
}
|
}
|
||||||
else if (arg_next == "row")
|
else if (arg_next == "row")
|
||||||
{
|
{
|
||||||
params.split_mode = LLAMA_SPLIT_ROW;
|
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -2447,15 +2447,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
sep++;
|
sep++;
|
||||||
if (strncmp(sep, "int:", 4) == 0) {
|
if (strncmp(sep, "int:", 4) == 0) {
|
||||||
sep += 4;
|
sep += 4;
|
||||||
kvo.tag = LLAMA_KV_OVERRIDE_INT;
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||||
kvo.int_value = std::atol(sep);
|
kvo.int_value = std::atol(sep);
|
||||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||||
sep += 6;
|
sep += 6;
|
||||||
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||||
kvo.float_value = std::atof(sep);
|
kvo.float_value = std::atof(sep);
|
||||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||||
sep += 5;
|
sep += 5;
|
||||||
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||||
if (std::strcmp(sep, "true") == 0) {
|
if (std::strcmp(sep, "true") == 0) {
|
||||||
kvo.bool_value = true;
|
kvo.bool_value = true;
|
||||||
} else if (std::strcmp(sep, "false") == 0) {
|
} else if (std::strcmp(sep, "false") == 0) {
|
||||||
|
@ -960,7 +960,7 @@ int main(int argc, char ** argv) {
|
|||||||
struct ggml_opt_context * opt = train->opt;
|
struct ggml_opt_context * opt = train->opt;
|
||||||
|
|
||||||
// set opt params from command line
|
// set opt params from command line
|
||||||
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||||
opt->params.print_forward_graph = false;
|
opt->params.print_forward_graph = false;
|
||||||
opt->params.print_backward_graph = false;
|
opt->params.print_backward_graph = false;
|
||||||
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||||
|
138
ggml-cuda.cu
138
ggml-cuda.cu
@ -6369,11 +6369,11 @@ static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int n
|
|||||||
int ixj = col ^ j;
|
int ixj = col ^ j;
|
||||||
if (ixj > col) {
|
if (ixj > col) {
|
||||||
if ((col & k) == 0) {
|
if ((col & k) == 0) {
|
||||||
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||||
swap(dst_row[col], dst_row[ixj]);
|
swap(dst_row[col], dst_row[ixj]);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||||
swap(dst_row[col], dst_row[ixj]);
|
swap(dst_row[col], dst_row[ixj]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -7927,10 +7927,10 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
|
|||||||
|
|
||||||
const dim3 block_dims(ncols, 1, 1);
|
const dim3 block_dims(ncols, 1, 1);
|
||||||
const dim3 block_nums(1, nrows, 1);
|
const dim3 block_nums(1, nrows, 1);
|
||||||
if (order == GGML_SORT_ASC) {
|
if (order == GGML_SORT_ORDER_ASC) {
|
||||||
k_argsort_f32_i32<GGML_SORT_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
} else if (order == GGML_SORT_DESC) {
|
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||||
k_argsort_f32_i32<GGML_SORT_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
@ -8362,11 +8362,11 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
|||||||
|
|
||||||
cudaMemcpyKind kind;
|
cudaMemcpyKind kind;
|
||||||
char * src_ptr;
|
char * src_ptr;
|
||||||
if (src->backend == GGML_BACKEND_CPU) {
|
if (src->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
kind = cudaMemcpyHostToDevice;
|
kind = cudaMemcpyHostToDevice;
|
||||||
src_ptr = (char *) src->data;
|
src_ptr = (char *) src->data;
|
||||||
} else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
|
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||||
GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
||||||
kind = cudaMemcpyDeviceToDevice;
|
kind = cudaMemcpyDeviceToDevice;
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||||
int id;
|
int id;
|
||||||
@ -8771,7 +8771,7 @@ static void ggml_cuda_op_mul_mat_q(
|
|||||||
|
|
||||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
|
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
@ -8920,7 +8920,7 @@ static void ggml_cuda_op_mul_mat_vec_q(
|
|||||||
|
|
||||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
|
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
@ -9096,7 +9096,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|||||||
|
|
||||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||||
// ldc == nrows of the matrix that cuBLAS writes into
|
// ldc == nrows of the matrix that cuBLAS writes into
|
||||||
int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
|
int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
|
||||||
|
|
||||||
const int compute_capability = g_device_caps[id].cc;
|
const int compute_capability = g_device_caps[id].cc;
|
||||||
|
|
||||||
@ -9444,7 +9444,7 @@ static void ggml_cuda_op_soft_max(
|
|||||||
const bool use_src2 = src2 != nullptr;
|
const bool use_src2 = src2 != nullptr;
|
||||||
|
|
||||||
if (use_src2) {
|
if (use_src2) {
|
||||||
const bool src2_on_device = src2->backend == GGML_BACKEND_GPU;
|
const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
|
||||||
|
|
||||||
if (src2_on_device) {
|
if (src2_on_device) {
|
||||||
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
|
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
|
||||||
@ -9502,16 +9502,16 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
const bool use_src1 = src1 != nullptr;
|
const bool use_src1 = src1 != nullptr;
|
||||||
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
||||||
|
|
||||||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
|
|
||||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
|
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
|
||||||
|
|
||||||
// dd = data device
|
// dd = data device
|
||||||
float * src0_ddf = nullptr;
|
float * src0_ddf = nullptr;
|
||||||
@ -9555,7 +9555,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
|
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
|
||||||
}
|
}
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
CUDA_CHECK(cudaDeviceSynchronize());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -9636,8 +9636,8 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
|
|
||||||
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
|
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
|
||||||
|
|
||||||
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
||||||
@ -9653,20 +9653,20 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
|
|
||||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
||||||
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
||||||
|
|
||||||
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||||
|
|
||||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
GGML_ASSERT(!(split && ne02 > 1));
|
GGML_ASSERT(!(split && ne02 > 1));
|
||||||
GGML_ASSERT(!(split && ne03 > 1));
|
GGML_ASSERT(!(split && ne03 > 1));
|
||||||
GGML_ASSERT(!(split && ne02 < ne12));
|
GGML_ASSERT(!(split && ne02 < ne12));
|
||||||
|
|
||||||
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
|
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
|
||||||
if (split) {
|
if (split) {
|
||||||
// TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_GPU_SPLIT check
|
// TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
|
||||||
// GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
|
// GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
|
||||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
|
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
|
||||||
tensor_split = buft_ctx->tensor_split;
|
tensor_split = buft_ctx->tensor_split;
|
||||||
@ -9724,8 +9724,8 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
|
|
||||||
used_devices++;
|
used_devices++;
|
||||||
|
|
||||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
|
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
||||||
|
|
||||||
ggml_cuda_set_device(id);
|
ggml_cuda_set_device(id);
|
||||||
cudaStream_t stream = g_cudaStreams[id][0];
|
cudaStream_t stream = g_cudaStreams[id][0];
|
||||||
@ -9776,8 +9776,8 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
|
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
||||||
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
|
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
|
||||||
|
|
||||||
ggml_cuda_set_device(id);
|
ggml_cuda_set_device(id);
|
||||||
@ -9802,12 +9802,12 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
|
|
||||||
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
||||||
// in that case an offset on dst_ddf_i is needed
|
// in that case an offset on dst_ddf_i is needed
|
||||||
if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
|
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) {
|
||||||
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
|
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
|
||||||
}
|
}
|
||||||
|
|
||||||
// copy src0, src1 to device if necessary
|
// copy src0, src1 to device if necessary
|
||||||
if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
|
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
|
||||||
if (id != g_main_device) {
|
if (id != g_main_device) {
|
||||||
if (convert_src1_to_q8_1) {
|
if (convert_src1_to_q8_1) {
|
||||||
char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
|
char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
|
||||||
@ -9820,14 +9820,14 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
src1_ncols*ne10*sizeof(float), stream));
|
src1_ncols*ne10*sizeof(float), stream));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
|
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
|
||||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
|
||||||
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
|
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
|
||||||
quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
CUDA_CHECK(cudaGetLastError());
|
||||||
}
|
}
|
||||||
@ -9845,10 +9845,10 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
if (!dst_on_device) {
|
if (!dst_on_device) {
|
||||||
void * dst_off_device;
|
void * dst_off_device;
|
||||||
cudaMemcpyKind kind;
|
cudaMemcpyKind kind;
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
dst_off_device = dst->data;
|
dst_off_device = dst->data;
|
||||||
kind = cudaMemcpyDeviceToHost;
|
kind = cudaMemcpyDeviceToHost;
|
||||||
} else if (dst->backend == GGML_BACKEND_GPU) {
|
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
dst_off_device = dst_extra->data_device[g_main_device];
|
dst_off_device = dst_extra->data_device[g_main_device];
|
||||||
kind = cudaMemcpyDeviceToDevice;
|
kind = cudaMemcpyDeviceToDevice;
|
||||||
} else {
|
} else {
|
||||||
@ -9913,7 +9913,7 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
ggml_cuda_set_device(g_main_device);
|
ggml_cuda_set_device(g_main_device);
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
CUDA_CHECK(cudaDeviceSynchronize());
|
||||||
}
|
}
|
||||||
@ -10019,7 +10019,7 @@ GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const stru
|
|||||||
|
|
||||||
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||||||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
@ -10050,7 +10050,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
|
|||||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
@ -10109,7 +10109,7 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm
|
|||||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
|
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
|
|
||||||
GGML_TENSOR_BINARY_OP_LOCALS
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
@ -10255,11 +10255,11 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm
|
|||||||
|
|
||||||
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
const bool all_on_device =
|
const bool all_on_device =
|
||||||
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
|
||||||
(src1->backend == GGML_BACKEND_GPU) &&
|
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
|
||||||
( dst->backend == GGML_BACKEND_GPU);
|
( dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
|
|
||||||
int64_t min_compute_capability = INT_MAX;
|
int64_t min_compute_capability = INT_MAX;
|
||||||
|
|
||||||
@ -10409,7 +10409,7 @@ static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
|
|||||||
GGML_ASSERT(!ggml_is_transposed(src00));
|
GGML_ASSERT(!ggml_is_transposed(src00));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
|
|
||||||
GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
|
const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
|
||||||
@ -10553,7 +10553,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
|
|
||||||
cudaStream_t stream = g_cudaStreams[g_main_device][0];
|
cudaStream_t stream = g_cudaStreams[g_main_device][0];
|
||||||
|
|
||||||
if (ids->backend == GGML_BACKEND_GPU) {
|
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
||||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||||
@ -10570,20 +10570,20 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
ggml_tensor src1_row = *src1;
|
ggml_tensor src1_row = *src1;
|
||||||
ggml_tensor dst_row = *dst;
|
ggml_tensor dst_row = *dst;
|
||||||
|
|
||||||
src1_row.backend = GGML_BACKEND_GPU;
|
src1_row.backend = GGML_BACKEND_TYPE_GPU;
|
||||||
dst_row.backend = GGML_BACKEND_GPU;
|
dst_row.backend = GGML_BACKEND_TYPE_GPU;
|
||||||
|
|
||||||
src1_row.extra = &src1_row_extra;
|
src1_row.extra = &src1_row_extra;
|
||||||
dst_row.extra = &dst_row_extra;
|
dst_row.extra = &dst_row_extra;
|
||||||
|
|
||||||
char * src1_original = src1->backend == GGML_BACKEND_CPU ?
|
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
||||||
(char *) src1->data : (char *) src1_extra->data_device[g_main_device];
|
(char *) src1->data : (char *) src1_extra->data_device[g_main_device];
|
||||||
char * dst_original = dst->backend == GGML_BACKEND_CPU ?
|
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
||||||
(char *) dst->data : (char *) dst_extra->data_device[g_main_device];
|
(char *) dst->data : (char *) dst_extra->data_device[g_main_device];
|
||||||
|
|
||||||
if (src1->ne[1] == 1) {
|
if (src1->ne[1] == 1) {
|
||||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||||
//int32_t row_id;
|
//int32_t row_id;
|
||||||
@ -10611,9 +10611,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
|
src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
|
||||||
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
|
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
|
||||||
|
|
||||||
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ?
|
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
||||||
cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
|
cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
|
||||||
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_CPU ?
|
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
||||||
cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
|
cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
|
||||||
|
|
||||||
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
||||||
@ -10668,7 +10668,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -10685,8 +10685,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
|||||||
const int64_t ne = ggml_nelements(src0);
|
const int64_t ne = ggml_nelements(src0);
|
||||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||||
|
|
||||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||||
@ -10817,9 +10817,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||||||
if (!g_cublas_loaded) return false;
|
if (!g_cublas_loaded) return false;
|
||||||
|
|
||||||
ggml_cuda_func_t func;
|
ggml_cuda_func_t func;
|
||||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
||||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
|
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
|
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
|
||||||
return false;
|
return false;
|
||||||
@ -10966,14 +10966,14 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
|
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||||
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
|
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params->ith != 0) {
|
if (params->ith != 0) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
func(tensor->src[0], tensor->src[1], tensor);
|
func(tensor->src[0], tensor->src[1], tensor);
|
||||||
@ -11072,7 +11072,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
|
|||||||
|
|
||||||
extra->data_device[ctx->device] = tensor->data;
|
extra->data_device[ctx->device] = tensor->data;
|
||||||
|
|
||||||
tensor->backend = GGML_BACKEND_GPU;
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||||
tensor->extra = extra;
|
tensor->extra = extra;
|
||||||
|
|
||||||
if (ggml_is_quantized(tensor->type)) {
|
if (ggml_is_quantized(tensor->type)) {
|
||||||
@ -11087,7 +11087,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
|
|||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||||
|
|
||||||
@ -11098,7 +11098,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t
|
|||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||||
|
|
||||||
@ -11333,7 +11333,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu
|
|||||||
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
|
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
tensor->backend = GGML_BACKEND_GPU_SPLIT;
|
tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
tensor->extra = extra;
|
tensor->extra = extra;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -11605,7 +11605,7 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend,
|
|||||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||||
|
|
||||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
|
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
|
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
|
||||||
}
|
}
|
||||||
@ -11614,7 +11614,7 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend,
|
|||||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||||
|
|
||||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
|
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
|
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
|
||||||
}
|
}
|
||||||
@ -11644,7 +11644,7 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg
|
|||||||
ggml_cuda_set_main_device(cuda_ctx->device);
|
ggml_cuda_set_main_device(cuda_ctx->device);
|
||||||
|
|
||||||
ggml_compute_params params = {};
|
ggml_compute_params params = {};
|
||||||
params.type = GGML_TASK_COMPUTE;
|
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||||
params.ith = 0;
|
params.ith = 0;
|
||||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
ggml_tensor * node = cgraph->nodes[i];
|
ggml_tensor * node = cgraph->nodes[i];
|
||||||
@ -11654,13 +11654,13 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg
|
|||||||
}
|
}
|
||||||
|
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
assert(node->backend == GGML_BACKEND_GPU || node->backend == GGML_BACKEND_GPU_SPLIT);
|
assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||||
assert(node->extra != nullptr);
|
assert(node->extra != nullptr);
|
||||||
|
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
if (node->src[j] != nullptr) {
|
if (node->src[j] != nullptr) {
|
||||||
assert(node->src[j]->backend == GGML_BACKEND_GPU || node->src[j]->backend == GGML_BACKEND_GPU_SPLIT);
|
assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
|
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
|
||||||
assert(node->src[j]->extra != nullptr);
|
assert(node->src[j]->extra != nullptr);
|
||||||
}
|
}
|
||||||
|
@ -2262,8 +2262,8 @@ static bool ggml_metal_graph_compute(
|
|||||||
id<MTLComputePipelineState> pipeline = nil;
|
id<MTLComputePipelineState> pipeline = nil;
|
||||||
|
|
||||||
switch (order) {
|
switch (order) {
|
||||||
case GGML_SORT_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
|
case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
|
||||||
case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
|
case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
|
||||||
default: GGML_ASSERT(false);
|
default: GGML_ASSERT(false);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -1354,7 +1354,7 @@ static void ggml_cl_pool_free(cl_mem mem, size_t size) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
||||||
if (tensor->backend != GGML_BACKEND_GPU) {
|
if (tensor->backend != GGML_BACKEND_TYPE_GPU) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1412,7 +1412,7 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
const int64_t ne01 = src0->ne[1];
|
const int64_t ne01 = src0->ne[1];
|
||||||
const int64_t ne02 = src0->ne[2];
|
const int64_t ne02 = src0->ne[2];
|
||||||
@ -1476,7 +1476,7 @@ void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
const int64_t ne01 = src0->ne[1];
|
const int64_t ne01 = src0->ne[1];
|
||||||
const int64_t ne02 = src0->ne[2];
|
const int64_t ne02 = src0->ne[2];
|
||||||
@ -1566,13 +1566,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
size_t y_size;
|
size_t y_size;
|
||||||
size_t d_size;
|
size_t d_size;
|
||||||
cl_mem d_X;
|
cl_mem d_X;
|
||||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
||||||
d_X = (cl_mem) src0->extra;
|
d_X = (cl_mem) src0->extra;
|
||||||
} else {
|
} else {
|
||||||
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||||
}
|
}
|
||||||
cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||||
cl_mem d_D = dst->backend == GGML_BACKEND_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||||
|
|
||||||
size_t x_offset = 0;
|
size_t x_offset = 0;
|
||||||
|
|
||||||
@ -1580,7 +1580,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
// TODO: copy src0 here when r3>1
|
// TODO: copy src0 here when r3>1
|
||||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||||
if (src0->backend == GGML_BACKEND_GPU) {
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||||
} else {
|
} else {
|
||||||
// copy src0 to device
|
// copy src0 to device
|
||||||
@ -1589,7 +1589,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
|
|
||||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||||
// copy src1 to device
|
// copy src1 to device
|
||||||
if (src1->backend == GGML_BACKEND_CPU) {
|
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1612,7 +1612,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
}
|
}
|
||||||
|
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||||
}
|
}
|
||||||
@ -1621,13 +1621,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (src0->backend != GGML_BACKEND_GPU) {
|
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
||||||
ggml_cl_pool_free(d_X, x_size);
|
ggml_cl_pool_free(d_X, x_size);
|
||||||
}
|
}
|
||||||
if (src1->backend != GGML_BACKEND_GPU) {
|
if (src1->backend != GGML_BACKEND_TYPE_GPU) {
|
||||||
ggml_cl_pool_free(d_Y, y_size);
|
ggml_cl_pool_free(d_Y, y_size);
|
||||||
}
|
}
|
||||||
if (dst->backend != GGML_BACKEND_GPU) {
|
if (dst->backend != GGML_BACKEND_TYPE_GPU) {
|
||||||
ggml_cl_pool_free(d_D, d_size);
|
ggml_cl_pool_free(d_D, d_size);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1670,7 +1670,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
size_t y_size;
|
size_t y_size;
|
||||||
size_t d_size;
|
size_t d_size;
|
||||||
cl_mem d_X;
|
cl_mem d_X;
|
||||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
||||||
d_X = (cl_mem) src0->extra;
|
d_X = (cl_mem) src0->extra;
|
||||||
} else {
|
} else {
|
||||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||||
@ -1687,7 +1687,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
// TODO: copy src0 here when r3>1
|
// TODO: copy src0 here when r3>1
|
||||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||||
if (src0->backend == GGML_BACKEND_GPU) {
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||||
} else {
|
} else {
|
||||||
// copy src0 to device
|
// copy src0 to device
|
||||||
@ -1741,7 +1741,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
}
|
}
|
||||||
|
|
||||||
// copy dst to host, then convert to float
|
// copy dst to host, then convert to float
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||||
@ -1753,7 +1753,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (src0->backend != GGML_BACKEND_GPU) {
|
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
||||||
ggml_cl_pool_free(d_X, x_size);
|
ggml_cl_pool_free(d_X, x_size);
|
||||||
}
|
}
|
||||||
ggml_cl_pool_free(d_Y, y_size);
|
ggml_cl_pool_free(d_Y, y_size);
|
||||||
@ -1798,7 +1798,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||||
cl_mem d_Q;
|
cl_mem d_Q;
|
||||||
if (src0->backend == GGML_BACKEND_CPU) {
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
|
d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1817,10 +1817,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||||
// copy src0 to device if necessary
|
// copy src0 to device if necessary
|
||||||
if (src0->backend == GGML_BACKEND_CPU) {
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
events.emplace_back();
|
events.emplace_back();
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
d_Q = (cl_mem) src0->extra;
|
d_Q = (cl_mem) src0->extra;
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
@ -1829,7 +1829,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
if (!mul_mat_vec) {
|
if (!mul_mat_vec) {
|
||||||
// convert src0 to fp32 on device
|
// convert src0 to fp32 on device
|
||||||
const size_t global = x_ne / global_denom;
|
const size_t global = x_ne / global_denom;
|
||||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
||||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
||||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||||
@ -1843,7 +1843,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
|
|
||||||
// compute
|
// compute
|
||||||
const size_t global = ne01 * local;
|
const size_t global = ne01 * local;
|
||||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||||
const cl_int ncols = ne00;
|
const cl_int ncols = ne00;
|
||||||
events.emplace_back();
|
events.emplace_back();
|
||||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||||
@ -1895,7 +1895,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
}
|
}
|
||||||
ggml_cl_pool_free(d_Y, y_size);
|
ggml_cl_pool_free(d_Y, y_size);
|
||||||
ggml_cl_pool_free(d_D, d_size);
|
ggml_cl_pool_free(d_D, d_size);
|
||||||
if (src0->backend == GGML_BACKEND_CPU) {
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
ggml_cl_pool_free(d_Q, q_size);
|
ggml_cl_pool_free(d_Q, q_size);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1911,7 +1911,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
|
|||||||
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||||
src1->type == GGML_TYPE_F32 &&
|
src1->type == GGML_TYPE_F32 &&
|
||||||
dst->type == GGML_TYPE_F32 &&
|
dst->type == GGML_TYPE_F32 &&
|
||||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
|
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1993,7 +1993,7 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
|||||||
CL_CHECK(clFinish(queue));
|
CL_CHECK(clFinish(queue));
|
||||||
|
|
||||||
tensor->extra = dst;
|
tensor->extra = dst;
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml-backend
|
// ggml-backend
|
||||||
@ -2045,7 +2045,7 @@ static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
|||||||
ctx->sub_buffers.push_back(sub_buffer);
|
ctx->sub_buffers.push_back(sub_buffer);
|
||||||
tensor->extra = sub_buffer;
|
tensor->extra = sub_buffer;
|
||||||
}
|
}
|
||||||
tensor->backend = GGML_BACKEND_GPU;
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||||
|
152
ggml-sycl.cpp
152
ggml-sycl.cpp
@ -3338,7 +3338,7 @@ void print_ggml_tensor(const char*name, struct ggml_tensor *src){
|
|||||||
|
|
||||||
size_t total_elements = ggml_nelements(src);
|
size_t total_elements = ggml_nelements(src);
|
||||||
|
|
||||||
const bool src_on_device = src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool src_on_device = src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
float *src_data =NULL;
|
float *src_data =NULL;
|
||||||
if(src_on_device) {
|
if(src_on_device) {
|
||||||
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
|
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||||
@ -8086,11 +8086,11 @@ static void k_argsort_f32_i32(const float * x, int * dst, const int ncols,
|
|||||||
int ixj = col ^ j;
|
int ixj = col ^ j;
|
||||||
if (ixj > col) {
|
if (ixj > col) {
|
||||||
if ((col & k) == 0) {
|
if ((col & k) == 0) {
|
||||||
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||||
swap(dst_row[col], dst_row[ixj]);
|
swap(dst_row[col], dst_row[ixj]);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||||
swap(dst_row[col], dst_row[ixj]);
|
swap(dst_row[col], dst_row[ixj]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -10825,7 +10825,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
|||||||
|
|
||||||
const sycl::range<3> block_dims(1, 1, ncols);
|
const sycl::range<3> block_dims(1, 1, ncols);
|
||||||
const sycl::range<3> block_nums(1, nrows, 1);
|
const sycl::range<3> block_nums(1, nrows, 1);
|
||||||
if (order == GGML_SORT_ASC) {
|
if (order == GGML_SORT_ORDER_ASC) {
|
||||||
/*
|
/*
|
||||||
DPCT1049:44: The work-group size passed to the SYCL kernel may exceed
|
DPCT1049:44: The work-group size passed to the SYCL kernel may exceed
|
||||||
the limit. To get the device limit, query
|
the limit. To get the device limit, query
|
||||||
@ -10834,9 +10834,9 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
|||||||
stream->parallel_for(
|
stream->parallel_for(
|
||||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||||
[=](sycl::nd_item<3> item_ct1) {
|
[=](sycl::nd_item<3> item_ct1) {
|
||||||
k_argsort_f32_i32<GGML_SORT_ASC>(x, dst, ncols, item_ct1);
|
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(x, dst, ncols, item_ct1);
|
||||||
});
|
});
|
||||||
} else if (order == GGML_SORT_DESC) {
|
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||||
/*
|
/*
|
||||||
DPCT1049:45: The work-group size passed to the SYCL kernel may exceed
|
DPCT1049:45: The work-group size passed to the SYCL kernel may exceed
|
||||||
the limit. To get the device limit, query
|
the limit. To get the device limit, query
|
||||||
@ -10845,7 +10845,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
|||||||
stream->parallel_for(
|
stream->parallel_for(
|
||||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||||
[=](sycl::nd_item<3> item_ct1) {
|
[=](sycl::nd_item<3> item_ct1) {
|
||||||
k_argsort_f32_i32<GGML_SORT_DESC>(x, dst, ncols, item_ct1);
|
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(x, dst, ncols, item_ct1);
|
||||||
});
|
});
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
@ -11407,12 +11407,12 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
|
|||||||
|
|
||||||
dpct::memcpy_direction kind;
|
dpct::memcpy_direction kind;
|
||||||
char * src_ptr;
|
char * src_ptr;
|
||||||
if (src->backend == GGML_BACKEND_CPU) {
|
if (src->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
kind = dpct::host_to_device;
|
kind = dpct::host_to_device;
|
||||||
src_ptr = (char *) src->data;
|
src_ptr = (char *) src->data;
|
||||||
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_CPU src_ptr %p\n", src_ptr);
|
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
|
||||||
} else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
|
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||||
GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
||||||
kind = dpct::device_to_device;
|
kind = dpct::device_to_device;
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||||
int id;
|
int id;
|
||||||
@ -11846,7 +11846,7 @@ inline void ggml_sycl_op_mul_mat_q(
|
|||||||
|
|
||||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||||
// nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
|
// nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
|
||||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
|
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
@ -12119,7 +12119,7 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
|||||||
|
|
||||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||||
// ldc == nrows of the matrix that cuBLAS writes into
|
// ldc == nrows of the matrix that cuBLAS writes into
|
||||||
int ldc = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
|
int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
|
||||||
|
|
||||||
#ifdef GGML_SYCL_F16
|
#ifdef GGML_SYCL_F16
|
||||||
bool use_fp16 = true; // TODO(Yu) SYCL capability check
|
bool use_fp16 = true; // TODO(Yu) SYCL capability check
|
||||||
@ -12501,16 +12501,16 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0,
|
|||||||
const bool use_src1 = src1 != nullptr;
|
const bool use_src1 = src1 != nullptr;
|
||||||
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
||||||
|
|
||||||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
|
|
||||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
|
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
|
||||||
|
|
||||||
// dd = data device
|
// dd = data device
|
||||||
float * src0_ddf = nullptr;
|
float * src0_ddf = nullptr;
|
||||||
@ -12565,7 +12565,7 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0,
|
|||||||
main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst))));
|
main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst))));
|
||||||
}
|
}
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||||
dpct::get_current_device().queues_wait_and_throw()));
|
dpct::get_current_device().queues_wait_and_throw()));
|
||||||
}
|
}
|
||||||
@ -12640,8 +12640,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
|
|
||||||
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
|
|
||||||
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
||||||
|
|
||||||
@ -12656,13 +12656,13 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||||||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
|
|
||||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
||||||
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
||||||
|
|
||||||
int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||||
|
|
||||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
GGML_ASSERT(!(split && ne02 > 1));
|
GGML_ASSERT(!(split && ne02 > 1));
|
||||||
GGML_ASSERT(!(split && ne03 > 1));
|
GGML_ASSERT(!(split && ne03 > 1));
|
||||||
GGML_ASSERT(!(split && ne02 < ne12));
|
GGML_ASSERT(!(split && ne02 < ne12));
|
||||||
@ -12717,8 +12717,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||||||
|
|
||||||
used_devices++;
|
used_devices++;
|
||||||
|
|
||||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
|
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
||||||
|
|
||||||
ggml_sycl_set_device(get_device_id_by_index(id));
|
ggml_sycl_set_device(get_device_id_by_index(id));
|
||||||
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
||||||
@ -12782,8 +12782,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
|
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
||||||
const int64_t row_diff = row_high[id] - row_low[id];
|
const int64_t row_diff = row_high[id] - row_low[id];
|
||||||
|
|
||||||
ggml_sycl_set_device(get_device_id_by_index(id));
|
ggml_sycl_set_device(get_device_id_by_index(id));
|
||||||
@ -12809,12 +12809,12 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||||||
|
|
||||||
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
||||||
// in that case an offset on dst_ddf_i is needed
|
// in that case an offset on dst_ddf_i is needed
|
||||||
if (dst->backend == GGML_BACKEND_GPU && id == g_main_device_index) {
|
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index) {
|
||||||
dst_dd_i += row_low[id]; // offset is 0 if no tensor split
|
dst_dd_i += row_low[id]; // offset is 0 if no tensor split
|
||||||
}
|
}
|
||||||
|
|
||||||
// copy src0, src1 to device if necessary
|
// copy src0, src1 to device if necessary
|
||||||
if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
|
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
|
||||||
if (id != g_main_device_index) {
|
if (id != g_main_device_index) {
|
||||||
if (convert_src1_to_q8_1) {
|
if (convert_src1_to_q8_1) {
|
||||||
char * src1_ddq_i_source = src1_ddq[g_main_device_index] + src1_ddq_i_offset;
|
char * src1_ddq_i_source = src1_ddq[g_main_device_index] + src1_ddq_i_offset;
|
||||||
@ -12830,14 +12830,14 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||||||
src1_ncols * ne10 * sizeof(float))));
|
src1_ncols * ne10 * sizeof(float))));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
|
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
|
||||||
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
|
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
|
||||||
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
|
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
|
||||||
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
||||||
/*
|
/*
|
||||||
DPCT1010:92: SYCL uses exceptions to report errors and does
|
DPCT1010:92: SYCL uses exceptions to report errors and does
|
||||||
@ -12867,10 +12867,10 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||||||
if (!dst_on_device) {
|
if (!dst_on_device) {
|
||||||
void * dst_off_device;
|
void * dst_off_device;
|
||||||
dpct::memcpy_direction kind;
|
dpct::memcpy_direction kind;
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
dst_off_device = dst->data;
|
dst_off_device = dst->data;
|
||||||
kind = dpct::device_to_host;
|
kind = dpct::device_to_host;
|
||||||
} else if (dst->backend == GGML_BACKEND_GPU) {
|
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
dst_off_device = dst_extra->data_device[g_main_device_index];
|
dst_off_device = dst_extra->data_device[g_main_device_index];
|
||||||
kind = dpct::device_to_device;
|
kind = dpct::device_to_device;
|
||||||
} else {
|
} else {
|
||||||
@ -12954,7 +12954,7 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||||
dpct::get_current_device().queues_wait_and_throw()));
|
dpct::get_current_device().queues_wait_and_throw()));
|
||||||
@ -13091,7 +13091,7 @@ static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0,
|
|||||||
const ggml_tensor *src1,
|
const ggml_tensor *src1,
|
||||||
ggml_tensor *dst) try {
|
ggml_tensor *dst) try {
|
||||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||||||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
@ -13129,7 +13129,7 @@ static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0,
|
|||||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
@ -13196,7 +13196,7 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0,
|
|||||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
|
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
@ -13372,11 +13372,11 @@ catch (sycl::exception const &exc) {
|
|||||||
|
|
||||||
static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
const bool all_on_device =
|
const bool all_on_device =
|
||||||
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
|
||||||
(src1->backend == GGML_BACKEND_GPU) &&
|
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
|
||||||
( dst->backend == GGML_BACKEND_GPU);
|
( dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
|
|
||||||
int64_t min_compute_capability = INT_MAX;
|
int64_t min_compute_capability = INT_MAX;
|
||||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||||
@ -13505,7 +13505,7 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
|
|||||||
GGML_ASSERT(!ggml_is_transposed(src00));
|
GGML_ASSERT(!ggml_is_transposed(src00));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
|
|
||||||
GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
|
GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
|
||||||
@ -13643,7 +13643,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
|
|||||||
|
|
||||||
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
||||||
|
|
||||||
if (ids->backend == GGML_BACKEND_GPU) {
|
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index];
|
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index];
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||||
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
|
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
|
||||||
@ -13661,20 +13661,20 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
|
|||||||
ggml_tensor src1_row = *src1;
|
ggml_tensor src1_row = *src1;
|
||||||
ggml_tensor dst_row = *dst;
|
ggml_tensor dst_row = *dst;
|
||||||
|
|
||||||
src1_row.backend = GGML_BACKEND_GPU;
|
src1_row.backend = GGML_BACKEND_TYPE_GPU;
|
||||||
dst_row.backend = GGML_BACKEND_GPU;
|
dst_row.backend = GGML_BACKEND_TYPE_GPU;
|
||||||
|
|
||||||
src1_row.extra = &src1_row_extra;
|
src1_row.extra = &src1_row_extra;
|
||||||
dst_row.extra = &dst_row_extra;
|
dst_row.extra = &dst_row_extra;
|
||||||
|
|
||||||
char * src1_original = src1->backend == GGML_BACKEND_CPU ?
|
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
||||||
(char *) src1->data : (char *) src1_extra->data_device[g_main_device_index];
|
(char *) src1->data : (char *) src1_extra->data_device[g_main_device_index];
|
||||||
char * dst_original = dst->backend == GGML_BACKEND_CPU ?
|
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
||||||
(char *) dst->data : (char *) dst_extra->data_device[g_main_device_index];
|
(char *) dst->data : (char *) dst_extra->data_device[g_main_device_index];
|
||||||
|
|
||||||
if (src1->ne[1] == 1) {
|
if (src1->ne[1] == 1) {
|
||||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||||
//int32_t row_id;
|
//int32_t row_id;
|
||||||
@ -13756,7 +13756,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
|
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -13779,8 +13779,8 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
|
|||||||
const int64_t ne = ggml_nelements(src0);
|
const int64_t ne = ggml_nelements(src0);
|
||||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||||
|
|
||||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||||
@ -13887,17 +13887,17 @@ void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
|
|||||||
memset(extra, 0, sizeof(*extra));
|
memset(extra, 0, sizeof(*extra));
|
||||||
|
|
||||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||||
if (backend == GGML_BACKEND_GPU && id != g_main_device_index) {
|
if (backend == GGML_BACKEND_TYPE_GPU && id != g_main_device_index) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
ggml_sycl_set_device(get_device_id_by_index(id));
|
ggml_sycl_set_device(get_device_id_by_index(id));
|
||||||
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
||||||
|
|
||||||
int64_t row_low, row_high;
|
int64_t row_low, row_high;
|
||||||
if (backend == GGML_BACKEND_GPU) {
|
if (backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
row_low = 0;
|
row_low = 0;
|
||||||
row_high = nrows;
|
row_high = nrows;
|
||||||
} else if (backend == GGML_BACKEND_GPU_SPLIT) {
|
} else if (backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||||
const int64_t rounding = get_row_rounding(tensor->type);
|
const int64_t rounding = get_row_rounding(tensor->type);
|
||||||
|
|
||||||
row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
|
row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
|
||||||
@ -13946,7 +13946,7 @@ void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
|
|||||||
|
|
||||||
extra->data_device[id] = buf;
|
extra->data_device[id] = buf;
|
||||||
|
|
||||||
if (backend == GGML_BACKEND_GPU_SPLIT) {
|
if (backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||||
for (int64_t is = 0; is < MAX_STREAMS; ++is) {
|
for (int64_t is = 0; is < MAX_STREAMS; ++is) {
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(extra->events[id][is] =
|
SYCL_CHECK(CHECK_TRY_ERROR(extra->events[id][is] =
|
||||||
new sycl::event()));
|
new sycl::event()));
|
||||||
@ -13963,7 +13963,7 @@ catch (sycl::exception const &exc) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void ggml_sycl_free_data(struct ggml_tensor *tensor) try {
|
void ggml_sycl_free_data(struct ggml_tensor *tensor) try {
|
||||||
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
|
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_TYPE_GPU && tensor->backend != GGML_BACKEND_TYPE_GPU_SPLIT) ) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -14016,15 +14016,15 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
tensor->backend = GGML_BACKEND_GPU;
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||||
|
|
||||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
|
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
const ggml_op src0_op = tensor->src[0]->op;
|
const ggml_op src0_op = tensor->src[0]->op;
|
||||||
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
|
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
|
||||||
ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
|
ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
|
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
|
ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -14042,7 +14042,7 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
|
|||||||
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
||||||
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
||||||
|
|
||||||
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
|
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
|
||||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
|
||||||
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
||||||
size_t offset = 0;
|
size_t offset = 0;
|
||||||
@ -14111,7 +14111,7 @@ void ggml_sycl_assign_scratch_offset(struct ggml_tensor *tensor,
|
|||||||
|
|
||||||
const bool inplace = tensor->view_src != nullptr;
|
const bool inplace = tensor->view_src != nullptr;
|
||||||
|
|
||||||
if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
|
if (inplace && (tensor->view_src->backend == GGML_BACKEND_TYPE_GPU || tensor->view_src->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
|
||||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
|
||||||
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
||||||
size_t view_offset = 0;
|
size_t view_offset = 0;
|
||||||
@ -14132,7 +14132,7 @@ catch (sycl::exception const &exc) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try {
|
void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try {
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
GGML_ASSERT(ggml_is_contiguous(tensor));
|
GGML_ASSERT(ggml_is_contiguous(tensor));
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
@ -14219,9 +14219,9 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
|
|||||||
if (!g_sycl_loaded) return false;
|
if (!g_sycl_loaded) return false;
|
||||||
|
|
||||||
ggml_sycl_func_t func;
|
ggml_sycl_func_t func;
|
||||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
||||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
|
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
|
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
|
||||||
return false;
|
return false;
|
||||||
@ -14359,14 +14359,14 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
|
|||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
|
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||||
ggml_sycl_set_peer_access(tensor->src[1]->ne[1]);
|
ggml_sycl_set_peer_access(tensor->src[1]->ne[1]);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params->ith != 0) {
|
if (params->ith != 0) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
func(tensor->src[0], tensor->src[1], tensor);
|
func(tensor->src[0], tensor->src[1], tensor);
|
||||||
@ -14517,7 +14517,7 @@ static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
|||||||
|
|
||||||
extra->data_device[ctx->device] = tensor->data;
|
extra->data_device[ctx->device] = tensor->data;
|
||||||
|
|
||||||
tensor->backend = GGML_BACKEND_GPU;
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||||
tensor->extra = extra;
|
tensor->extra = extra;
|
||||||
|
|
||||||
if (ggml_is_quantized(tensor->type)) {
|
if (ggml_is_quantized(tensor->type)) {
|
||||||
@ -14548,7 +14548,7 @@ static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
|||||||
ggml_tensor *tensor,
|
ggml_tensor *tensor,
|
||||||
const void *data, size_t offset,
|
const void *data, size_t offset,
|
||||||
size_t size) try {
|
size_t size) try {
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||||||
|
|
||||||
@ -14573,7 +14573,7 @@ static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
|||||||
const ggml_tensor *tensor,
|
const ggml_tensor *tensor,
|
||||||
void *data, size_t offset,
|
void *data, size_t offset,
|
||||||
size_t size) try {
|
size_t size) try {
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||||||
|
|
||||||
@ -14809,7 +14809,7 @@ static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
|
|||||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||||
|
|
||||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
|
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
|
||||||
(char *)tensor->data + offset, data, size)));
|
(char *)tensor->data + offset, data, size)));
|
||||||
@ -14827,7 +14827,7 @@ static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
|
|||||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||||
|
|
||||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
|
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
|
||||||
data, (const char *)tensor->data + offset, size)));
|
data, (const char *)tensor->data + offset, size)));
|
||||||
@ -14880,7 +14880,7 @@ static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph
|
|||||||
ggml_sycl_set_main_device(sycl_ctx->device);
|
ggml_sycl_set_main_device(sycl_ctx->device);
|
||||||
|
|
||||||
ggml_compute_params params = {};
|
ggml_compute_params params = {};
|
||||||
params.type = GGML_TASK_COMPUTE;
|
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||||
params.ith = 0;
|
params.ith = 0;
|
||||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
ggml_tensor * node = cgraph->nodes[i];
|
ggml_tensor * node = cgraph->nodes[i];
|
||||||
@ -14888,13 +14888,13 @@ static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph
|
|||||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
|
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
|
||||||
continue;
|
continue;
|
||||||
|
|
||||||
assert(node->backend == GGML_BACKEND_GPU);
|
assert(node->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
||||||
assert(node->extra != nullptr);
|
assert(node->extra != nullptr);
|
||||||
|
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
if (node->src[j] != nullptr) {
|
if (node->src[j] != nullptr) {
|
||||||
assert(node->src[j]->backend == GGML_BACKEND_GPU);
|
assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
||||||
assert(node->src[j]->extra != nullptr);
|
assert(node->src[j]->extra != nullptr);
|
||||||
}
|
}
|
||||||
|
102
ggml-vulkan.cpp
102
ggml-vulkan.cpp
@ -2320,8 +2320,8 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
|
|||||||
src1_uma = d_Qy != nullptr;
|
src1_uma = d_Qy != nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||||
|
|
||||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||||
@ -2453,7 +2453,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
|
|||||||
// compute
|
// compute
|
||||||
ggml_vk_matmul(ctx, subctx, *pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT
|
ggml_vk_matmul(ctx, subctx, *pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) ((char *) dst->data);
|
float * d = (float *) ((char *) dst->data);
|
||||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
|
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
|
||||||
@ -2506,8 +2506,8 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
|
|||||||
src1_uma = d_Qy != nullptr;
|
src1_uma = d_Qy != nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||||
|
|
||||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||||
@ -2630,7 +2630,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
|
|||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, *dmmv, { { d_X, x_offset, x_sz }, { d_Y, y_buffer_offset, y_sz + y_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1});
|
ggml_vk_dispatch_pipeline(ctx, subctx, *dmmv, { { d_X, x_offset, x_sz }, { d_Y, y_buffer_offset, y_sz + y_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1});
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
@ -2647,7 +2647,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
|
||||||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
@ -2679,7 +2679,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||||||
src1_uma = d_Qy != nullptr;
|
src1_uma = d_Qy != nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||||
|
|
||||||
const uint64_t x_ne = ne00 * ne01 * ne02;
|
const uint64_t x_ne = ne00 * ne01 * ne02;
|
||||||
const uint64_t y_ne = ne10 * ne11 * ne12;
|
const uint64_t y_ne = ne10 * ne11 * ne12;
|
||||||
@ -2721,7 +2721,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) dst->data;
|
float * d = (float *) dst->data;
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
@ -2738,7 +2738,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
@ -2771,7 +2771,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||||||
src1_uma = d_Qy != nullptr;
|
src1_uma = d_Qy != nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||||
|
|
||||||
const uint64_t d_ne = ne01 * ne11 * ne12;
|
const uint64_t d_ne = ne01 * ne11 * ne12;
|
||||||
|
|
||||||
@ -2814,7 +2814,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) dst->data;
|
float * d = (float *) dst->data;
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
@ -2832,7 +2832,7 @@ static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||||
(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
|
(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
|
||||||
dst->type == GGML_TYPE_F32 &&
|
dst->type == GGML_TYPE_F32 &&
|
||||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU);
|
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||||
@ -2880,8 +2880,8 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
|
|||||||
// TODO: support for transposed / permuted tensors
|
// TODO: support for transposed / permuted tensors
|
||||||
GGML_ASSERT(nb0 == sizeof(float));
|
GGML_ASSERT(nb0 == sizeof(float));
|
||||||
GGML_ASSERT(nb00 == sizeof(float));
|
GGML_ASSERT(nb00 == sizeof(float));
|
||||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
@ -3110,8 +3110,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
const bool transfer_src0 = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||||
|
|
||||||
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment);
|
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment);
|
||||||
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||||
@ -3120,7 +3120,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||||
|
|
||||||
// Workaround for tiny tensor inputs on ROPE
|
// Workaround for tiny tensor inputs on ROPE
|
||||||
if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > d_D->size) {
|
if (use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU && y_sz > d_D->size) {
|
||||||
y_sz = VK_WHOLE_SIZE;
|
y_sz = VK_WHOLE_SIZE;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -3209,9 +3209,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
}
|
}
|
||||||
if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU && op == GGML_OP_CPY) {
|
||||||
ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst);
|
ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst);
|
||||||
} else if(dst->backend == GGML_BACKEND_CPU) {
|
} else if(dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) dst->data;
|
float * d = (float *) dst->data;
|
||||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz);
|
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz);
|
||||||
@ -3253,7 +3253,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
}
|
}
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
|
ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
|
||||||
}
|
}
|
||||||
@ -3359,7 +3359,7 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
|
|||||||
|
|
||||||
static void ggml_vk_nop(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_nop(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
// If backend is CPU, data from src0 has to be copied off the device
|
// If backend is CPU, data from src0 has to be copied off the device
|
||||||
if (dst->backend == GGML_BACKEND_CPU) {
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
vk_buffer d_D = extra_src0->buffer_gpu.lock();
|
vk_buffer d_D = extra_src0->buffer_gpu.lock();
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
@ -3994,9 +3994,9 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm
|
|||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
|
std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
const bool any_on_device = node->backend == GGML_BACKEND_GPU
|
const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU
|
||||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||||
|| (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU));
|
|| (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_TYPE_GPU));
|
||||||
|
|
||||||
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) {
|
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) {
|
||||||
return;
|
return;
|
||||||
@ -4215,9 +4215,9 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){
|
static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){
|
||||||
const bool any_on_device = node->backend == GGML_BACKEND_GPU
|
const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU
|
||||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||||
|| (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU);
|
|| (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) {
|
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) {
|
||||||
return;
|
return;
|
||||||
@ -4371,7 +4371,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||||||
last_node = true;
|
last_node = true;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if (node->backend == GGML_BACKEND_CPU || last_node) {
|
if (node->backend == GGML_BACKEND_TYPE_CPU || last_node) {
|
||||||
ggml_vk_ctx_end(ctx->compute_ctx);
|
ggml_vk_ctx_end(ctx->compute_ctx);
|
||||||
ctx->compute_ctx->exit_tensor = node;
|
ctx->compute_ctx->exit_tensor = node;
|
||||||
ctx->compute_ctx = nullptr;
|
ctx->compute_ctx = nullptr;
|
||||||
@ -4379,9 +4379,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||||||
}
|
}
|
||||||
|
|
||||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
|
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
|
||||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
||||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
|
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
if (ctx->disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) {
|
if (ctx->disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) {
|
||||||
return false;
|
return false;
|
||||||
@ -4442,7 +4442,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
if (params->ith != 0) {
|
if (params->ith != 0) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -4745,7 +4745,7 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b
|
|||||||
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
||||||
}
|
}
|
||||||
|
|
||||||
tensor->backend = GGML_BACKEND_GPU;
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||||
tensor->extra = extra;
|
tensor->extra = extra;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -4753,7 +4753,7 @@ GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t bu
|
|||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||||
|
|
||||||
@ -4768,7 +4768,7 @@ GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t bu
|
|||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||||
|
|
||||||
@ -4999,7 +4999,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
|
|||||||
#endif
|
#endif
|
||||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
|
|
||||||
@ -5020,7 +5020,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
|
|||||||
#endif
|
#endif
|
||||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
|
|
||||||
@ -5097,7 +5097,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
|||||||
int last_node = cgraph->n_nodes - 1;
|
int last_node = cgraph->n_nodes - 1;
|
||||||
|
|
||||||
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
||||||
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_GPU) {
|
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_TYPE_GPU) {
|
||||||
last_node -= 1;
|
last_node -= 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -5106,7 +5106,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
|||||||
}
|
}
|
||||||
|
|
||||||
ggml_compute_params params = {};
|
ggml_compute_params params = {};
|
||||||
params.type = GGML_TASK_COMPUTE;
|
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||||
params.ith = 0;
|
params.ith = 0;
|
||||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
ggml_tensor * node = cgraph->nodes[i];
|
ggml_tensor * node = cgraph->nodes[i];
|
||||||
@ -5410,7 +5410,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
|
|||||||
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
|
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
|
||||||
void * tensor_data = tensor->data;
|
void * tensor_data = tensor->data;
|
||||||
|
|
||||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
const size_t tensor_size = ggml_nbytes(tensor);
|
const size_t tensor_size = ggml_nbytes(tensor);
|
||||||
tensor_data = malloc(tensor_size);
|
tensor_data = malloc(tensor_size);
|
||||||
|
|
||||||
@ -5436,14 +5436,14 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
|
|||||||
std::vector<const ggml_tensor *> done;
|
std::vector<const ggml_tensor *> done;
|
||||||
ggml_vk_print_graph_origin(tensor, done);
|
ggml_vk_print_graph_origin(tensor, done);
|
||||||
|
|
||||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
free(tensor_data);
|
free(tensor_data);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
||||||
return;
|
return;
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU);
|
||||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -5481,7 +5481,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
if (params->ith != 0) {
|
if (params->ith != 0) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -5518,10 +5518,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
src0_buffer = malloc(src0_size);
|
src0_buffer = malloc(src0_size);
|
||||||
src0_clone->data = src0_buffer;
|
src0_clone->data = src0_buffer;
|
||||||
if (src0->backend == GGML_BACKEND_CPU) {
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
memcpy(src0_clone->data, src0->data, src0_size);
|
memcpy(src0_clone->data, src0->data, src0_size);
|
||||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
uint64_t offset = extra->offset;
|
uint64_t offset = extra->offset;
|
||||||
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
|
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
|
||||||
@ -5561,10 +5561,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
src1_buffer = malloc(src1_size);
|
src1_buffer = malloc(src1_size);
|
||||||
src1_clone->data = src1_buffer;
|
src1_clone->data = src1_buffer;
|
||||||
if (src1->backend == GGML_BACKEND_CPU) {
|
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
||||||
memcpy(src1_clone->data, src1->data, src1_size);
|
memcpy(src1_clone->data, src1->data, src1_size);
|
||||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||||
} else if (src1->backend == GGML_BACKEND_GPU) {
|
} else if (src1->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||||
uint64_t offset = extra->offset;
|
uint64_t offset = extra->offset;
|
||||||
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
|
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
|
||||||
@ -5723,7 +5723,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
if (params->ith != 0) {
|
if (params->ith != 0) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
|
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
|
||||||
@ -5735,7 +5735,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
void * tensor_data = tensor->data;
|
void * tensor_data = tensor->data;
|
||||||
|
|
||||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
size_t tensor_size = ggml_nbytes(tensor);
|
size_t tensor_size = ggml_nbytes(tensor);
|
||||||
tensor_data = malloc(tensor_size);
|
tensor_data = malloc(tensor_size);
|
||||||
|
|
||||||
@ -5868,7 +5868,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
comp_result = nullptr;
|
comp_result = nullptr;
|
||||||
comp_size = 0;
|
comp_size = 0;
|
||||||
|
|
||||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||||
free(tensor_data);
|
free(tensor_data);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
38
ggml.h
38
ggml.h
@ -364,9 +364,9 @@ extern "C" {
|
|||||||
};
|
};
|
||||||
|
|
||||||
enum ggml_backend_type {
|
enum ggml_backend_type {
|
||||||
GGML_BACKEND_CPU = 0,
|
GGML_BACKEND_TYPE_CPU = 0,
|
||||||
GGML_BACKEND_GPU = 10,
|
GGML_BACKEND_TYPE_GPU = 10,
|
||||||
GGML_BACKEND_GPU_SPLIT = 20,
|
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
|
||||||
};
|
};
|
||||||
|
|
||||||
// model file types
|
// model file types
|
||||||
@ -498,9 +498,9 @@ extern "C" {
|
|||||||
};
|
};
|
||||||
|
|
||||||
enum ggml_object_type {
|
enum ggml_object_type {
|
||||||
GGML_OBJECT_TENSOR,
|
GGML_OBJECT_TYPE_TENSOR,
|
||||||
GGML_OBJECT_GRAPH,
|
GGML_OBJECT_TYPE_GRAPH,
|
||||||
GGML_OBJECT_WORK_BUFFER
|
GGML_OBJECT_TYPE_WORK_BUFFER
|
||||||
};
|
};
|
||||||
|
|
||||||
enum ggml_log_level {
|
enum ggml_log_level {
|
||||||
@ -642,9 +642,9 @@ extern "C" {
|
|||||||
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
|
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
|
||||||
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
|
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
|
||||||
enum ggml_task_type {
|
enum ggml_task_type {
|
||||||
GGML_TASK_INIT = 0,
|
GGML_TASK_TYPE_INIT = 0,
|
||||||
GGML_TASK_COMPUTE,
|
GGML_TASK_TYPE_COMPUTE,
|
||||||
GGML_TASK_FINALIZE,
|
GGML_TASK_TYPE_FINALIZE,
|
||||||
};
|
};
|
||||||
|
|
||||||
struct ggml_compute_params {
|
struct ggml_compute_params {
|
||||||
@ -1649,8 +1649,8 @@ extern "C" {
|
|||||||
|
|
||||||
// sort rows
|
// sort rows
|
||||||
enum ggml_sort_order {
|
enum ggml_sort_order {
|
||||||
GGML_SORT_ASC,
|
GGML_SORT_ORDER_ASC,
|
||||||
GGML_SORT_DESC,
|
GGML_SORT_ORDER_DESC,
|
||||||
};
|
};
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_argsort(
|
GGML_API struct ggml_tensor * ggml_argsort(
|
||||||
@ -1943,8 +1943,8 @@ extern "C" {
|
|||||||
|
|
||||||
// optimization methods
|
// optimization methods
|
||||||
enum ggml_opt_type {
|
enum ggml_opt_type {
|
||||||
GGML_OPT_ADAM,
|
GGML_OPT_TYPE_ADAM,
|
||||||
GGML_OPT_LBFGS,
|
GGML_OPT_TYPE_LBFGS,
|
||||||
};
|
};
|
||||||
|
|
||||||
// linesearch methods
|
// linesearch methods
|
||||||
@ -1958,12 +1958,12 @@ extern "C" {
|
|||||||
|
|
||||||
// optimization return values
|
// optimization return values
|
||||||
enum ggml_opt_result {
|
enum ggml_opt_result {
|
||||||
GGML_OPT_OK = 0,
|
GGML_OPT_RESULT_OK = 0,
|
||||||
GGML_OPT_DID_NOT_CONVERGE,
|
GGML_OPT_RESULT_DID_NOT_CONVERGE,
|
||||||
GGML_OPT_NO_CONTEXT,
|
GGML_OPT_RESULT_NO_CONTEXT,
|
||||||
GGML_OPT_INVALID_WOLFE,
|
GGML_OPT_RESULT_INVALID_WOLFE,
|
||||||
GGML_OPT_FAIL,
|
GGML_OPT_RESULT_FAIL,
|
||||||
GGML_OPT_CANCEL,
|
GGML_OPT_RESULT_CANCEL,
|
||||||
|
|
||||||
GGML_LINESEARCH_FAIL = -128,
|
GGML_LINESEARCH_FAIL = -128,
|
||||||
GGML_LINESEARCH_MINIMUM_STEP,
|
GGML_LINESEARCH_MINIMUM_STEP,
|
||||||
|
64
llama.cpp
64
llama.cpp
@ -850,9 +850,9 @@ struct LLM_TN {
|
|||||||
//
|
//
|
||||||
|
|
||||||
static std::map<int32_t, const char *> LLAMA_ROPE_SCALING_TYPES = {
|
static std::map<int32_t, const char *> LLAMA_ROPE_SCALING_TYPES = {
|
||||||
{ LLAMA_ROPE_SCALING_NONE, "none" },
|
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
|
||||||
{ LLAMA_ROPE_SCALING_LINEAR, "linear" },
|
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
|
||||||
{ LLAMA_ROPE_SCALING_YARN, "yarn" },
|
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
|
||||||
};
|
};
|
||||||
|
|
||||||
static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
|
static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
|
||||||
@ -862,7 +862,7 @@ static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return LLAMA_ROPE_SCALING_UNSPECIFIED;
|
return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||||
}
|
}
|
||||||
|
|
||||||
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
|
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
|
||||||
@ -1580,7 +1580,7 @@ struct llama_hparams {
|
|||||||
bool causal_attn = true;
|
bool causal_attn = true;
|
||||||
bool need_kq_pos = false;
|
bool need_kq_pos = false;
|
||||||
|
|
||||||
uint32_t pooling_type = LLAMA_POOLING_NONE;
|
uint32_t pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||||
|
|
||||||
bool operator!=(const llama_hparams & other) const {
|
bool operator!=(const llama_hparams & other) const {
|
||||||
if (this->vocab_only != other.vocab_only) return true;
|
if (this->vocab_only != other.vocab_only) return true;
|
||||||
@ -2345,9 +2345,9 @@ namespace GGUFMeta {
|
|||||||
|
|
||||||
static const char * override_type_to_str(const llama_model_kv_override_type ty) {
|
static const char * override_type_to_str(const llama_model_kv_override_type ty) {
|
||||||
switch (ty) {
|
switch (ty) {
|
||||||
case LLAMA_KV_OVERRIDE_BOOL: return "bool";
|
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
|
||||||
case LLAMA_KV_OVERRIDE_INT: return "int";
|
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
|
||||||
case LLAMA_KV_OVERRIDE_FLOAT: return "float";
|
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
|
||||||
}
|
}
|
||||||
return "unknown";
|
return "unknown";
|
||||||
}
|
}
|
||||||
@ -2358,13 +2358,13 @@ namespace GGUFMeta {
|
|||||||
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
|
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
|
||||||
__func__, override_type_to_str(override->tag), override->key);
|
__func__, override_type_to_str(override->tag), override->key);
|
||||||
switch (override->tag) {
|
switch (override->tag) {
|
||||||
case LLAMA_KV_OVERRIDE_BOOL: {
|
case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
|
||||||
LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false");
|
LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false");
|
||||||
} break;
|
} break;
|
||||||
case LLAMA_KV_OVERRIDE_INT: {
|
case LLAMA_KV_OVERRIDE_TYPE_INT: {
|
||||||
LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value);
|
LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value);
|
||||||
} break;
|
} break;
|
||||||
case LLAMA_KV_OVERRIDE_FLOAT: {
|
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
|
||||||
LLAMA_LOG_INFO("%.6f\n", override->float_value);
|
LLAMA_LOG_INFO("%.6f\n", override->float_value);
|
||||||
} break;
|
} break;
|
||||||
default:
|
default:
|
||||||
@ -2383,7 +2383,7 @@ namespace GGUFMeta {
|
|||||||
template<typename OT>
|
template<typename OT>
|
||||||
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
|
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
|
||||||
try_override(OT & target, const struct llama_model_kv_override *override) {
|
try_override(OT & target, const struct llama_model_kv_override *override) {
|
||||||
if (validate_override(LLAMA_KV_OVERRIDE_BOOL, override)) {
|
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, override)) {
|
||||||
target = override->bool_value;
|
target = override->bool_value;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -2393,7 +2393,7 @@ namespace GGUFMeta {
|
|||||||
template<typename OT>
|
template<typename OT>
|
||||||
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
|
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
|
||||||
try_override(OT & target, const struct llama_model_kv_override *override) {
|
try_override(OT & target, const struct llama_model_kv_override *override) {
|
||||||
if (validate_override(LLAMA_KV_OVERRIDE_INT, override)) {
|
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, override)) {
|
||||||
target = override->int_value;
|
target = override->int_value;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -2403,7 +2403,7 @@ namespace GGUFMeta {
|
|||||||
template<typename OT>
|
template<typename OT>
|
||||||
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
|
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
|
||||||
try_override(T & target, const struct llama_model_kv_override *override) {
|
try_override(T & target, const struct llama_model_kv_override *override) {
|
||||||
if (validate_override(LLAMA_KV_OVERRIDE_FLOAT, override)) {
|
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, override)) {
|
||||||
target = override->float_value;
|
target = override->float_value;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -2999,7 +2999,7 @@ static void llm_load_hparams(
|
|||||||
std::string rope_scaling("linear");
|
std::string rope_scaling("linear");
|
||||||
ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
|
ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
|
||||||
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
|
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
|
||||||
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED);
|
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
|
||||||
|
|
||||||
// rope_freq_scale (inverse of the kv) is optional
|
// rope_freq_scale (inverse of the kv) is optional
|
||||||
float ropescale = 0.0f;
|
float ropescale = 0.0f;
|
||||||
@ -3643,7 +3643,7 @@ static bool llm_load_tensors(
|
|||||||
model.buft_layer[i] = llama_default_buffer_type_cpu(true);
|
model.buft_layer[i] = llama_default_buffer_type_cpu(true);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (split_mode == LLAMA_SPLIT_LAYER) {
|
if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
|
||||||
// calculate the split points
|
// calculate the split points
|
||||||
int device_count = llama_get_device_count();
|
int device_count = llama_get_device_count();
|
||||||
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
|
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
|
||||||
@ -3682,10 +3682,10 @@ static bool llm_load_tensors(
|
|||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
ggml_backend_buffer_type_t split_buft;
|
ggml_backend_buffer_type_t split_buft;
|
||||||
if (split_mode == LLAMA_SPLIT_ROW) {
|
if (split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||||
split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
|
split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
|
||||||
} else {
|
} else {
|
||||||
// LLAMA_SPLIT_NONE or LLAMA_SPLIT_LAYER in backends where it is not supported
|
// LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
|
||||||
split_buft = llama_default_buffer_type_offload(main_gpu);
|
split_buft = llama_default_buffer_type_offload(main_gpu);
|
||||||
}
|
}
|
||||||
// assign the repeating layers
|
// assign the repeating layers
|
||||||
@ -5070,7 +5070,7 @@ struct llm_build_context {
|
|||||||
kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
|
kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
|
||||||
n_orig_ctx (cparams.n_yarn_orig_ctx),
|
n_orig_ctx (cparams.n_yarn_orig_ctx),
|
||||||
do_rope_shift (worst_case || kv_self.has_shift),
|
do_rope_shift (worst_case || kv_self.has_shift),
|
||||||
pooling_type (cparams.do_pooling ? hparams.pooling_type : (uint32_t)LLAMA_POOLING_NONE),
|
pooling_type (cparams.do_pooling ? hparams.pooling_type : (uint32_t)LLAMA_POOLING_TYPE_NONE),
|
||||||
cb (cb),
|
cb (cb),
|
||||||
buf_compute_meta (lctx.buf_compute_meta) {
|
buf_compute_meta (lctx.buf_compute_meta) {
|
||||||
// all initializations should be done in init()
|
// all initializations should be done in init()
|
||||||
@ -6050,12 +6050,12 @@ struct llm_build_context {
|
|||||||
cur = inpL;
|
cur = inpL;
|
||||||
|
|
||||||
// pooling layer
|
// pooling layer
|
||||||
if (pooling_type == LLAMA_POOLING_MEAN) {
|
if (pooling_type == LLAMA_POOLING_TYPE_MEAN) {
|
||||||
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
|
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
|
||||||
} else if (pooling_type == LLAMA_POOLING_CLS) {
|
} else if (pooling_type == LLAMA_POOLING_TYPE_CLS) {
|
||||||
cur = ggml_get_rows(ctx0, cur, inp_cls);
|
cur = ggml_get_rows(ctx0, cur, inp_cls);
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(pooling_type == LLAMA_POOLING_NONE && "Invalid pooling type");
|
GGML_ASSERT(pooling_type == LLAMA_POOLING_TYPE_NONE && "Invalid pooling type");
|
||||||
}
|
}
|
||||||
cb(cur, "result_embd", -1);
|
cb(cur, "result_embd", -1);
|
||||||
|
|
||||||
@ -7754,7 +7754,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_MEAN) {
|
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
|
||||||
const int64_t n_tokens = batch.n_tokens;
|
const int64_t n_tokens = batch.n_tokens;
|
||||||
|
|
||||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
|
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
|
||||||
@ -7782,7 +7782,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_CLS) {
|
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
|
||||||
const int64_t n_tokens = batch.n_tokens;
|
const int64_t n_tokens = batch.n_tokens;
|
||||||
|
|
||||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||||||
@ -11351,7 +11351,7 @@ static int llama_apply_lora_from_file_internal(
|
|||||||
struct llama_model_params llama_model_default_params() {
|
struct llama_model_params llama_model_default_params() {
|
||||||
struct llama_model_params result = {
|
struct llama_model_params result = {
|
||||||
/*.n_gpu_layers =*/ 0,
|
/*.n_gpu_layers =*/ 0,
|
||||||
/*.split_mode =*/ LLAMA_SPLIT_LAYER,
|
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
|
||||||
/*.main_gpu =*/ 0,
|
/*.main_gpu =*/ 0,
|
||||||
/*.tensor_split =*/ nullptr,
|
/*.tensor_split =*/ nullptr,
|
||||||
/*.progress_callback =*/ nullptr,
|
/*.progress_callback =*/ nullptr,
|
||||||
@ -11377,7 +11377,7 @@ struct llama_context_params llama_context_default_params() {
|
|||||||
/*.n_batch =*/ 512,
|
/*.n_batch =*/ 512,
|
||||||
/*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
|
/*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
|
||||||
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
|
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
|
||||||
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED,
|
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
||||||
/*.rope_freq_base =*/ 0.0f,
|
/*.rope_freq_base =*/ 0.0f,
|
||||||
/*.rope_freq_scale =*/ 0.0f,
|
/*.rope_freq_scale =*/ 0.0f,
|
||||||
/*.yarn_ext_factor =*/ -1.0f,
|
/*.yarn_ext_factor =*/ -1.0f,
|
||||||
@ -11565,16 +11565,16 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||||
|
|
||||||
auto rope_scaling_type = params.rope_scaling_type;
|
auto rope_scaling_type = params.rope_scaling_type;
|
||||||
if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
|
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
|
||||||
rope_scaling_type = hparams.rope_scaling_type_train;
|
rope_scaling_type = hparams.rope_scaling_type_train;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (rope_scaling_type == LLAMA_ROPE_SCALING_NONE) {
|
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
|
||||||
cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
|
cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
|
||||||
}
|
}
|
||||||
|
|
||||||
if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
|
if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
|
||||||
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f;
|
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||||
@ -11608,8 +11608,8 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
}
|
}
|
||||||
#elif defined(GGML_USE_CUBLAS)
|
#elif defined(GGML_USE_CUBLAS)
|
||||||
if (model->n_gpu_layers > 0) {
|
if (model->n_gpu_layers > 0) {
|
||||||
// with split_mode LLAMA_SPLIT_NONE or LLAMA_SPLIT_ROW, only the main GPU backend is used
|
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||||||
if (model->split_mode == LLAMA_SPLIT_NONE || model->split_mode == LLAMA_SPLIT_ROW) {
|
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||||
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
|
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
|
||||||
if (backend == nullptr) {
|
if (backend == nullptr) {
|
||||||
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
|
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
|
||||||
@ -11618,7 +11618,7 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
}
|
}
|
||||||
ctx->backends.push_back(backend);
|
ctx->backends.push_back(backend);
|
||||||
} else {
|
} else {
|
||||||
// LLAMA_SPLIT_LAYER requires a backend for each GPU
|
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
|
||||||
for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
|
for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
|
||||||
ggml_backend_t backend = ggml_backend_cuda_init(device);
|
ggml_backend_t backend = ggml_backend_cuda_init(device);
|
||||||
if (backend == nullptr) {
|
if (backend == nullptr) {
|
||||||
|
28
llama.h
28
llama.h
@ -109,23 +109,23 @@ extern "C" {
|
|||||||
};
|
};
|
||||||
|
|
||||||
enum llama_rope_scaling_type {
|
enum llama_rope_scaling_type {
|
||||||
LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
|
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
|
||||||
LLAMA_ROPE_SCALING_NONE = 0,
|
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
|
||||||
LLAMA_ROPE_SCALING_LINEAR = 1,
|
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
|
||||||
LLAMA_ROPE_SCALING_YARN = 2,
|
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
|
||||||
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
|
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
|
||||||
};
|
};
|
||||||
|
|
||||||
enum llama_pooling_type {
|
enum llama_pooling_type {
|
||||||
LLAMA_POOLING_NONE = 0,
|
LLAMA_POOLING_TYPE_NONE = 0,
|
||||||
LLAMA_POOLING_MEAN = 1,
|
LLAMA_POOLING_TYPE_MEAN = 1,
|
||||||
LLAMA_POOLING_CLS = 2,
|
LLAMA_POOLING_TYPE_CLS = 2,
|
||||||
};
|
};
|
||||||
|
|
||||||
enum llama_split_mode {
|
enum llama_split_mode {
|
||||||
LLAMA_SPLIT_NONE = 0, // single GPU
|
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
|
||||||
LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
|
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
|
||||||
LLAMA_SPLIT_ROW = 2, // split rows across GPUs
|
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
|
||||||
};
|
};
|
||||||
|
|
||||||
typedef struct llama_token_data {
|
typedef struct llama_token_data {
|
||||||
@ -173,9 +173,9 @@ extern "C" {
|
|||||||
} llama_batch;
|
} llama_batch;
|
||||||
|
|
||||||
enum llama_model_kv_override_type {
|
enum llama_model_kv_override_type {
|
||||||
LLAMA_KV_OVERRIDE_INT,
|
LLAMA_KV_OVERRIDE_TYPE_INT,
|
||||||
LLAMA_KV_OVERRIDE_FLOAT,
|
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
|
||||||
LLAMA_KV_OVERRIDE_BOOL,
|
LLAMA_KV_OVERRIDE_TYPE_BOOL,
|
||||||
};
|
};
|
||||||
|
|
||||||
struct llama_model_kv_override {
|
struct llama_model_kv_override {
|
||||||
|
@ -1264,7 +1264,7 @@ struct test_argsort : public test_case {
|
|||||||
|
|
||||||
test_argsort(ggml_type type = GGML_TYPE_F32,
|
test_argsort(ggml_type type = GGML_TYPE_F32,
|
||||||
std::array<int64_t, 4> ne = {16, 10, 10, 10},
|
std::array<int64_t, 4> ne = {16, 10, 10, 10},
|
||||||
ggml_sort_order order = GGML_SORT_ASC)
|
ggml_sort_order order = GGML_SORT_ORDER_ASC)
|
||||||
: type(type), ne(ne), order(order) {}
|
: type(type), ne(ne), order(order) {}
|
||||||
|
|
||||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||||
@ -2116,7 +2116,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||||||
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
|
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
|
||||||
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
|
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
|
||||||
|
|
||||||
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
|
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
||||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
||||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
||||||
}
|
}
|
||||||
|
@ -118,7 +118,7 @@ int main(void) {
|
|||||||
const float fe = ggml_get_f32_1d(e, 0);
|
const float fe = ggml_get_f32_1d(e, 0);
|
||||||
printf("%s: e = %.4f\n", __func__, fe);
|
printf("%s: e = %.4f\n", __func__, fe);
|
||||||
|
|
||||||
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
|
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||||
|
|
||||||
ggml_opt(ctx, opt_params, e);
|
ggml_opt(ctx, opt_params, e);
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user