mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 06:39:25 +01:00
llama : model
ggml-ci
This commit is contained in:
parent
29fd7b56d0
commit
ac62ce0236
@ -2,7 +2,74 @@
|
||||
|
||||
#include "llama-impl.h"
|
||||
|
||||
std::string llama_model_ftype_name(llama_ftype ftype) {
|
||||
const char * llm_type_name(llm_type type) {
|
||||
switch (type) {
|
||||
case MODEL_14M: return "14M";
|
||||
case MODEL_17M: return "17M";
|
||||
case MODEL_22M: return "22M";
|
||||
case MODEL_33M: return "33M";
|
||||
case MODEL_60M: return "60M";
|
||||
case MODEL_70M: return "70M";
|
||||
case MODEL_80M: return "80M";
|
||||
case MODEL_109M: return "109M";
|
||||
case MODEL_137M: return "137M";
|
||||
case MODEL_160M: return "160M";
|
||||
case MODEL_220M: return "220M";
|
||||
case MODEL_250M: return "250M";
|
||||
case MODEL_270M: return "270M";
|
||||
case MODEL_335M: return "335M";
|
||||
case MODEL_410M: return "410M";
|
||||
case MODEL_450M: return "450M";
|
||||
case MODEL_770M: return "770M";
|
||||
case MODEL_780M: return "780M";
|
||||
case MODEL_0_5B: return "0.5B";
|
||||
case MODEL_1B: return "1B";
|
||||
case MODEL_1_3B: return "1.3B";
|
||||
case MODEL_1_4B: return "1.4B";
|
||||
case MODEL_1_5B: return "1.5B";
|
||||
case MODEL_1_6B: return "1.6B";
|
||||
case MODEL_2B: return "2B";
|
||||
case MODEL_2_8B: return "2.8B";
|
||||
case MODEL_3B: return "3B";
|
||||
case MODEL_4B: return "4B";
|
||||
case MODEL_6B: return "6B";
|
||||
case MODEL_6_9B: return "6.9B";
|
||||
case MODEL_7B: return "7B";
|
||||
case MODEL_8B: return "8B";
|
||||
case MODEL_9B: return "9B";
|
||||
case MODEL_11B: return "11B";
|
||||
case MODEL_12B: return "12B";
|
||||
case MODEL_13B: return "13B";
|
||||
case MODEL_14B: return "14B";
|
||||
case MODEL_15B: return "15B";
|
||||
case MODEL_16B: return "16B";
|
||||
case MODEL_20B: return "20B";
|
||||
case MODEL_30B: return "30B";
|
||||
case MODEL_32B: return "32B";
|
||||
case MODEL_34B: return "34B";
|
||||
case MODEL_35B: return "35B";
|
||||
case MODEL_40B: return "40B";
|
||||
case MODEL_65B: return "65B";
|
||||
case MODEL_70B: return "70B";
|
||||
case MODEL_236B: return "236B";
|
||||
case MODEL_314B: return "314B";
|
||||
case MODEL_SMALL: return "0.1B";
|
||||
case MODEL_MEDIUM: return "0.4B";
|
||||
case MODEL_LARGE: return "0.8B";
|
||||
case MODEL_XL: return "1.5B";
|
||||
case MODEL_A1_7B: return "A1.7B";
|
||||
case MODEL_A2_7B: return "A2.7B";
|
||||
case MODEL_8x7B: return "8x7B";
|
||||
case MODEL_8x22B: return "8x22B";
|
||||
case MODEL_16x12B: return "16x12B";
|
||||
case MODEL_10B_128x3_66B: return "10B+128x3.66B";
|
||||
case MODEL_57B_A14B: return "57B.A14B";
|
||||
case MODEL_27B: return "27B";
|
||||
default: return "?B";
|
||||
}
|
||||
}
|
||||
|
||||
static std::string llama_model_ftype_name(llama_ftype ftype) {
|
||||
if (ftype & LLAMA_FTYPE_GUESSED) {
|
||||
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
|
||||
}
|
||||
@ -45,6 +112,18 @@ std::string llama_model_ftype_name(llama_ftype ftype) {
|
||||
}
|
||||
}
|
||||
|
||||
std::string llama_model_arch_name (const llama_model & model) {
|
||||
return llm_arch_name(model.arch);
|
||||
}
|
||||
|
||||
std::string llama_model_type_name (const llama_model & model) {
|
||||
return llm_type_name(model.type);
|
||||
}
|
||||
|
||||
std::string llama_model_ftype_name(const llama_model & model) {
|
||||
return llama_model_ftype_name(model.ftype);
|
||||
}
|
||||
|
||||
template<typename F>
|
||||
static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
|
||||
ggml_init_params params = {
|
||||
@ -83,7 +162,8 @@ static ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & b
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il) {
|
||||
return select_buft(*model.dev_layer.at(il).buft_list,
|
||||
return select_buft(
|
||||
*model.dev_layer.at(il).buft_list,
|
||||
[&](ggml_context * ctx) {
|
||||
ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
|
||||
ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
|
||||
|
@ -15,8 +15,9 @@
|
||||
#define LLAMA_MAX_LAYERS 512
|
||||
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
|
||||
|
||||
// available llama models
|
||||
enum e_model {
|
||||
// available models
|
||||
// TODO: this enum does not follow the enum naming convention
|
||||
enum llm_type {
|
||||
MODEL_UNKNOWN,
|
||||
MODEL_14M,
|
||||
MODEL_17M,
|
||||
@ -81,73 +82,6 @@ enum e_model {
|
||||
MODEL_27B,
|
||||
};
|
||||
|
||||
static const char * llama_model_type_name(e_model type) {
|
||||
switch (type) {
|
||||
case MODEL_14M: return "14M";
|
||||
case MODEL_17M: return "17M";
|
||||
case MODEL_22M: return "22M";
|
||||
case MODEL_33M: return "33M";
|
||||
case MODEL_60M: return "60M";
|
||||
case MODEL_70M: return "70M";
|
||||
case MODEL_80M: return "80M";
|
||||
case MODEL_109M: return "109M";
|
||||
case MODEL_137M: return "137M";
|
||||
case MODEL_160M: return "160M";
|
||||
case MODEL_220M: return "220M";
|
||||
case MODEL_250M: return "250M";
|
||||
case MODEL_270M: return "270M";
|
||||
case MODEL_335M: return "335M";
|
||||
case MODEL_410M: return "410M";
|
||||
case MODEL_450M: return "450M";
|
||||
case MODEL_770M: return "770M";
|
||||
case MODEL_780M: return "780M";
|
||||
case MODEL_0_5B: return "0.5B";
|
||||
case MODEL_1B: return "1B";
|
||||
case MODEL_1_3B: return "1.3B";
|
||||
case MODEL_1_4B: return "1.4B";
|
||||
case MODEL_1_5B: return "1.5B";
|
||||
case MODEL_1_6B: return "1.6B";
|
||||
case MODEL_2B: return "2B";
|
||||
case MODEL_2_8B: return "2.8B";
|
||||
case MODEL_3B: return "3B";
|
||||
case MODEL_4B: return "4B";
|
||||
case MODEL_6B: return "6B";
|
||||
case MODEL_6_9B: return "6.9B";
|
||||
case MODEL_7B: return "7B";
|
||||
case MODEL_8B: return "8B";
|
||||
case MODEL_9B: return "9B";
|
||||
case MODEL_11B: return "11B";
|
||||
case MODEL_12B: return "12B";
|
||||
case MODEL_13B: return "13B";
|
||||
case MODEL_14B: return "14B";
|
||||
case MODEL_15B: return "15B";
|
||||
case MODEL_16B: return "16B";
|
||||
case MODEL_20B: return "20B";
|
||||
case MODEL_30B: return "30B";
|
||||
case MODEL_32B: return "32B";
|
||||
case MODEL_34B: return "34B";
|
||||
case MODEL_35B: return "35B";
|
||||
case MODEL_40B: return "40B";
|
||||
case MODEL_65B: return "65B";
|
||||
case MODEL_70B: return "70B";
|
||||
case MODEL_236B: return "236B";
|
||||
case MODEL_314B: return "314B";
|
||||
case MODEL_SMALL: return "0.1B";
|
||||
case MODEL_MEDIUM: return "0.4B";
|
||||
case MODEL_LARGE: return "0.8B";
|
||||
case MODEL_XL: return "1.5B";
|
||||
case MODEL_A1_7B: return "A1.7B";
|
||||
case MODEL_A2_7B: return "A2.7B";
|
||||
case MODEL_8x7B: return "8x7B";
|
||||
case MODEL_8x22B: return "8x22B";
|
||||
case MODEL_16x12B: return "16x12B";
|
||||
case MODEL_10B_128x3_66B: return "10B+128x3.66B";
|
||||
case MODEL_57B_A14B: return "57B.A14B";
|
||||
case MODEL_27B: return "27B";
|
||||
default: return "?B";
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_hparams_posnet {
|
||||
uint32_t n_embd;
|
||||
uint32_t n_layer;
|
||||
@ -187,27 +121,27 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
uint32_t n_ff_exp = 0;
|
||||
uint32_t n_ff_shexp = 0;
|
||||
uint32_t n_expert_shared = 0;
|
||||
float expert_weights_scale = 0.0;
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
uint32_t n_ff_exp = 0;
|
||||
uint32_t n_ff_shexp = 0;
|
||||
uint32_t n_expert_shared = 0;
|
||||
uint32_t n_norm_groups = 0;
|
||||
|
||||
float expert_weights_scale = 0.0;
|
||||
|
||||
float f_norm_eps;
|
||||
float f_norm_rms_eps;
|
||||
float f_norm_group_eps;
|
||||
|
||||
uint32_t n_norm_groups;
|
||||
|
||||
float f_attn_logit_softcapping = 50.0f;
|
||||
float f_attn_logit_softcapping = 50.0f;
|
||||
float f_final_logit_softcapping = 30.0f;
|
||||
|
||||
// for RWKV
|
||||
uint32_t rescale_every_n_layers = 0;
|
||||
uint32_t time_mix_extra_dim = 0;
|
||||
uint32_t time_decay_extra_dim = 0;
|
||||
uint32_t wkv_head_size = 0;
|
||||
uint32_t time_mix_extra_dim = 0;
|
||||
uint32_t time_decay_extra_dim = 0;
|
||||
uint32_t wkv_head_size = 0;
|
||||
|
||||
float rope_attn_factor = 1.0f;
|
||||
float rope_freq_base_train;
|
||||
@ -221,6 +155,7 @@ struct llama_hparams {
|
||||
uint32_t ssm_d_inner = 0;
|
||||
uint32_t ssm_d_state = 0;
|
||||
uint32_t ssm_dt_rank = 0;
|
||||
|
||||
bool ssm_dt_b_c_rms = false;
|
||||
|
||||
float f_clamp_kqv = 0.0f;
|
||||
@ -518,8 +453,9 @@ struct llama_layer {
|
||||
};
|
||||
|
||||
struct llama_model {
|
||||
e_model type = MODEL_UNKNOWN;
|
||||
llm_arch arch = LLM_ARCH_UNKNOWN;
|
||||
llm_type type = MODEL_UNKNOWN;
|
||||
llm_arch arch = LLM_ARCH_UNKNOWN;
|
||||
|
||||
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
||||
|
||||
std::string name = "n/a";
|
||||
@ -527,25 +463,25 @@ struct llama_model {
|
||||
llama_hparams hparams = {};
|
||||
llama_vocab vocab;
|
||||
|
||||
struct ggml_tensor * tok_embd = nullptr;
|
||||
struct ggml_tensor * type_embd = nullptr;
|
||||
struct ggml_tensor * pos_embd = nullptr;
|
||||
struct ggml_tensor * tok_norm = nullptr;
|
||||
struct ggml_tensor * tok_embd = nullptr;
|
||||
struct ggml_tensor * type_embd = nullptr;
|
||||
struct ggml_tensor * pos_embd = nullptr;
|
||||
struct ggml_tensor * tok_norm = nullptr;
|
||||
struct ggml_tensor * tok_norm_b = nullptr;
|
||||
|
||||
struct ggml_tensor * output_norm = nullptr;
|
||||
struct ggml_tensor * output_norm_b = nullptr;
|
||||
struct ggml_tensor * output = nullptr;
|
||||
struct ggml_tensor * output_b = nullptr;
|
||||
struct ggml_tensor * output_norm = nullptr;
|
||||
struct ggml_tensor * output_norm_b = nullptr;
|
||||
struct ggml_tensor * output = nullptr;
|
||||
struct ggml_tensor * output_b = nullptr;
|
||||
struct ggml_tensor * output_norm_enc = nullptr;
|
||||
|
||||
// classifier
|
||||
struct ggml_tensor * cls = nullptr;
|
||||
struct ggml_tensor * cls_b = nullptr;
|
||||
struct ggml_tensor * cls = nullptr;
|
||||
struct ggml_tensor * cls_b = nullptr;
|
||||
struct ggml_tensor * cls_out = nullptr;
|
||||
struct ggml_tensor * cls_out_b = nullptr;
|
||||
|
||||
struct ggml_tensor * conv1d = nullptr;
|
||||
struct ggml_tensor * conv1d = nullptr;
|
||||
struct ggml_tensor * conv1d_b = nullptr;
|
||||
|
||||
std::vector<llama_layer> layers;
|
||||
@ -611,6 +547,11 @@ struct llama_model {
|
||||
}
|
||||
};
|
||||
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
|
||||
const char * llm_type_name(llm_type type);
|
||||
|
||||
std::string llama_model_ftype_name(llama_ftype ftype);
|
||||
std::string llama_model_arch_name (const llama_model & model);
|
||||
std::string llama_model_type_name (const llama_model & model);
|
||||
std::string llama_model_ftype_name(const llama_model & model);
|
||||
|
||||
// TODO: this probably belongs to llama-adapter
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
|
||||
|
@ -1494,6 +1494,8 @@ static void llm_load_hparams(
|
||||
hparams.n_embd_head_v = 0;
|
||||
}
|
||||
|
||||
using e_model = llm_type; // TMP
|
||||
|
||||
// arch-specific KVs
|
||||
switch (model.arch) {
|
||||
case LLM_ARCH_LLAMA:
|
||||
@ -2999,8 +3001,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
|
||||
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
|
||||
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model).c_str());
|
||||
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model).c_str());
|
||||
if (ml.n_elements >= 1e12) {
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
|
||||
} else if (ml.n_elements >= 1e9) {
|
||||
@ -10252,9 +10254,9 @@ struct llm_build_context {
|
||||
|
||||
// ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
|
||||
switch (model.type) {
|
||||
case e_model::MODEL_2B:
|
||||
case e_model::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
|
||||
case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
|
||||
case llm_type::MODEL_2B:
|
||||
case llm_type::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
|
||||
case llm_type::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
};
|
||||
cb(Qcur, "Qcur_scaled", il);
|
||||
@ -16505,9 +16507,9 @@ int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int3
|
||||
|
||||
int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
|
||||
return snprintf(buf, buf_size, "%s %s %s",
|
||||
llm_arch_name(model->arch), // TODO: llama_model_arch_name(model)
|
||||
llama_model_type_name(model->type), // TODO: llama_model_type_name(model)
|
||||
llama_model_ftype_name(model->ftype).c_str()); // TODO: llama_model_ftype_name(model)
|
||||
llama_model_arch_name (*model).c_str(),
|
||||
llama_model_type_name (*model).c_str(),
|
||||
llama_model_ftype_name(*model).c_str());
|
||||
}
|
||||
|
||||
uint64_t llama_model_size(const struct llama_model * model) {
|
||||
|
Loading…
Reference in New Issue
Block a user