mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-10-29 22:20:15 +01:00
cuda : refactor into multiple files (#6269)
This commit is contained in:
parent
ad3a0505e3
commit
ae1f211ce2
@ -12,6 +12,7 @@ Checks: >
|
|||||||
-readability-implicit-bool-conversion,
|
-readability-implicit-bool-conversion,
|
||||||
-readability-magic-numbers,
|
-readability-magic-numbers,
|
||||||
-readability-uppercase-literal-suffix,
|
-readability-uppercase-literal-suffix,
|
||||||
|
-readability-simplify-boolean-expr,
|
||||||
clang-analyzer-*,
|
clang-analyzer-*,
|
||||||
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
|
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
|
||||||
performance-*,
|
performance-*,
|
||||||
|
@ -369,7 +369,9 @@ if (LLAMA_CUBLAS)
|
|||||||
enable_language(CUDA)
|
enable_language(CUDA)
|
||||||
|
|
||||||
set(GGML_HEADERS_CUDA ggml-cuda.h)
|
set(GGML_HEADERS_CUDA ggml-cuda.h)
|
||||||
set(GGML_SOURCES_CUDA ggml-cuda.cu)
|
|
||||||
|
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
|
||||||
|
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
|
||||||
|
|
||||||
add_compile_definitions(GGML_USE_CUBLAS)
|
add_compile_definitions(GGML_USE_CUBLAS)
|
||||||
if (LLAMA_CUDA_FORCE_DMMV)
|
if (LLAMA_CUDA_FORCE_DMMV)
|
||||||
@ -519,7 +521,9 @@ if (LLAMA_HIPBLAS)
|
|||||||
message(STATUS "HIP and hipBLAS found")
|
message(STATUS "HIP and hipBLAS found")
|
||||||
|
|
||||||
set(GGML_HEADERS_ROCM ggml-cuda.h)
|
set(GGML_HEADERS_ROCM ggml-cuda.h)
|
||||||
set(GGML_SOURCES_ROCM ggml-cuda.cu)
|
|
||||||
|
file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
|
||||||
|
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
|
||||||
|
|
||||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||||
|
|
||||||
@ -543,7 +547,7 @@ if (LLAMA_HIPBLAS)
|
|||||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||||
|
|
||||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||||
|
|
||||||
if (LLAMA_STATIC)
|
if (LLAMA_STATIC)
|
||||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||||
|
23
Makefile
23
Makefile
@ -398,6 +398,7 @@ ifdef LLAMA_CUBLAS
|
|||||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||||
OBJS += ggml-cuda.o
|
OBJS += ggml-cuda.o
|
||||||
|
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
MK_NVCCFLAGS += -use_fast_math
|
MK_NVCCFLAGS += -use_fast_math
|
||||||
ifdef LLAMA_FATAL_WARNINGS
|
ifdef LLAMA_FATAL_WARNINGS
|
||||||
MK_NVCCFLAGS += -Werror all-warnings
|
MK_NVCCFLAGS += -Werror all-warnings
|
||||||
@ -458,12 +459,23 @@ endif # LLAMA_CUDA_NO_PEER_COPY
|
|||||||
ifdef LLAMA_CUDA_CCBIN
|
ifdef LLAMA_CUDA_CCBIN
|
||||||
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||||
endif
|
endif
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml-common.h
|
|
||||||
ifdef JETSON_EOL_MODULE_DETECT
|
ifdef JETSON_EOL_MODULE_DETECT
|
||||||
|
define NVCC_COMPILE
|
||||||
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||||
|
endef # NVCC_COMPILE
|
||||||
else
|
else
|
||||||
|
define NVCC_COMPILE
|
||||||
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||||
|
endef # NVCC_COMPILE
|
||||||
endif # JETSON_EOL_MODULE_DETECT
|
endif # JETSON_EOL_MODULE_DETECT
|
||||||
|
|
||||||
|
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||||
|
$(NVCC_COMPILE)
|
||||||
|
|
||||||
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||||
|
$(NVCC_COMPILE)
|
||||||
|
|
||||||
endif # LLAMA_CUBLAS
|
endif # LLAMA_CUBLAS
|
||||||
|
|
||||||
ifdef LLAMA_CLBLAST
|
ifdef LLAMA_CLBLAST
|
||||||
@ -510,7 +522,6 @@ ggml-vulkan.o: ggml-vulkan.cpp ggml-vulkan.h
|
|||||||
endif # LLAMA_VULKAN
|
endif # LLAMA_VULKAN
|
||||||
|
|
||||||
ifdef LLAMA_HIPBLAS
|
ifdef LLAMA_HIPBLAS
|
||||||
|
|
||||||
ifeq ($(wildcard /opt/rocm),)
|
ifeq ($(wildcard /opt/rocm),)
|
||||||
ROCM_PATH ?= /usr
|
ROCM_PATH ?= /usr
|
||||||
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
||||||
@ -539,8 +550,13 @@ ifdef LLAMA_CUDA_NO_PEER_COPY
|
|||||||
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||||
endif # LLAMA_CUDA_NO_PEER_COPY
|
endif # LLAMA_CUDA_NO_PEER_COPY
|
||||||
OBJS += ggml-cuda.o
|
OBJS += ggml-cuda.o
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||||
|
|
||||||
|
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||||
|
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||||
|
|
||||||
endif # LLAMA_HIPBLAS
|
endif # LLAMA_HIPBLAS
|
||||||
|
|
||||||
ifdef LLAMA_METAL
|
ifdef LLAMA_METAL
|
||||||
@ -687,6 +703,7 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
|||||||
|
|
||||||
clean:
|
clean:
|
||||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||||
|
rm -vrf ggml-cuda/*.o
|
||||||
find examples pocs -type f -name "*.o" -delete
|
find examples pocs -type f -name "*.o" -delete
|
||||||
|
|
||||||
#
|
#
|
||||||
|
9087
ggml-cuda.cu
9087
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
47
ggml-cuda/acc.cu
Normal file
47
ggml-cuda/acc.cu
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
#include "acc.cuh"
|
||||||
|
|
||||||
|
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
||||||
|
const int ne10, const int ne11, const int ne12,
|
||||||
|
const int nb1, const int nb2, int offset) {
|
||||||
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||||
|
if (i >= ne) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
int src1_idx = i - offset;
|
||||||
|
int oz = src1_idx / nb2;
|
||||||
|
int oy = (src1_idx - (oz * nb2)) / nb1;
|
||||||
|
int ox = src1_idx % nb1;
|
||||||
|
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
||||||
|
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
||||||
|
} else {
|
||||||
|
dst[i] = x[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
|
||||||
|
const int ne10, const int ne11, const int ne12,
|
||||||
|
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
|
||||||
|
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
|
||||||
|
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
||||||
|
|
||||||
|
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||||
|
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||||
|
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
||||||
|
int offset = dst->op_params[3] / 4; // offset in bytes
|
||||||
|
|
||||||
|
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
|
||||||
|
}
|
5
ggml-cuda/acc.cuh
Normal file
5
ggml-cuda/acc.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_ACC_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
63
ggml-cuda/alibi.cu
Normal file
63
ggml-cuda/alibi.cu
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
#include "alibi.cuh"
|
||||||
|
|
||||||
|
static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
|
||||||
|
const int n_heads_log2_floor, const float m0, const float m1) {
|
||||||
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int i = row*ncols + col;
|
||||||
|
|
||||||
|
const int k = row/k_rows;
|
||||||
|
|
||||||
|
float m_k;
|
||||||
|
if (k < n_heads_log2_floor) {
|
||||||
|
m_k = powf(m0, k + 1);
|
||||||
|
} else {
|
||||||
|
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst[i] = col * m_k + x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
|
||||||
|
const int k_rows, const int n_heads_log2_floor, const float m0,
|
||||||
|
const float m1, cudaStream_t stream) {
|
||||||
|
const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
|
||||||
|
const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
|
||||||
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||||
|
alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
|
const int64_t ne02 = src0->ne[2];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
|
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||||
|
float max_bias;
|
||||||
|
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||||
|
|
||||||
|
//GGML_ASSERT(ne01 + n_past == ne00);
|
||||||
|
GGML_ASSERT(n_head == ne02);
|
||||||
|
|
||||||
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
||||||
|
|
||||||
|
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
||||||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
||||||
|
|
||||||
|
alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream);
|
||||||
|
}
|
5
ggml-cuda/alibi.cuh
Normal file
5
ggml-cuda/alibi.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_ALIBI_BLOCK_SIZE 32
|
||||||
|
|
||||||
|
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
34
ggml-cuda/arange.cu
Normal file
34
ggml-cuda/arange.cu
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
#include "arange.cuh"
|
||||||
|
|
||||||
|
static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
|
||||||
|
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[nidx] = start + step * nidx;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
|
||||||
|
int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
|
||||||
|
arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
float start;
|
||||||
|
float stop;
|
||||||
|
float step;
|
||||||
|
memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
|
||||||
|
memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
|
||||||
|
memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
|
||||||
|
|
||||||
|
int64_t steps = (int64_t)ceil((stop - start) / step);
|
||||||
|
GGML_ASSERT(ggml_nelements(dst) == steps);
|
||||||
|
|
||||||
|
arange_f32_cuda(dst_d, dst->ne[0], start, step, stream);
|
||||||
|
}
|
5
ggml-cuda/arange.cuh
Normal file
5
ggml-cuda/arange.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_ARANGE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
77
ggml-cuda/argsort.cu
Normal file
77
ggml-cuda/argsort.cu
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
#include "argsort.cuh"
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
||||||
|
T tmp = a;
|
||||||
|
a = b;
|
||||||
|
b = tmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<ggml_sort_order order>
|
||||||
|
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
|
||||||
|
// bitonic sort
|
||||||
|
int col = threadIdx.x;
|
||||||
|
int row = blockIdx.y;
|
||||||
|
|
||||||
|
if (col >= ncols) return;
|
||||||
|
|
||||||
|
const float * x_row = x + row * ncols;
|
||||||
|
int * dst_row = dst + row * ncols;
|
||||||
|
|
||||||
|
// initialize indices
|
||||||
|
if (col < ncols) {
|
||||||
|
dst_row[col] = col;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int k = 2; k <= ncols; k *= 2) {
|
||||||
|
for (int j = k / 2; j > 0; j /= 2) {
|
||||||
|
int ixj = col ^ j;
|
||||||
|
if (ixj > col) {
|
||||||
|
if ((col & k) == 0) {
|
||||||
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||||
|
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||||
|
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||||
|
// bitonic sort requires ncols to be power of 2
|
||||||
|
GGML_ASSERT((ncols & (ncols - 1)) == 0);
|
||||||
|
|
||||||
|
const dim3 block_dims(ncols, 1, 1);
|
||||||
|
const dim3 block_nums(1, nrows, 1);
|
||||||
|
if (order == GGML_SORT_ORDER_ASC) {
|
||||||
|
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
|
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||||
|
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
const int64_t ncols = src0->ne[0];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||||
|
|
||||||
|
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||||
|
}
|
3
ggml-cuda/argsort.cuh
Normal file
3
ggml-cuda/argsort.cuh
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
236
ggml-cuda/binbcast.cu
Normal file
236
ggml-cuda/binbcast.cu
Normal file
@ -0,0 +1,236 @@
|
|||||||
|
#include "binbcast.cuh"
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
||||||
|
return b;
|
||||||
|
GGML_UNUSED(a);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float op_add(const float a, const float b) {
|
||||||
|
return a + b;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float op_mul(const float a, const float b) {
|
||||||
|
return a * b;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float op_div(const float a, const float b) {
|
||||||
|
return a / b;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||||
|
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||||
|
int ne0, int ne1, int ne2, int ne3,
|
||||||
|
int ne10, int ne11, int ne12, int ne13,
|
||||||
|
/*int s0, */ int s1, int s2, int s3,
|
||||||
|
/*int s10,*/ int s11, int s12, int s13) {
|
||||||
|
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
|
||||||
|
const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
|
||||||
|
|
||||||
|
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i11 = i1 % ne11;
|
||||||
|
const int i12 = i2 % ne12;
|
||||||
|
const int i13 = i3 % ne13;
|
||||||
|
|
||||||
|
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
||||||
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||||
|
const size_t i_dst = i_src0;
|
||||||
|
|
||||||
|
const src0_t * src0_row = src0 + i_src0;
|
||||||
|
const src1_t * src1_row = src1 + i_src1;
|
||||||
|
dst_t * dst_row = dst + i_dst;
|
||||||
|
|
||||||
|
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
|
||||||
|
const int i10 = i0 % ne10;
|
||||||
|
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||||
|
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||||
|
int ne0, int ne1, int ne2, int ne3,
|
||||||
|
int ne10, int ne11, int ne12, int ne13,
|
||||||
|
/*int s0, */ int s1, int s2, int s3,
|
||||||
|
/*int s10,*/ int s11, int s12, int s13) {
|
||||||
|
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
const int i3 = i/(ne2*ne1*ne0);
|
||||||
|
const int i2 = (i/(ne1*ne0)) % ne2;
|
||||||
|
const int i1 = (i/ne0) % ne1;
|
||||||
|
const int i0 = i % ne0;
|
||||||
|
|
||||||
|
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i11 = i1 % ne11;
|
||||||
|
const int i12 = i2 % ne12;
|
||||||
|
const int i13 = i3 % ne13;
|
||||||
|
|
||||||
|
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
||||||
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||||
|
const size_t i_dst = i_src0;
|
||||||
|
|
||||||
|
const src0_t * src0_row = src0 + i_src0;
|
||||||
|
const src1_t * src1_row = src1 + i_src1;
|
||||||
|
dst_t * dst_row = dst + i_dst;
|
||||||
|
|
||||||
|
const int i10 = i0 % ne10;
|
||||||
|
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<float (*bin_op)(const float, const float)>
|
||||||
|
struct bin_bcast_cuda {
|
||||||
|
template<typename src0_t, typename src1_t, typename dst_t>
|
||||||
|
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
|
||||||
|
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
||||||
|
cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
|
|
||||||
|
int nr0 = ne10/ne0;
|
||||||
|
int nr1 = ne11/ne1;
|
||||||
|
int nr2 = ne12/ne2;
|
||||||
|
int nr3 = ne13/ne3;
|
||||||
|
|
||||||
|
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||||
|
|
||||||
|
// collapse dimensions until first broadcast dimension
|
||||||
|
int64_t cne0[] = {ne0, ne1, ne2, ne3};
|
||||||
|
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
||||||
|
size_t cnb0[] = {nb0, nb1, nb2, nb3};
|
||||||
|
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
||||||
|
auto collapse = [](int64_t cne[]) {
|
||||||
|
cne[0] *= cne[1];
|
||||||
|
cne[1] = cne[2];
|
||||||
|
cne[2] = cne[3];
|
||||||
|
cne[3] = 1;
|
||||||
|
};
|
||||||
|
|
||||||
|
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
||||||
|
cnb[1] *= cne[1];
|
||||||
|
cnb[2] *= cne[2];
|
||||||
|
cnb[3] *= cne[3];
|
||||||
|
};
|
||||||
|
|
||||||
|
for (int i = 0; i < 4; i++) {
|
||||||
|
if (nr[i] != 1) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (i > 0) {
|
||||||
|
collapse_nb(cnb0, cne0);
|
||||||
|
collapse_nb(cnb1, cne1);
|
||||||
|
collapse(cne0);
|
||||||
|
collapse(cne1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
int64_t ne0 = cne0[0];
|
||||||
|
int64_t ne1 = cne0[1];
|
||||||
|
int64_t ne2 = cne0[2];
|
||||||
|
int64_t ne3 = cne0[3];
|
||||||
|
|
||||||
|
int64_t ne10 = cne1[0];
|
||||||
|
int64_t ne11 = cne1[1];
|
||||||
|
int64_t ne12 = cne1[2];
|
||||||
|
int64_t ne13 = cne1[3];
|
||||||
|
|
||||||
|
size_t nb0 = cnb0[0];
|
||||||
|
size_t nb1 = cnb0[1];
|
||||||
|
size_t nb2 = cnb0[2];
|
||||||
|
size_t nb3 = cnb0[3];
|
||||||
|
|
||||||
|
size_t nb10 = cnb1[0];
|
||||||
|
size_t nb11 = cnb1[1];
|
||||||
|
size_t nb12 = cnb1[2];
|
||||||
|
size_t nb13 = cnb1[3];
|
||||||
|
|
||||||
|
size_t s0 = nb0 / sizeof(dst_t);
|
||||||
|
size_t s1 = nb1 / sizeof(dst_t);
|
||||||
|
size_t s2 = nb2 / sizeof(dst_t);
|
||||||
|
size_t s3 = nb3 / sizeof(dst_t);
|
||||||
|
|
||||||
|
size_t s10 = nb10 / sizeof(src1_t);
|
||||||
|
size_t s11 = nb11 / sizeof(src1_t);
|
||||||
|
size_t s12 = nb12 / sizeof(src1_t);
|
||||||
|
size_t s13 = nb13 / sizeof(src1_t);
|
||||||
|
|
||||||
|
GGML_ASSERT(s0 == 1);
|
||||||
|
GGML_ASSERT(s10 == 1);
|
||||||
|
|
||||||
|
const int block_size = 128;
|
||||||
|
|
||||||
|
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
||||||
|
|
||||||
|
dim3 block_dims;
|
||||||
|
block_dims.x = std::min<unsigned int>(hne0, block_size);
|
||||||
|
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
||||||
|
block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
|
||||||
|
|
||||||
|
dim3 block_nums(
|
||||||
|
(hne0 + block_dims.x - 1) / block_dims.x,
|
||||||
|
(ne1 + block_dims.y - 1) / block_dims.y,
|
||||||
|
(ne2*ne3 + block_dims.z - 1) / block_dims.z
|
||||||
|
);
|
||||||
|
|
||||||
|
if (block_nums.z > 65535) {
|
||||||
|
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
|
||||||
|
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
||||||
|
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
|
||||||
|
src0_dd, src1_dd, dst_dd,
|
||||||
|
ne0, ne1, ne2, ne3,
|
||||||
|
ne10, ne11, ne12, ne13,
|
||||||
|
/* s0, */ s1, s2, s3,
|
||||||
|
/* s10, */ s11, s12, s13);
|
||||||
|
} else {
|
||||||
|
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
src0_dd, src1_dd, dst_dd,
|
||||||
|
ne0, ne1, ne2, ne3,
|
||||||
|
ne10, ne11, ne12, ne13,
|
||||||
|
/* s0, */ s1, s2, s3,
|
||||||
|
/* s10, */ s11, s12, s13);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class op>
|
||||||
|
static void ggml_cuda_op_bin_bcast(
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||||
|
const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||||
|
op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||||
|
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||||
|
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
||||||
|
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||||
|
}
|
6
ggml-cuda/binbcast.cuh
Normal file
6
ggml-cuda/binbcast.cuh
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
35
ggml-cuda/clamp.cu
Normal file
35
ggml-cuda/clamp.cu
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
#include "clamp.cuh"
|
||||||
|
|
||||||
|
static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
|
||||||
|
clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
float min;
|
||||||
|
float max;
|
||||||
|
memcpy(&min, dst->op_params, sizeof(float));
|
||||||
|
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||||||
|
|
||||||
|
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
}
|
5
ggml-cuda/clamp.cuh
Normal file
5
ggml-cuda/clamp.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_CLAMP_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
550
ggml-cuda/common.cuh
Normal file
550
ggml-cuda/common.cuh
Normal file
@ -0,0 +1,550 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "../ggml.h"
|
||||||
|
#include "../ggml-cuda.h"
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
|
#define GGML_COMMON_DECL_HIP
|
||||||
|
#define GGML_COMMON_IMPL_HIP
|
||||||
|
#else
|
||||||
|
#define GGML_COMMON_DECL_CUDA
|
||||||
|
#define GGML_COMMON_IMPL_CUDA
|
||||||
|
#endif
|
||||||
|
#include "../ggml-common.h"
|
||||||
|
|
||||||
|
#include <cstdio>
|
||||||
|
#include <array>
|
||||||
|
#include <cassert>
|
||||||
|
#include <cfloat>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
|
#include <hip/hip_runtime.h>
|
||||||
|
#include <hipblas/hipblas.h>
|
||||||
|
#include <hip/hip_fp16.h>
|
||||||
|
#ifdef __HIP_PLATFORM_AMD__
|
||||||
|
// for rocblas_initialize()
|
||||||
|
#include "rocblas/rocblas.h"
|
||||||
|
#endif // __HIP_PLATFORM_AMD__
|
||||||
|
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
|
||||||
|
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
|
||||||
|
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
|
||||||
|
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
|
||||||
|
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
|
||||||
|
#define CUBLAS_OP_N HIPBLAS_OP_N
|
||||||
|
#define CUBLAS_OP_T HIPBLAS_OP_T
|
||||||
|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
||||||
|
#define CUBLAS_TF32_TENSOR_OP_MATH 0
|
||||||
|
#define CUDA_R_16F HIPBLAS_R_16F
|
||||||
|
#define CUDA_R_32F HIPBLAS_R_32F
|
||||||
|
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
||||||
|
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
|
||||||
|
#define cublasCreate hipblasCreate
|
||||||
|
#define cublasDestroy hipblasDestroy
|
||||||
|
#define cublasGemmEx hipblasGemmEx
|
||||||
|
#define cublasGemmBatchedEx hipblasGemmBatchedEx
|
||||||
|
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
|
||||||
|
#define cublasHandle_t hipblasHandle_t
|
||||||
|
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
|
||||||
|
#define cublasSetStream hipblasSetStream
|
||||||
|
#define cublasSgemm hipblasSgemm
|
||||||
|
#define cublasStatus_t hipblasStatus_t
|
||||||
|
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
|
||||||
|
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
|
||||||
|
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
|
||||||
|
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
|
||||||
|
#define cudaDeviceProp hipDeviceProp_t
|
||||||
|
#define cudaDeviceSynchronize hipDeviceSynchronize
|
||||||
|
#define cudaError_t hipError_t
|
||||||
|
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
|
||||||
|
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
|
||||||
|
#define cudaEventCreateWithFlags hipEventCreateWithFlags
|
||||||
|
#define cudaEventDisableTiming hipEventDisableTiming
|
||||||
|
#define cudaEventRecord hipEventRecord
|
||||||
|
#define cudaEventSynchronize hipEventSynchronize
|
||||||
|
#define cudaEvent_t hipEvent_t
|
||||||
|
#define cudaEventDestroy hipEventDestroy
|
||||||
|
#define cudaFree hipFree
|
||||||
|
#define cudaFreeHost hipHostFree
|
||||||
|
#define cudaGetDevice hipGetDevice
|
||||||
|
#define cudaGetDeviceCount hipGetDeviceCount
|
||||||
|
#define cudaGetDeviceProperties hipGetDeviceProperties
|
||||||
|
#define cudaGetErrorString hipGetErrorString
|
||||||
|
#define cudaGetLastError hipGetLastError
|
||||||
|
#define cudaHostRegister hipHostRegister
|
||||||
|
#define cudaHostRegisterPortable hipHostRegisterPortable
|
||||||
|
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
|
||||||
|
#define cudaHostUnregister hipHostUnregister
|
||||||
|
#define cudaLaunchHostFunc hipLaunchHostFunc
|
||||||
|
#ifdef GGML_HIP_UMA
|
||||||
|
#define cudaMalloc hipMallocManaged
|
||||||
|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
|
||||||
|
#else
|
||||||
|
#define cudaMalloc hipMalloc
|
||||||
|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
||||||
|
#endif
|
||||||
|
#define cudaMemcpy hipMemcpy
|
||||||
|
#define cudaMemcpyAsync hipMemcpyAsync
|
||||||
|
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
|
||||||
|
#define cudaMemcpy2DAsync hipMemcpy2DAsync
|
||||||
|
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
|
||||||
|
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
|
||||||
|
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
|
||||||
|
#define cudaMemcpyKind hipMemcpyKind
|
||||||
|
#define cudaMemset hipMemset
|
||||||
|
#define cudaMemsetAsync hipMemsetAsync
|
||||||
|
#define cudaMemGetInfo hipMemGetInfo
|
||||||
|
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
|
||||||
|
#define cudaSetDevice hipSetDevice
|
||||||
|
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
|
||||||
|
#define cudaStreamDestroy hipStreamDestroy
|
||||||
|
#define cudaStreamFireAndForget hipStreamFireAndForget
|
||||||
|
#define cudaStreamNonBlocking hipStreamNonBlocking
|
||||||
|
#define cudaStreamPerThread hipStreamPerThread
|
||||||
|
#define cudaStreamSynchronize hipStreamSynchronize
|
||||||
|
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
|
||||||
|
#define cudaStream_t hipStream_t
|
||||||
|
#define cudaSuccess hipSuccess
|
||||||
|
#define __trap abort
|
||||||
|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
||||||
|
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
|
||||||
|
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
|
||||||
|
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
|
||||||
|
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
|
||||||
|
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
|
||||||
|
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
|
||||||
|
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
|
||||||
|
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
|
||||||
|
#else
|
||||||
|
#include <cuda_runtime.h>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cublas_v2.h>
|
||||||
|
#include <cuda_fp16.h>
|
||||||
|
|
||||||
|
#if CUDART_VERSION < 11020
|
||||||
|
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
|
||||||
|
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
|
||||||
|
#define CUBLAS_COMPUTE_16F CUDA_R_16F
|
||||||
|
#define CUBLAS_COMPUTE_32F CUDA_R_32F
|
||||||
|
#define cublasComputeType_t cudaDataType_t
|
||||||
|
#endif // CUDART_VERSION < 11020
|
||||||
|
|
||||||
|
#endif // defined(GGML_USE_HIPBLAS)
|
||||||
|
|
||||||
|
#define STRINGIZE_IMPL(...) #__VA_ARGS__
|
||||||
|
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
||||||
|
|
||||||
|
#define WARP_SIZE 32
|
||||||
|
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
||||||
|
|
||||||
|
#define CC_PASCAL 600
|
||||||
|
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
||||||
|
#define CC_VOLTA 700
|
||||||
|
#define CC_OFFSET_AMD 1000000
|
||||||
|
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
|
||||||
|
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
||||||
|
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
|
||||||
|
|
||||||
|
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
|
||||||
|
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
|
||||||
|
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
|
||||||
|
// - 7B quantum model: +100-200 MB
|
||||||
|
// - 13B quantum model: +200-400 MB
|
||||||
|
//
|
||||||
|
//#define GGML_CUDA_FORCE_MMQ
|
||||||
|
|
||||||
|
// TODO: improve this to be correct for more hardware
|
||||||
|
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
|
||||||
|
#if !defined(GGML_CUDA_FORCE_MMQ)
|
||||||
|
#define CUDA_USE_TENSOR_CORES
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
|
||||||
|
#define MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
|
||||||
|
|
||||||
|
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define GGML_CUDA_MAX_STREAMS 8
|
||||||
|
|
||||||
|
[[noreturn]]
|
||||||
|
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
|
||||||
|
|
||||||
|
#define CUDA_CHECK_GEN(err, success, error_fn) \
|
||||||
|
do { \
|
||||||
|
auto err_ = (err); \
|
||||||
|
if (err_ != (success)) { \
|
||||||
|
ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
|
||||||
|
} \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
|
||||||
|
|
||||||
|
#if CUDART_VERSION >= 12000
|
||||||
|
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
||||||
|
return cublasGetStatusString(err);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
||||||
|
switch (err) {
|
||||||
|
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
|
||||||
|
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
|
||||||
|
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
|
||||||
|
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
|
||||||
|
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
|
||||||
|
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
|
||||||
|
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
|
||||||
|
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
|
||||||
|
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
|
||||||
|
default: return "unknown error";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif // CUDART_VERSION >= 12000
|
||||||
|
|
||||||
|
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
|
||||||
|
|
||||||
|
#if !defined(GGML_USE_HIPBLAS)
|
||||||
|
static const char * cu_get_error_str(CUresult err) {
|
||||||
|
const char * err_str;
|
||||||
|
cuGetErrorString(err, &err_str);
|
||||||
|
return err_str;
|
||||||
|
}
|
||||||
|
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if CUDART_VERSION >= 11100
|
||||||
|
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
|
||||||
|
#else
|
||||||
|
#define GGML_CUDA_ASSUME(x)
|
||||||
|
#endif // CUDART_VERSION >= 11100
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
typedef half dfloat; // dequantize float
|
||||||
|
typedef half2 dfloat2;
|
||||||
|
#else
|
||||||
|
typedef float dfloat; // dequantize float
|
||||||
|
typedef float2 dfloat2;
|
||||||
|
#endif //GGML_CUDA_F16
|
||||||
|
|
||||||
|
[[noreturn]]
|
||||||
|
static __device__ void no_device_code(
|
||||||
|
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||||
|
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
||||||
|
file_name, line, function_name, arch);
|
||||||
|
GGML_UNUSED(arch_list);
|
||||||
|
#else
|
||||||
|
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
||||||
|
file_name, line, function_name, arch, arch_list);
|
||||||
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||||
|
__trap();
|
||||||
|
|
||||||
|
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef __CUDA_ARCH__
|
||||||
|
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
|
||||||
|
#else
|
||||||
|
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
|
||||||
|
#endif // __CUDA_ARCH__
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||||
|
}
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
||||||
|
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
||||||
|
}
|
||||||
|
return a;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||||
|
}
|
||||||
|
return a;
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(a);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||||
|
}
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||||
|
}
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||||
|
//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
||||||
|
//#pragma unroll
|
||||||
|
// for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
// x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||||
|
// }
|
||||||
|
// return x;
|
||||||
|
//#else
|
||||||
|
// GGML_UNUSED(x);
|
||||||
|
// NO_DEVICE_CODE;
|
||||||
|
//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
||||||
|
//}
|
||||||
|
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
|
#define __CUDA_ARCH__ 1300
|
||||||
|
|
||||||
|
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
||||||
|
defined(__gfx1150__) || defined(__gfx1151__)
|
||||||
|
#define RDNA3
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
|
||||||
|
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
|
||||||
|
#define RDNA2
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef __has_builtin
|
||||||
|
#define __has_builtin(x) 0
|
||||||
|
#endif
|
||||||
|
|
||||||
|
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
|
||||||
|
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
|
||||||
|
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
||||||
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||||
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||||
|
#if __has_builtin(__builtin_elementwise_sub_sat)
|
||||||
|
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
|
||||||
|
return reinterpret_cast<const int &>(c);
|
||||||
|
#else
|
||||||
|
int8x4_t c;
|
||||||
|
int16_t tmp;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < 4; i++) {
|
||||||
|
tmp = va[i] - vb[i];
|
||||||
|
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
|
||||||
|
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
|
||||||
|
c[i] = tmp;
|
||||||
|
}
|
||||||
|
return reinterpret_cast<int &>(c);
|
||||||
|
#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
|
||||||
|
return __vsubss4(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
|
||||||
|
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
|
||||||
|
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
|
||||||
|
unsigned int c;
|
||||||
|
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < 4; ++i) {
|
||||||
|
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
|
||||||
|
}
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||||
|
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
|
||||||
|
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||||
|
#elif defined(RDNA3)
|
||||||
|
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
||||||
|
#elif defined(__gfx1010__) || defined(__gfx900__)
|
||||||
|
int tmp1;
|
||||||
|
int tmp2;
|
||||||
|
asm("\n \
|
||||||
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
|
||||||
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
|
||||||
|
v_add3_u32 %0, %1, %2, %0 \n \
|
||||||
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
|
||||||
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
|
||||||
|
v_add3_u32 %0, %1, %2, %0 \n \
|
||||||
|
"
|
||||||
|
: "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
|
||||||
|
: "v"(a), "v"(b)
|
||||||
|
);
|
||||||
|
#else
|
||||||
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||||
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||||
|
c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
|
||||||
|
#endif
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
#endif // defined(GGML_USE_HIPBLAS)
|
||||||
|
|
||||||
|
// TODO: move to ggml-common.h
|
||||||
|
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||||
|
|
||||||
|
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
|
||||||
|
|
||||||
|
|
||||||
|
//////////////////////
|
||||||
|
|
||||||
|
struct ggml_cuda_device_info {
|
||||||
|
int device_count;
|
||||||
|
|
||||||
|
struct cuda_device_info {
|
||||||
|
int cc; // compute capability
|
||||||
|
size_t smpb; // max. shared memory per block
|
||||||
|
bool vmm; // virtual memory support
|
||||||
|
size_t vmm_granularity; // granularity of virtual memory
|
||||||
|
size_t total_vram;
|
||||||
|
};
|
||||||
|
|
||||||
|
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
|
||||||
|
|
||||||
|
std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
|
||||||
|
};
|
||||||
|
|
||||||
|
const ggml_cuda_device_info & ggml_cuda_info();
|
||||||
|
|
||||||
|
void ggml_cuda_set_device(int device);
|
||||||
|
int ggml_cuda_get_device();
|
||||||
|
|
||||||
|
struct ggml_cuda_pool {
|
||||||
|
virtual ~ggml_cuda_pool() = default;
|
||||||
|
|
||||||
|
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
||||||
|
virtual void free(void * ptr, size_t size) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
struct ggml_cuda_pool_alloc {
|
||||||
|
ggml_cuda_pool * pool = nullptr;
|
||||||
|
T * ptr = nullptr;
|
||||||
|
size_t actual_size = 0;
|
||||||
|
|
||||||
|
ggml_cuda_pool_alloc() = default;
|
||||||
|
|
||||||
|
explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
|
||||||
|
alloc(size);
|
||||||
|
}
|
||||||
|
|
||||||
|
~ggml_cuda_pool_alloc() {
|
||||||
|
if (ptr != nullptr) {
|
||||||
|
pool->free(ptr, actual_size);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// size is in number of elements
|
||||||
|
T * alloc(size_t size) {
|
||||||
|
GGML_ASSERT(pool != nullptr);
|
||||||
|
GGML_ASSERT(ptr == nullptr);
|
||||||
|
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
|
||||||
|
return ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
T * alloc(ggml_cuda_pool & pool, size_t size) {
|
||||||
|
this->pool = &pool;
|
||||||
|
return alloc(size);
|
||||||
|
}
|
||||||
|
|
||||||
|
T * get() {
|
||||||
|
return ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
|
||||||
|
ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
|
||||||
|
ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
|
||||||
|
ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// backend interface
|
||||||
|
|
||||||
|
struct ggml_tensor_extra_gpu {
|
||||||
|
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||||
|
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_backend_cuda_context {
|
||||||
|
int device;
|
||||||
|
std::string name;
|
||||||
|
cudaEvent_t copy_event = nullptr;
|
||||||
|
|
||||||
|
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
|
||||||
|
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
||||||
|
|
||||||
|
explicit ggml_backend_cuda_context(int device) :
|
||||||
|
device(device),
|
||||||
|
name(GGML_CUDA_NAME + std::to_string(device)) {
|
||||||
|
}
|
||||||
|
|
||||||
|
~ggml_backend_cuda_context() {
|
||||||
|
if (copy_event != nullptr) {
|
||||||
|
CUDA_CHECK(cudaEventDestroy(copy_event));
|
||||||
|
}
|
||||||
|
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
|
||||||
|
for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
|
||||||
|
if (streams[i][j] != nullptr) {
|
||||||
|
CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (cublas_handles[i] != nullptr) {
|
||||||
|
CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cudaStream_t stream(int device, int stream) {
|
||||||
|
if (streams[device][stream] == nullptr) {
|
||||||
|
ggml_cuda_set_device(device);
|
||||||
|
CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
|
||||||
|
}
|
||||||
|
return streams[device][stream];
|
||||||
|
}
|
||||||
|
|
||||||
|
cudaStream_t stream() {
|
||||||
|
return stream(device, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
cublasHandle_t cublas_handle(int device) {
|
||||||
|
if (cublas_handles[device] == nullptr) {
|
||||||
|
ggml_cuda_set_device(device);
|
||||||
|
CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
|
||||||
|
CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
|
||||||
|
}
|
||||||
|
return cublas_handles[device];
|
||||||
|
}
|
||||||
|
|
||||||
|
cublasHandle_t cublas_handle() {
|
||||||
|
return cublas_handle(device);
|
||||||
|
}
|
||||||
|
|
||||||
|
// pool
|
||||||
|
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
|
||||||
|
|
||||||
|
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
|
||||||
|
|
||||||
|
ggml_cuda_pool & pool(int device) {
|
||||||
|
if (pools[device] == nullptr) {
|
||||||
|
pools[device] = new_pool_for_device(device);
|
||||||
|
}
|
||||||
|
return *pools[device];
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_cuda_pool & pool() {
|
||||||
|
return pool(device);
|
||||||
|
}
|
||||||
|
};
|
49
ggml-cuda/concat.cu
Normal file
49
ggml-cuda/concat.cu
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
#include "concat.cuh"
|
||||||
|
|
||||||
|
static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
// operation
|
||||||
|
int offset_dst =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
if (blockIdx.z < ne02) { // src0
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
dst[offset_dst] = x[offset_src];
|
||||||
|
} else {
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
(blockIdx.z - ne02) * ne0 * gridDim.y;
|
||||||
|
dst[offset_dst] = y[offset_src];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
|
||||||
|
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
|
||||||
|
dim3 gridDim(num_blocks, ne1, ne2);
|
||||||
|
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||||||
|
concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
|
||||||
|
}
|
||||||
|
}
|
5
ggml-cuda/concat.cuh
Normal file
5
ggml-cuda/concat.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_CONCAT_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
783
ggml-cuda/convert.cu
Normal file
783
ggml-cuda/convert.cu
Normal file
@ -0,0 +1,783 @@
|
|||||||
|
#include "convert.cuh"
|
||||||
|
#include "dequantize.cuh"
|
||||||
|
|
||||||
|
#define CUDA_Q8_0_NE_ALIGN 2048
|
||||||
|
|
||||||
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||||
|
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
|
||||||
|
const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int ib = i/qk; // block index
|
||||||
|
const int iqs = (i%qk)/qr; // quant index
|
||||||
|
const int iybs = i - i%qk; // y block start index
|
||||||
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||||
|
|
||||||
|
// dequantize
|
||||||
|
dfloat2 v;
|
||||||
|
dequantize_kernel(vx, ib, iqs, v);
|
||||||
|
|
||||||
|
y[iybs + iqs + 0] = v.x;
|
||||||
|
y[iybs + iqs + y_offset] = v.y;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <bool need_check>
|
||||||
|
static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) {
|
||||||
|
#if __CUDA_ARCH__ >= CC_PASCAL
|
||||||
|
constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
|
||||||
|
|
||||||
|
const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
|
||||||
|
const int * x0 = ((int *) vx) + blockIdx.x * nint;
|
||||||
|
half2 * y2 = (half2 *) (y + i0);
|
||||||
|
|
||||||
|
__shared__ int vals[nint];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
|
||||||
|
if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int ix = ix0 + threadIdx.x;
|
||||||
|
vals[ix] = x0[ix];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
|
||||||
|
if (need_check && i0 + iy + 2*threadIdx.x >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
|
||||||
|
const half d = *b0;
|
||||||
|
const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
|
||||||
|
|
||||||
|
y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(vx);
|
||||||
|
GGML_UNUSED(y);
|
||||||
|
GGML_UNUSED(k);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // __CUDA_ARCH__ >= CC_PASCAL
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
|
||||||
|
// assume 32 threads
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8;
|
||||||
|
const int ir = tid%8;
|
||||||
|
const int ib = 8*i + ir;
|
||||||
|
if (ib >= nb32) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||||
|
|
||||||
|
const block_q4_0 * x = (const block_q4_0 *)vx + ib;
|
||||||
|
const float d = __half2float(x->d);
|
||||||
|
const float dm = -8*d;
|
||||||
|
|
||||||
|
const uint8_t * q = x->qs + 4*il;
|
||||||
|
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
y[l+ 0] = d * (q[l] & 0xF) + dm;
|
||||||
|
y[l+16] = d * (q[l] >> 4) + dm;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
|
||||||
|
// assume 32 threads
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8;
|
||||||
|
const int ir = tid%8;
|
||||||
|
const int ib = 8*i + ir;
|
||||||
|
if (ib >= nb32) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||||
|
|
||||||
|
const block_q4_1 * x = (const block_q4_1 *)vx + ib;
|
||||||
|
const float2 d = __half22float2(x->dm);
|
||||||
|
|
||||||
|
const uint8_t * q = x->qs + 4*il;
|
||||||
|
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
|
||||||
|
y[l+16] = d.x * (q[l] >> 4) + d.y;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//================================== k-quants
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_q2_K * x = (const block_q2_K *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int n = tid/32;
|
||||||
|
const int l = tid - 32*n;
|
||||||
|
const int is = 8*n + l/16;
|
||||||
|
|
||||||
|
const uint8_t q = x[i].qs[32*n + l];
|
||||||
|
dst_t * y = yy + i*QK_K + 128*n;
|
||||||
|
|
||||||
|
float dall = __low2half(x[i].dm);
|
||||||
|
float dmin = __high2half(x[i].dm);
|
||||||
|
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||||
|
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||||
|
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||||
|
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||||
|
#else
|
||||||
|
const int is = tid/16; // 0 or 1
|
||||||
|
const int il = tid%16; // 0...15
|
||||||
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||||
|
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||||
|
float dall = __low2half(x[i].dm);
|
||||||
|
float dmin = __high2half(x[i].dm);
|
||||||
|
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||||
|
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_q3_K * x = (const block_q3_K *) vx;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
const int r = threadIdx.x/4;
|
||||||
|
const int tid = r/2;
|
||||||
|
const int is0 = r%2;
|
||||||
|
const int l0 = 16*is0 + 4*(threadIdx.x%4);
|
||||||
|
const int n = tid / 4;
|
||||||
|
const int j = tid - 4*n;
|
||||||
|
|
||||||
|
uint8_t m = 1 << (4*n + j);
|
||||||
|
int is = 8*n + 2*j + is0;
|
||||||
|
int shift = 2*j;
|
||||||
|
|
||||||
|
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
||||||
|
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
||||||
|
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
||||||
|
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
||||||
|
float d_all = x[i].d;
|
||||||
|
float dl = d_all * (us - 32);
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 128*n + 32*j;
|
||||||
|
const uint8_t * q = x[i].qs + 32*n;
|
||||||
|
const uint8_t * hm = x[i].hmask;
|
||||||
|
|
||||||
|
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int is = tid/16; // 0 or 1
|
||||||
|
const int il = tid%16; // 0...15
|
||||||
|
const int im = il/8; // 0...1
|
||||||
|
const int in = il%8; // 0...7
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||||
|
|
||||||
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||||
|
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
||||||
|
const float d = (float)x[i].d;
|
||||||
|
|
||||||
|
if (is == 0) {
|
||||||
|
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||||
|
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||||
|
} else {
|
||||||
|
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||||
|
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||||
|
if (j < 4) {
|
||||||
|
d = q[j] & 63; m = q[j + 4] & 63;
|
||||||
|
} else {
|
||||||
|
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
||||||
|
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
const block_q4_K * x = (const block_q4_K *) vx;
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
// assume 32 threads
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8;
|
||||||
|
const int ir = tid%8;
|
||||||
|
const int is = 2*il;
|
||||||
|
const int n = 4;
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
||||||
|
|
||||||
|
uint8_t sc, m;
|
||||||
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||||
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||||
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||||
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||||
|
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const uint8_t * q = x[i].qs;
|
||||||
|
dst_t * y = yy + i*QK_K;
|
||||||
|
const float d = (float)x[i].dm[0];
|
||||||
|
const float m = (float)x[i].dm[1];
|
||||||
|
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
||||||
|
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
const block_q5_K * x = (const block_q5_K *) vx;
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
// assume 64 threads - this is very slightly better than the one below
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/16; // il is in 0...3
|
||||||
|
const int ir = tid%16; // ir is in 0...15
|
||||||
|
const int is = 2*il; // is is in 0...6
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
||||||
|
const uint8_t * qh = x[i].qh + 2*ir;
|
||||||
|
|
||||||
|
uint8_t sc, m;
|
||||||
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||||
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||||
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||||
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||||
|
|
||||||
|
uint8_t hm = 1 << (2*il);
|
||||||
|
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
||||||
|
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
||||||
|
hm <<= 1;
|
||||||
|
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||||
|
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const uint8_t q = x[i].qs[tid];
|
||||||
|
const int im = tid/8; // 0...3
|
||||||
|
const int in = tid%8; // 0...7
|
||||||
|
const int is = tid/16; // 0 or 1
|
||||||
|
const uint8_t h = x[i].qh[in] >> im;
|
||||||
|
const float d = x[i].d;
|
||||||
|
dst_t * y = yy + i*QK_K + tid;
|
||||||
|
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
||||||
|
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
const block_q6_K * x = (const block_q6_K *) vx;
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
|
||||||
|
// assume 64 threads - this is very slightly better than the one below
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int ip = tid/32; // ip is 0 or 1
|
||||||
|
const int il = tid - 32*ip; // 0...32
|
||||||
|
const int is = 8*ip + il/16;
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 128*ip + il;
|
||||||
|
|
||||||
|
const float d = x[i].d;
|
||||||
|
|
||||||
|
const uint8_t * ql = x[i].ql + 64*ip + il;
|
||||||
|
const uint8_t qh = x[i].qh[32*ip + il];
|
||||||
|
const int8_t * sc = x[i].scales + is;
|
||||||
|
|
||||||
|
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||||
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
||||||
|
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||||
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
||||||
|
#else
|
||||||
|
|
||||||
|
// assume 32 threads
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int ip = tid/16; // 0 or 1
|
||||||
|
const int il = tid - 16*ip; // 0...15
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 16*ip + il;
|
||||||
|
|
||||||
|
const float d = x[i].d;
|
||||||
|
|
||||||
|
const uint8_t ql = x[i].ql[16*ip + il];
|
||||||
|
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
||||||
|
const int8_t * sc = x[i].scales;
|
||||||
|
|
||||||
|
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||||
|
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||||
|
const uint8_t * aux8 = (const uint8_t *)q2;
|
||||||
|
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
|
||||||
|
const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
||||||
|
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
||||||
|
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||||
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
|
#else
|
||||||
|
assert(false);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||||
|
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
|
||||||
|
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||||
|
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
||||||
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
|
#else
|
||||||
|
assert(false);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
|
||||||
|
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||||
|
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||||
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
|
#else
|
||||||
|
assert(false);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint8_t * q3 = x[i].qs + 8*ib;
|
||||||
|
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
||||||
|
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
|
||||||
|
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
|
||||||
|
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||||
|
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||||
|
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||||
|
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
assert(false);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint8_t * qs = x[i].qs + 8*ib;
|
||||||
|
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
||||||
|
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
|
||||||
|
const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
|
||||||
|
const uint8_t signs = x[i].signs[4*ib + il];
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||||
|
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
assert(false);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
|
||||||
|
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
|
||||||
|
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||||
|
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
|
||||||
|
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
grid32[0] &= 0x0f0f0f0f;
|
||||||
|
for (int j = 0; j < 8; ++j) {
|
||||||
|
y[j] = d * (q[j] + delta);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
assert(false);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||||
|
const uint8_t * q4 = x[ib].qs + 4*il;
|
||||||
|
const float d = (float)x[ib].d;
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||||
|
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq4_xs * x = (const block_iq4_xs *)vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||||
|
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
|
||||||
|
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||||
|
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||||
|
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
|
||||||
|
dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
|
||||||
|
if (k % CUDA_Q8_0_NE_ALIGN == 0) {
|
||||||
|
const bool need_check = false;
|
||||||
|
dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
|
||||||
|
} else {
|
||||||
|
const bool need_check = true;
|
||||||
|
dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
#if QK_K == 256
|
||||||
|
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
#if QK_K == 256
|
||||||
|
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb32 = k / 32;
|
||||||
|
const int nb = (k + 255) / 256;
|
||||||
|
dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb32 = k / 32;
|
||||||
|
const int nb = (k + 255) / 256;
|
||||||
|
dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
#if QK_K == 256
|
||||||
|
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
#if QK_K == 256
|
||||||
|
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = (k + QK_K - 1) / QK_K;
|
||||||
|
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = (k + QK_K - 1) / QK_K;
|
||||||
|
#if QK_K == 64
|
||||||
|
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename src_t, typename dst_t>
|
||||||
|
static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const src_t * x = (src_t *) vx;
|
||||||
|
|
||||||
|
y[i] = x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename src_t, typename dst_t>
|
||||||
|
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||||
|
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||||
|
int id;
|
||||||
|
switch (type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
return dequantize_row_q4_0_cuda;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
return dequantize_row_q4_1_cuda;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
CUDA_CHECK(cudaGetDevice(&id));
|
||||||
|
if (ggml_cuda_info().devices[id].cc >= CC_PASCAL) {
|
||||||
|
return dequantize_block_q8_0_f16_cuda;
|
||||||
|
}
|
||||||
|
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||||
|
case GGML_TYPE_Q2_K:
|
||||||
|
return dequantize_row_q2_K_cuda;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
return dequantize_row_q3_K_cuda;
|
||||||
|
case GGML_TYPE_Q4_K:
|
||||||
|
return dequantize_row_q4_K_cuda;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
return dequantize_row_q5_K_cuda;
|
||||||
|
case GGML_TYPE_Q6_K:
|
||||||
|
return dequantize_row_q6_K_cuda;
|
||||||
|
case GGML_TYPE_IQ2_XXS:
|
||||||
|
return dequantize_row_iq2_xxs_cuda;
|
||||||
|
case GGML_TYPE_IQ2_XS:
|
||||||
|
return dequantize_row_iq2_xs_cuda;
|
||||||
|
case GGML_TYPE_IQ2_S:
|
||||||
|
return dequantize_row_iq2_s_cuda;
|
||||||
|
case GGML_TYPE_IQ3_XXS:
|
||||||
|
return dequantize_row_iq3_xxs_cuda;
|
||||||
|
case GGML_TYPE_IQ1_S:
|
||||||
|
return dequantize_row_iq1_s_cuda;
|
||||||
|
case GGML_TYPE_IQ4_NL:
|
||||||
|
return dequantize_row_iq4_nl_cuda;
|
||||||
|
case GGML_TYPE_IQ4_XS:
|
||||||
|
return dequantize_row_iq4_xs_cuda;
|
||||||
|
case GGML_TYPE_IQ3_S:
|
||||||
|
return dequantize_row_iq3_s_cuda;
|
||||||
|
case GGML_TYPE_F32:
|
||||||
|
return convert_unary_cuda<float>;
|
||||||
|
default:
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||||
|
switch (type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
return dequantize_row_q4_0_cuda;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
return dequantize_row_q4_1_cuda;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||||
|
case GGML_TYPE_Q2_K:
|
||||||
|
return dequantize_row_q2_K_cuda;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
return dequantize_row_q3_K_cuda;
|
||||||
|
case GGML_TYPE_Q4_K:
|
||||||
|
return dequantize_row_q4_K_cuda;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
return dequantize_row_q5_K_cuda;
|
||||||
|
case GGML_TYPE_Q6_K:
|
||||||
|
return dequantize_row_q6_K_cuda;
|
||||||
|
case GGML_TYPE_IQ2_XXS:
|
||||||
|
return dequantize_row_iq2_xxs_cuda;
|
||||||
|
case GGML_TYPE_IQ2_XS:
|
||||||
|
return dequantize_row_iq2_xs_cuda;
|
||||||
|
case GGML_TYPE_IQ2_S:
|
||||||
|
return dequantize_row_iq2_s_cuda;
|
||||||
|
case GGML_TYPE_IQ3_XXS:
|
||||||
|
return dequantize_row_iq3_xxs_cuda;
|
||||||
|
case GGML_TYPE_IQ1_S:
|
||||||
|
return dequantize_row_iq1_s_cuda;
|
||||||
|
case GGML_TYPE_IQ4_NL:
|
||||||
|
return dequantize_row_iq4_nl_cuda;
|
||||||
|
case GGML_TYPE_IQ4_XS:
|
||||||
|
return dequantize_row_iq4_xs_cuda;
|
||||||
|
case GGML_TYPE_IQ3_S:
|
||||||
|
return dequantize_row_iq3_s_cuda;
|
||||||
|
case GGML_TYPE_F16:
|
||||||
|
return convert_unary_cuda<half>;
|
||||||
|
default:
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
}
|
13
ggml-cuda/convert.cuh
Normal file
13
ggml-cuda/convert.cuh
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
|
||||||
|
|
||||||
|
typedef to_t_cuda_t<float> to_fp32_cuda_t;
|
||||||
|
typedef to_t_cuda_t<half> to_fp16_cuda_t;
|
||||||
|
|
||||||
|
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
|
||||||
|
|
||||||
|
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);
|
461
ggml-cuda/cpy.cu
Normal file
461
ggml-cuda/cpy.cu
Normal file
@ -0,0 +1,461 @@
|
|||||||
|
#include "cpy.cuh"
|
||||||
|
|
||||||
|
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
||||||
|
|
||||||
|
static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
float * dsti = (float *) cdsti;
|
||||||
|
|
||||||
|
*dsti = *xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
half * dsti = (half *) cdsti;
|
||||||
|
|
||||||
|
*dsti = __float2half(*xi);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
||||||
|
const half * xi = (const half *) cxi;
|
||||||
|
half * dsti = (half *) cdsti;
|
||||||
|
|
||||||
|
*dsti = *xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||||
|
const half * xi = (const half *) cxi;
|
||||||
|
float * dsti = (float *) cdsti;
|
||||||
|
|
||||||
|
*dsti = *xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <cpy_kernel_t cpy_1>
|
||||||
|
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||||
|
const int nb12, const int nb13) {
|
||||||
|
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= ne) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||||
|
// then combine those indices with the corresponding byte offsets to get the total offsets
|
||||||
|
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||||
|
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||||
|
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||||
|
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||||
|
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||||
|
|
||||||
|
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||||
|
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||||
|
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||||
|
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||||
|
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||||
|
|
||||||
|
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||||
|
|
||||||
|
float amax = 0.0f; // absolute max
|
||||||
|
|
||||||
|
for (int j = 0; j < QK8_0; j++) {
|
||||||
|
const float v = xi[j];
|
||||||
|
amax = fmaxf(amax, fabsf(v));
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = amax / ((1 << 7) - 1);
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->d = d;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK8_0; ++j) {
|
||||||
|
const float x0 = xi[j]*id;
|
||||||
|
|
||||||
|
dsti->qs[j] = roundf(x0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q4_0 * dsti = (block_q4_0 *) cdsti;
|
||||||
|
|
||||||
|
float amax = 0.0f;
|
||||||
|
float vmax = 0.0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_0; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
if (amax < fabsf(v)) {
|
||||||
|
amax = fabsf(v);
|
||||||
|
vmax = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = vmax / -8;
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->d = d;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_0/2; ++j) {
|
||||||
|
const float x0 = xi[0 + j]*id;
|
||||||
|
const float x1 = xi[QK4_0/2 + j]*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
|
||||||
|
const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
|
||||||
|
|
||||||
|
dsti->qs[j] = xi0;
|
||||||
|
dsti->qs[j] |= xi1 << 4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q4_1 * dsti = (block_q4_1 *) cdsti;
|
||||||
|
|
||||||
|
float vmin = FLT_MAX;
|
||||||
|
float vmax = -FLT_MAX;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_1; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
|
||||||
|
if (v < vmin) vmin = v;
|
||||||
|
if (v > vmax) vmax = v;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->dm.x = d;
|
||||||
|
dsti->dm.y = vmin;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_1/2; ++j) {
|
||||||
|
const float x0 = (xi[0 + j] - vmin)*id;
|
||||||
|
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
|
||||||
|
const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
|
||||||
|
|
||||||
|
dsti->qs[j] = xi0;
|
||||||
|
dsti->qs[j] |= xi1 << 4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q5_0 * dsti = (block_q5_0 *) cdsti;
|
||||||
|
|
||||||
|
float amax = 0.0f;
|
||||||
|
float vmax = 0.0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK5_0; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
if (amax < fabsf(v)) {
|
||||||
|
amax = fabsf(v);
|
||||||
|
vmax = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = vmax / -16;
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->d = d;
|
||||||
|
|
||||||
|
uint32_t qh = 0;
|
||||||
|
for (int j = 0; j < QK5_0/2; ++j) {
|
||||||
|
const float x0 = xi[0 + j]*id;
|
||||||
|
const float x1 = xi[QK5_0/2 + j]*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
|
||||||
|
const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));
|
||||||
|
|
||||||
|
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||||
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||||
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
||||||
|
}
|
||||||
|
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q5_1 * dsti = (block_q5_1 *) cdsti;
|
||||||
|
|
||||||
|
float min = xi[0];
|
||||||
|
float max = xi[0];
|
||||||
|
|
||||||
|
for (int j = 1; j < QK5_1; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
min = v < min ? v : min;
|
||||||
|
max = v > max ? v : max;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = (max - min) / 31;
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->dm.x = d;
|
||||||
|
dsti->dm.y = min;
|
||||||
|
|
||||||
|
uint32_t qh = 0;
|
||||||
|
for (int j = 0; j < QK5_1/2; ++j) {
|
||||||
|
const float x0 = (xi[0 + j] - min)*id;
|
||||||
|
const float x1 = (xi[QK5_1/2 + j] - min)*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
|
||||||
|
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
|
||||||
|
|
||||||
|
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||||
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||||
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
|
||||||
|
}
|
||||||
|
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
|
||||||
|
if (x <= val[0]) return 0;
|
||||||
|
if (x >= val[n-1]) return n-1;
|
||||||
|
int ml = 0, mu = n-1;
|
||||||
|
while (mu-ml > 1) {
|
||||||
|
int mav = (ml+mu)/2;
|
||||||
|
if (x < val[mav]) mu = mav; else ml = mav;
|
||||||
|
}
|
||||||
|
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
|
||||||
|
|
||||||
|
float amax = 0.0f;
|
||||||
|
float vmax = 0.0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_NL; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
if (amax < fabsf(v)) {
|
||||||
|
amax = fabsf(v);
|
||||||
|
vmax = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float d = vmax / kvalues_iq4nl[0];
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
float sumqx = 0, sumq2 = 0;
|
||||||
|
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||||
|
const float x0 = xi[0 + j]*id;
|
||||||
|
const float x1 = xi[QK4_NL/2 + j]*id;
|
||||||
|
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
|
||||||
|
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
|
||||||
|
dsti->qs[j] = xi0 | (xi1 << 4);
|
||||||
|
const float v0 = kvalues_iq4nl[xi0];
|
||||||
|
const float v1 = kvalues_iq4nl[xi1];
|
||||||
|
const float w0 = xi[0 + j]*xi[0 + j];
|
||||||
|
const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j];
|
||||||
|
sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j];
|
||||||
|
sumq2 += w0*v0*v0 + w1*v1*v1;
|
||||||
|
}
|
||||||
|
|
||||||
|
dsti->d = sumq2 > 0 ? sumqx/sumq2 : d;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <cpy_kernel_t cpy_blck, int qk>
|
||||||
|
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||||
|
const int nb12, const int nb13) {
|
||||||
|
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||||
|
|
||||||
|
if (i >= ne) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i03 = i/(ne00 * ne01 * ne02);
|
||||||
|
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||||
|
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||||
|
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||||
|
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||||
|
|
||||||
|
const int i13 = i/(ne10 * ne11 * ne12);
|
||||||
|
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||||
|
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||||
|
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||||
|
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||||
|
|
||||||
|
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f16_f32_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||||
|
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_f32_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||||
|
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_f16_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||||
|
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q8_0_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK8_0 == 0);
|
||||||
|
const int num_blocks = ne / QK8_0;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q4_0_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK4_0 == 0);
|
||||||
|
const int num_blocks = ne / QK4_0;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q4_1_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK4_1 == 0);
|
||||||
|
const int num_blocks = ne / QK4_1;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q5_0_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK5_0 == 0);
|
||||||
|
const int num_blocks = ne / QK5_0;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q5_1_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK5_1 == 0);
|
||||||
|
const int num_blocks = ne / QK5_1;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_iq4_nl_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK4_NL == 0);
|
||||||
|
const int num_blocks = ne / QK4_NL;
|
||||||
|
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f16_f16_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||||
|
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
|
||||||
|
const int64_t ne = ggml_nelements(src0);
|
||||||
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||||
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
|
const int64_t ne02 = src0->ne[2];
|
||||||
|
|
||||||
|
//GGML_ASSERT(src0->ne[3] == 1);
|
||||||
|
|
||||||
|
const int64_t nb00 = src0->nb[0];
|
||||||
|
const int64_t nb01 = src0->nb[1];
|
||||||
|
const int64_t nb02 = src0->nb[2];
|
||||||
|
const int64_t nb03 = src0->nb[3];
|
||||||
|
|
||||||
|
const int64_t ne10 = src1->ne[0];
|
||||||
|
const int64_t ne11 = src1->ne[1];
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
|
||||||
|
//GGML_ASSERT(src1->ne[3] == 1);
|
||||||
|
|
||||||
|
const int64_t nb10 = src1->nb[0];
|
||||||
|
const int64_t nb11 = src1->nb[1];
|
||||||
|
const int64_t nb12 = src1->nb[2];
|
||||||
|
const int64_t nb13 = src1->nb[3];
|
||||||
|
|
||||||
|
cudaStream_t main_stream = ctx.stream();
|
||||||
|
|
||||||
|
char * src0_ddc = (char *) src0->data;
|
||||||
|
char * src1_ddc = (char *) src1->data;
|
||||||
|
|
||||||
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||||
|
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||||
|
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||||
|
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||||
|
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||||
|
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
|
||||||
|
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
|
||||||
|
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
|
||||||
|
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||||
|
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||||
|
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||||
|
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
ggml_cuda_cpy(ctx, src0, dst);
|
||||||
|
}
|
7
ggml-cuda/cpy.cuh
Normal file
7
ggml-cuda/cpy.cuh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_CPY_BLOCK_SIZE 32
|
||||||
|
|
||||||
|
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
|
||||||
|
|
||||||
|
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
103
ggml-cuda/dequantize.cuh
Normal file
103
ggml-cuda/dequantize.cuh
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = x[ib].d;
|
||||||
|
|
||||||
|
const int vui = x[ib].qs[iqs];
|
||||||
|
|
||||||
|
v.x = vui & 0xF;
|
||||||
|
v.y = vui >> 4;
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hsub2(v, {8.0f, 8.0f});
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
#else
|
||||||
|
v.x = (v.x - 8.0f) * d;
|
||||||
|
v.y = (v.y - 8.0f) * d;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = __low2half(x[ib].dm);
|
||||||
|
const dfloat m = __high2half(x[ib].dm);
|
||||||
|
|
||||||
|
const int vui = x[ib].qs[iqs];
|
||||||
|
|
||||||
|
v.x = vui & 0xF;
|
||||||
|
v.y = vui >> 4;
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
v = __hadd2(v, {m, m});
|
||||||
|
#else
|
||||||
|
v.x = (v.x * d) + m;
|
||||||
|
v.y = (v.y * d) + m;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = x[ib].d;
|
||||||
|
|
||||||
|
uint32_t qh;
|
||||||
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||||
|
|
||||||
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||||
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||||
|
|
||||||
|
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||||
|
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hsub2(v, {16.0f, 16.0f});
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
#else
|
||||||
|
v.x = (v.x - 16.0f) * d;
|
||||||
|
v.y = (v.y - 16.0f) * d;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = __low2half(x[ib].dm);
|
||||||
|
const dfloat m = __high2half(x[ib].dm);
|
||||||
|
|
||||||
|
uint32_t qh;
|
||||||
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||||
|
|
||||||
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||||
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||||
|
|
||||||
|
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||||
|
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
v = __hadd2(v, {m, m});
|
||||||
|
#else
|
||||||
|
v.x = (v.x * d) + m;
|
||||||
|
v.y = (v.y * d) + m;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = x[ib].d;
|
||||||
|
|
||||||
|
v.x = x[ib].qs[iqs + 0];
|
||||||
|
v.y = x[ib].qs[iqs + 1];
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
#else
|
||||||
|
v.x *= d;
|
||||||
|
v.y *= d;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
40
ggml-cuda/diagmask.cu
Normal file
40
ggml-cuda/diagmask.cu
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
#include "diagmask.cuh"
|
||||||
|
|
||||||
|
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
||||||
|
const int col = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i = row*ncols + col;
|
||||||
|
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
|
||||||
|
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
||||||
|
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
||||||
|
const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
|
||||||
|
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
||||||
|
const dim3 block_nums(nrows_x, block_num_x, 1);
|
||||||
|
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
|
const int nrows0 = ggml_nrows(src0);
|
||||||
|
|
||||||
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
|
|
||||||
|
diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
|
||||||
|
}
|
5
ggml-cuda/diagmask.cuh
Normal file
5
ggml-cuda/diagmask.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
|
||||||
|
|
||||||
|
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
820
ggml-cuda/dmmv.cu
Normal file
820
ggml-cuda/dmmv.cu
Normal file
@ -0,0 +1,820 @@
|
|||||||
|
#include "dmmv.cuh"
|
||||||
|
#include "dequantize.cuh"
|
||||||
|
|
||||||
|
// dmmv = dequantize_mul_mat_vec
|
||||||
|
#ifndef GGML_CUDA_DMMV_X
|
||||||
|
#define GGML_CUDA_DMMV_X 32
|
||||||
|
#endif
|
||||||
|
#ifndef GGML_CUDA_MMV_Y
|
||||||
|
#define GGML_CUDA_MMV_Y 1
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef K_QUANTS_PER_ITERATION
|
||||||
|
#define K_QUANTS_PER_ITERATION 2
|
||||||
|
#else
|
||||||
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||||
|
|
||||||
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||||
|
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
if (row > nrows) return;
|
||||||
|
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
||||||
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||||
|
|
||||||
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
||||||
|
|
||||||
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||||
|
const int in = tid - step*im; // 0...15 or 0...7
|
||||||
|
|
||||||
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int s_offset = 8*im;
|
||||||
|
const int y_offset = 128*im + l0;
|
||||||
|
|
||||||
|
uint32_t aux[4];
|
||||||
|
const uint8_t * d = (const uint8_t *)aux;
|
||||||
|
const uint8_t * m = (const uint8_t *)(aux + 2);
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + y_offset;
|
||||||
|
const uint8_t * q = x[i].qs + q_offset;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
||||||
|
aux[0] = a[0] & 0x0f0f0f0f;
|
||||||
|
aux[1] = a[1] & 0x0f0f0f0f;
|
||||||
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
||||||
|
|
||||||
|
float sum1 = 0, sum2 = 0;
|
||||||
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||||
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
||||||
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
||||||
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
||||||
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
||||||
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
||||||
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
||||||
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
||||||
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
||||||
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
||||||
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
||||||
|
|
||||||
|
}
|
||||||
|
tmp += dall * sum1 - dmin * sum2;
|
||||||
|
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
||||||
|
const int offset = tid * K_QUANTS_PER_ITERATION;
|
||||||
|
|
||||||
|
uint32_t uaux[2];
|
||||||
|
const uint8_t * d = (const uint8_t *)uaux;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + offset;
|
||||||
|
const uint8_t * q = x[i].qs + offset;
|
||||||
|
const uint32_t * s = (const uint32_t *)x[i].scales;
|
||||||
|
|
||||||
|
uaux[0] = s[0] & 0x0f0f0f0f;
|
||||||
|
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
|
||||||
|
const float2 dall = __half22float2(x[i].dm);
|
||||||
|
|
||||||
|
float sum1 = 0, sum2 = 0;
|
||||||
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||||
|
const uint8_t ql = q[l];
|
||||||
|
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
||||||
|
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
||||||
|
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
||||||
|
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
||||||
|
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
||||||
|
}
|
||||||
|
tmp += dall.x * sum1 - dall.y * sum2;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||||
|
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
if (row > nrows) return;
|
||||||
|
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
|
||||||
|
const uint16_t kmask1 = 0x0303;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||||
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||||
|
|
||||||
|
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
||||||
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
||||||
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||||
|
const int in = tid - step*im; // 0....15 or 0...7
|
||||||
|
|
||||||
|
const uint8_t m = 1 << (4*im);
|
||||||
|
|
||||||
|
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int y_offset = 128*im + l0;
|
||||||
|
|
||||||
|
uint16_t utmp[4];
|
||||||
|
const int8_t * s = (const int8_t *)utmp;
|
||||||
|
|
||||||
|
const uint16_t s_shift = 4*im;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + y_offset;
|
||||||
|
const uint8_t * q = x[i].qs + q_offset;
|
||||||
|
const uint8_t * h = x[i].hmask + l0;
|
||||||
|
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
||||||
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
||||||
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
||||||
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
||||||
|
|
||||||
|
const float d = x[i].d;
|
||||||
|
|
||||||
|
float sum = 0;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
||||||
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
||||||
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
||||||
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
||||||
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
||||||
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
||||||
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
||||||
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
||||||
|
}
|
||||||
|
tmp += d * sum;
|
||||||
|
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
||||||
|
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
||||||
|
const int in = offset/8; // 0 or 1
|
||||||
|
const int im = offset%8; // 0...7
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + offset;
|
||||||
|
const uint8_t * q = x[i].qs + offset;
|
||||||
|
const uint8_t * s = x[i].scales;
|
||||||
|
|
||||||
|
const float dall = (float)x[i].d;
|
||||||
|
|
||||||
|
float sum = 0;
|
||||||
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||||
|
const uint8_t hl = x[i].hmask[im+l] >> in;
|
||||||
|
const uint8_t ql = q[l];
|
||||||
|
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
||||||
|
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
||||||
|
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
||||||
|
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||||
|
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
if (row > nrows) return;
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||||
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||||
|
|
||||||
|
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
||||||
|
|
||||||
|
const int il = tid/step; // 0...3
|
||||||
|
const int ir = tid - step*il; // 0...7 or 0...3
|
||||||
|
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
||||||
|
|
||||||
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||||
|
const int in = il%2;
|
||||||
|
|
||||||
|
const int l0 = n*(2*ir + in);
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int y_offset = 64*im + l0;
|
||||||
|
|
||||||
|
uint16_t aux[4];
|
||||||
|
const uint8_t * sc = (const uint8_t *)aux;
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 2
|
||||||
|
uint32_t q32[4];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q32;
|
||||||
|
#else
|
||||||
|
uint16_t q16[4];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q16;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y1 = yy + i*QK_K + y_offset;
|
||||||
|
const float * y2 = y1 + 128;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
aux[0] = a[im+0] & kmask1;
|
||||||
|
aux[1] = a[im+2] & kmask1;
|
||||||
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||||
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 2
|
||||||
|
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
||||||
|
const uint32_t * q2 = q1 + 16;
|
||||||
|
|
||||||
|
q32[0] = q1[0] & 0x0f0f0f0f;
|
||||||
|
q32[1] = q1[0] & 0xf0f0f0f0;
|
||||||
|
q32[2] = q2[0] & 0x0f0f0f0f;
|
||||||
|
q32[3] = q2[0] & 0xf0f0f0f0;
|
||||||
|
|
||||||
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
|
||||||
|
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
|
||||||
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||||
|
}
|
||||||
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||||
|
#else
|
||||||
|
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
||||||
|
const uint16_t * q2 = q1 + 32;
|
||||||
|
|
||||||
|
q16[0] = q1[0] & 0x0f0f;
|
||||||
|
q16[1] = q1[0] & 0xf0f0;
|
||||||
|
q16[2] = q2[0] & 0x0f0f;
|
||||||
|
q16[3] = q2[0] & 0xf0f0;
|
||||||
|
|
||||||
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
for (int l = 0; l < 2; ++l) {
|
||||||
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
||||||
|
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
||||||
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||||
|
}
|
||||||
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
||||||
|
|
||||||
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||||
|
|
||||||
|
uint16_t aux16[2];
|
||||||
|
const uint8_t * s = (const uint8_t *)aux16;
|
||||||
|
|
||||||
|
float tmp = 0;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
const uint8_t * q = x[i].qs + step;
|
||||||
|
const float * y = yy + i*QK_K + step;
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
aux16[0] = a[0] & 0x0f0f;
|
||||||
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||||
|
const float d = (float)x[i].dm[0];
|
||||||
|
const float m = (float)x[i].dm[1];
|
||||||
|
float sum = 0.f;
|
||||||
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||||
|
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
||||||
|
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
||||||
|
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
||||||
|
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (tid == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
|
||||||
|
|
||||||
|
const int row = blockIdx.x;
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/2; // 0...15
|
||||||
|
const int ix = threadIdx.x%2;
|
||||||
|
|
||||||
|
const int il = tid/4; // 0...3
|
||||||
|
const int ir = tid - 4*il;// 0...3
|
||||||
|
const int n = 2;
|
||||||
|
|
||||||
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||||
|
const int in = il%2;
|
||||||
|
|
||||||
|
const int l0 = n*(2*ir + in);
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int y_offset = 64*im + l0;
|
||||||
|
|
||||||
|
const uint8_t hm1 = 1 << (2*im);
|
||||||
|
const uint8_t hm2 = hm1 << 4;
|
||||||
|
|
||||||
|
uint16_t aux[4];
|
||||||
|
const uint8_t * sc = (const uint8_t *)aux;
|
||||||
|
|
||||||
|
uint16_t q16[8];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q16;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
||||||
|
|
||||||
|
const uint8_t * ql1 = x[i].qs + q_offset;
|
||||||
|
const uint8_t * qh = x[i].qh + l0;
|
||||||
|
const float * y1 = yy + i*QK_K + y_offset;
|
||||||
|
const float * y2 = y1 + 128;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
aux[0] = a[im+0] & kmask1;
|
||||||
|
aux[1] = a[im+2] & kmask1;
|
||||||
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||||
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||||
|
|
||||||
|
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
const uint16_t * q1 = (const uint16_t *)ql1;
|
||||||
|
const uint16_t * q2 = q1 + 32;
|
||||||
|
q16[0] = q1[0] & 0x0f0f;
|
||||||
|
q16[1] = q1[8] & 0x0f0f;
|
||||||
|
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
||||||
|
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
||||||
|
q16[4] = q2[0] & 0x0f0f;
|
||||||
|
q16[5] = q2[8] & 0x0f0f;
|
||||||
|
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
||||||
|
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
||||||
|
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
||||||
|
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
||||||
|
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
||||||
|
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
||||||
|
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
||||||
|
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
||||||
|
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
||||||
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
||||||
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
||||||
|
}
|
||||||
|
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
||||||
|
}
|
||||||
|
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
||||||
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||||
|
const int im = step/8;
|
||||||
|
const int in = step%8;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
const uint8_t * q = x[i].qs + step;
|
||||||
|
const int8_t * s = x[i].scales;
|
||||||
|
const float * y = yy + i*QK_K + step;
|
||||||
|
const float d = x[i].d;
|
||||||
|
float sum = 0.f;
|
||||||
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||||
|
const uint8_t h = x[i].qh[in+j] >> im;
|
||||||
|
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
||||||
|
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
||||||
|
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
||||||
|
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||||
|
|
||||||
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||||
|
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
if (row > nrows) return;
|
||||||
|
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||||
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
||||||
|
|
||||||
|
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
||||||
|
|
||||||
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||||
|
const int in = tid - step*im; // 0...15 or 0...7
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 1
|
||||||
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
||||||
|
const int is = 0;
|
||||||
|
#else
|
||||||
|
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
||||||
|
const int is = in / 4;
|
||||||
|
#endif
|
||||||
|
const int ql_offset = 64*im + l0;
|
||||||
|
const int qh_offset = 32*im + l0;
|
||||||
|
const int s_offset = 8*im + is;
|
||||||
|
const int y_offset = 128*im + l0;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + y_offset;
|
||||||
|
const uint8_t * ql = x[i].ql + ql_offset;
|
||||||
|
const uint8_t * qh = x[i].qh + qh_offset;
|
||||||
|
const int8_t * s = x[i].scales + s_offset;
|
||||||
|
|
||||||
|
const float d = x[i].d;
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 1
|
||||||
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
||||||
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
||||||
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
||||||
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
||||||
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
||||||
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
||||||
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
||||||
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
||||||
|
tmp += sum;
|
||||||
|
#else
|
||||||
|
float sum = 0;
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
||||||
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
||||||
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
||||||
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#else
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
|
||||||
|
|
||||||
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + step;
|
||||||
|
const uint8_t * ql = x[i].ql + step;
|
||||||
|
const uint8_t * qh = x[i].qh + step;
|
||||||
|
const int8_t * s = x[i].scales;
|
||||||
|
|
||||||
|
const float d = x[i+0].d;
|
||||||
|
|
||||||
|
float sum = 0;
|
||||||
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||||
|
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
||||||
|
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
||||||
|
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
||||||
|
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (tid == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const half * x = (const half *) vx;
|
||||||
|
|
||||||
|
// automatic half -> float type cast if dfloat == float
|
||||||
|
v.x = x[ib + iqs + 0];
|
||||||
|
v.y = x[ib + iqs + 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
||||||
|
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
||||||
|
// qk = quantized weights per x block
|
||||||
|
// qr = number of quantized weights per data value in x block
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
|
||||||
|
if (row >= nrows) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
|
||||||
|
const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
||||||
|
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
||||||
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||||
|
|
||||||
|
// partial sum for each thread
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
||||||
|
#else
|
||||||
|
float tmp = 0.0f;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
|
||||||
|
for (int i = 0; i < ncols; i += iter_stride) {
|
||||||
|
const int col = i + vals_per_iter*tid;
|
||||||
|
const int ib = (row*ncols + col)/qk; // x block index
|
||||||
|
const int iqs = (col%qk)/qr; // x quant index
|
||||||
|
const int iybs = col - col%qk; // y block start index
|
||||||
|
|
||||||
|
// processing >2 values per i iter is faster for fast GPUs
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < vals_per_iter; j += 2) {
|
||||||
|
// process 2 vals per j iter
|
||||||
|
|
||||||
|
// dequantize
|
||||||
|
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
||||||
|
dfloat2 v;
|
||||||
|
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
||||||
|
|
||||||
|
// matrix multiplication
|
||||||
|
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
tmp += __hmul2(v, {
|
||||||
|
y[iybs + iqs + j/qr + 0],
|
||||||
|
y[iybs + iqs + j/qr + y_offset]
|
||||||
|
});
|
||||||
|
#else
|
||||||
|
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
||||||
|
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (tid == 0) {
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
dst[row] = tmp.x + tmp.y;
|
||||||
|
#else
|
||||||
|
dst[row] = tmp;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
||||||
|
const int block_num_y = (nrows + ny - 1) / ny;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(32, ny, 1);
|
||||||
|
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||||
|
const int block_num_y = (nrows + ny - 1) / ny;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(32, ny, 1);
|
||||||
|
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||||
|
const int block_num_y = (nrows + ny - 1) / ny;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(32, ny, 1);
|
||||||
|
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const dim3 block_dims(32, 1, 1);
|
||||||
|
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||||
|
const int block_num_y = (nrows + ny - 1) / ny;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(32, ny, 1);
|
||||||
|
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<1, 1, convert_f16>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||||
|
GGML_UNUSED(ctx);
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t row_diff = row_high - row_low;
|
||||||
|
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
|
||||||
|
half * src1_dfloat = nullptr; // dfloat == half
|
||||||
|
|
||||||
|
bool src1_convert_f16 =
|
||||||
|
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
||||||
|
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
||||||
|
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
||||||
|
|
||||||
|
if (src1_convert_f16) {
|
||||||
|
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
||||||
|
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||||
|
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||||
|
to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q2_K:
|
||||||
|
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_K:
|
||||||
|
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q6_K:
|
||||||
|
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_F16:
|
||||||
|
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_UNUSED(src1);
|
||||||
|
GGML_UNUSED(dst);
|
||||||
|
GGML_UNUSED(src1_ddq_i);
|
||||||
|
GGML_UNUSED(src1_ncols);
|
||||||
|
GGML_UNUSED(src1_padded_row_size);
|
||||||
|
}
|
7
ggml-cuda/dmmv.cuh
Normal file
7
ggml-cuda/dmmv.cuh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream);
|
178
ggml-cuda/getrows.cu
Normal file
178
ggml-cuda/getrows.cu
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
#include "getrows.cuh"
|
||||||
|
#include "dequantize.cuh"
|
||||||
|
|
||||||
|
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||||
|
static __global__ void k_get_rows(
|
||||||
|
const void * src0, const int32_t * src1, dst_t * dst,
|
||||||
|
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||||
|
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||||
|
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||||
|
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||||
|
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||||
|
|
||||||
|
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||||
|
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||||
|
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||||
|
|
||||||
|
if (i00 >= ne00) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||||
|
|
||||||
|
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||||
|
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||||
|
|
||||||
|
const int ib = i00/qk; // block index
|
||||||
|
const int iqs = (i00%qk)/qr; // quant index
|
||||||
|
const int iybs = i00 - i00%qk; // dst block start index
|
||||||
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||||
|
|
||||||
|
// dequantize
|
||||||
|
dfloat2 v;
|
||||||
|
dequantize_kernel(src0_row, ib, iqs, v);
|
||||||
|
|
||||||
|
dst_row[iybs + iqs + 0] = v.x;
|
||||||
|
dst_row[iybs + iqs + y_offset] = v.y;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename src0_t, typename dst_t>
|
||||||
|
static __global__ void k_get_rows_float(
|
||||||
|
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
||||||
|
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||||
|
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||||
|
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||||
|
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||||
|
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||||
|
|
||||||
|
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||||
|
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||||
|
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||||
|
|
||||||
|
if (i00 >= ne00) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||||
|
|
||||||
|
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||||
|
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||||
|
|
||||||
|
dst_row[i00] = src0_row[i00];
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int qk, int qr, dequantize_kernel_t dq>
|
||||||
|
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||||
|
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
|
|
||||||
|
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||||
|
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||||
|
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||||
|
|
||||||
|
// strides in elements
|
||||||
|
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||||
|
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||||
|
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||||
|
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||||
|
|
||||||
|
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||||
|
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||||
|
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||||
|
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||||
|
|
||||||
|
GGML_ASSERT(ne00 % 2 == 0);
|
||||||
|
|
||||||
|
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
src0_dd, src1_dd, dst_dd,
|
||||||
|
ne00, /*ne01, ne02, ne03,*/
|
||||||
|
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||||
|
/* s0,*/ s1, s2, s3,
|
||||||
|
/* nb00,*/ nb01, nb02, nb03,
|
||||||
|
s10, s11, s12/*, s13*/);
|
||||||
|
|
||||||
|
GGML_UNUSED(dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename src0_t>
|
||||||
|
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||||
|
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
|
|
||||||
|
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||||
|
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||||
|
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||||
|
|
||||||
|
// strides in elements
|
||||||
|
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||||
|
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||||
|
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||||
|
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||||
|
|
||||||
|
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||||
|
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||||
|
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||||
|
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||||
|
|
||||||
|
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
src0_dd, src1_dd, dst_dd,
|
||||||
|
ne00, /*ne01, ne02, ne03,*/
|
||||||
|
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||||
|
/* s0,*/ s1, s2, s3,
|
||||||
|
/* nb00,*/ nb01, nb02, nb03,
|
||||||
|
s10, s11, s12/*, s13*/);
|
||||||
|
|
||||||
|
GGML_UNUSED(dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||||
|
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||||||
|
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||||
|
|
||||||
|
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
||||||
|
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_F16:
|
||||||
|
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_F32:
|
||||||
|
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
// TODO: k-quants
|
||||||
|
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
5
ggml-cuda/getrows.cuh
Normal file
5
ggml-cuda/getrows.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_GET_ROWS_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
104
ggml-cuda/im2col.cu
Normal file
104
ggml-cuda/im2col.cu
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
#include "im2col.cuh"
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static __global__ void im2col_kernel(
|
||||||
|
const float * x, T * dst, int64_t batch_offset,
|
||||||
|
int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
|
||||||
|
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||||||
|
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (i >= pelements) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int64_t ksize = OW * (KH > 1 ? KW : 1);
|
||||||
|
const int64_t kx = i / ksize;
|
||||||
|
const int64_t kd = kx * ksize;
|
||||||
|
const int64_t ky = (i - kd) / OW;
|
||||||
|
const int64_t ix = i % OW;
|
||||||
|
|
||||||
|
const int64_t oh = blockIdx.y;
|
||||||
|
const int64_t batch = blockIdx.z / IC;
|
||||||
|
const int64_t ic = blockIdx.z % IC;
|
||||||
|
|
||||||
|
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
||||||
|
const int64_t iih = oh * s1 + ky * d1 - p1;
|
||||||
|
|
||||||
|
const int64_t offset_dst =
|
||||||
|
((batch * OH + oh) * OW + ix) * CHW +
|
||||||
|
(ic * (KW * KH) + ky * KW + kx);
|
||||||
|
|
||||||
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||||
|
dst[offset_dst] = 0.0f;
|
||||||
|
} else {
|
||||||
|
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
|
||||||
|
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static void im2col_cuda(const float * x, T* dst,
|
||||||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||||||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||||||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||||
|
const int parallel_elements = OW * KW * KH;
|
||||||
|
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
||||||
|
dim3 block_nums(num_blocks, OH, batch * IC);
|
||||||
|
im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void im2col_cuda_f16(const float * x, half * dst,
|
||||||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||||||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||||||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||||
|
|
||||||
|
im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void im2col_cuda_f32(const float * x, float * dst,
|
||||||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||||||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||||||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||||
|
|
||||||
|
im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||||||
|
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||||||
|
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
||||||
|
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
||||||
|
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
||||||
|
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
||||||
|
|
||||||
|
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
||||||
|
|
||||||
|
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
||||||
|
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
||||||
|
const int64_t IW = src1->ne[0];
|
||||||
|
|
||||||
|
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
||||||
|
const int64_t KW = src0->ne[0];
|
||||||
|
|
||||||
|
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
||||||
|
const int64_t OW = dst->ne[1];
|
||||||
|
|
||||||
|
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||||||
|
const int64_t batch = src1->ne[3];
|
||||||
|
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
|
||||||
|
|
||||||
|
if(dst->type == GGML_TYPE_F16) {
|
||||||
|
im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
||||||
|
} else {
|
||||||
|
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
||||||
|
}
|
||||||
|
}
|
5
ggml-cuda/im2col.cuh
Normal file
5
ggml-cuda/im2col.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_IM2COL_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
2265
ggml-cuda/mmq.cu
Normal file
2265
ggml-cuda/mmq.cu
Normal file
File diff suppressed because it is too large
Load Diff
9
ggml-cuda/mmq.cuh
Normal file
9
ggml-cuda/mmq.cuh
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_mul_mat_q(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream);
|
||||||
|
|
||||||
|
bool ggml_cuda_supports_mmq(enum ggml_type type);
|
395
ggml-cuda/mmvq.cu
Normal file
395
ggml-cuda/mmvq.cu
Normal file
@ -0,0 +1,395 @@
|
|||||||
|
#include "mmvq.cuh"
|
||||||
|
#include "vecdotq.cuh"
|
||||||
|
|
||||||
|
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
|
||||||
|
|
||||||
|
template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
||||||
|
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void mul_mat_vec_q(
|
||||||
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||||
|
constexpr int nwarps = 1;
|
||||||
|
constexpr int rows_per_cuda_block = 1;
|
||||||
|
#else
|
||||||
|
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
||||||
|
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
||||||
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||||
|
|
||||||
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||||
|
const int row0 = rows_per_cuda_block*blockIdx.x;
|
||||||
|
const int blocks_per_row_x = ncols_x / qk;
|
||||||
|
const int blocks_per_col_y = nrows_y / QK8_1;
|
||||||
|
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
|
||||||
|
|
||||||
|
// partial sum for each thread
|
||||||
|
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
|
||||||
|
|
||||||
|
const block_q_t * x = (const block_q_t *) vx;
|
||||||
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
||||||
|
|
||||||
|
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
||||||
|
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
|
||||||
|
|
||||||
|
// x block quant index when casting the quants to int
|
||||||
|
const int kqs = vdr * (tid % (qi/vdr));
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols_y; ++j) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
||||||
|
tmp[j][i] += vec_dot_q_cuda(
|
||||||
|
&x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
|
||||||
|
if (threadIdx.y > 0) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols_y; ++j) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
||||||
|
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
if (threadIdx.y > 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols_y; ++j) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int l = 0; l < nwarps-1; ++l) {
|
||||||
|
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
|
||||||
|
}
|
||||||
|
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (threadIdx.x < rows_per_cuda_block) {
|
||||||
|
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
|
||||||
|
static void mul_mat_vec_q_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ncols_x % qk == 0);
|
||||||
|
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
||||||
|
|
||||||
|
int id;
|
||||||
|
CUDA_CHECK(cudaGetDevice(&id));
|
||||||
|
|
||||||
|
int64_t nwarps = 1;
|
||||||
|
int64_t rows_per_cuda_block = 1;
|
||||||
|
|
||||||
|
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
||||||
|
switch(ncols_y) {
|
||||||
|
case 1:
|
||||||
|
nwarps = 4;
|
||||||
|
rows_per_cuda_block = 1;
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
case 3:
|
||||||
|
case 4:
|
||||||
|
nwarps = 4;
|
||||||
|
rows_per_cuda_block = 2;
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
case 6:
|
||||||
|
case 7:
|
||||||
|
case 8:
|
||||||
|
nwarps = 2;
|
||||||
|
rows_per_cuda_block = 2;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
|
||||||
|
const dim3 block_nums(nblocks, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
||||||
|
|
||||||
|
switch (ncols_y) {
|
||||||
|
case 1:
|
||||||
|
mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 4:
|
||||||
|
mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 6:
|
||||||
|
mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 7:
|
||||||
|
mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 8:
|
||||||
|
mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q4_0_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q4_1_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q5_0_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q5_1_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q8_0_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q2_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q3_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q4_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q5_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q6_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq2_xs_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq2_s_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq1_s_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq4_xs_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq3_s_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_mul_mat_vec_q(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t row_diff = row_high - row_low;
|
||||||
|
|
||||||
|
const int64_t ne10 = src1->ne[0];
|
||||||
|
GGML_ASSERT(ne10 % QK8_1 == 0);
|
||||||
|
|
||||||
|
const int64_t ne0 = dst->ne[0];
|
||||||
|
|
||||||
|
int id;
|
||||||
|
CUDA_CHECK(cudaGetDevice(&id));
|
||||||
|
|
||||||
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||||
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||||
|
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
||||||
|
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q2_K:
|
||||||
|
mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_K:
|
||||||
|
mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q6_K:
|
||||||
|
mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ2_XXS:
|
||||||
|
mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ2_XS:
|
||||||
|
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ2_S:
|
||||||
|
mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ3_XXS:
|
||||||
|
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ1_S:
|
||||||
|
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ4_NL:
|
||||||
|
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ4_XS:
|
||||||
|
mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ3_S:
|
||||||
|
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_UNUSED(src1);
|
||||||
|
GGML_UNUSED(dst);
|
||||||
|
GGML_UNUSED(src1_ddf_i);
|
||||||
|
GGML_UNUSED(src1_ncols);
|
||||||
|
GGML_UNUSED(src1_padded_row_size);
|
||||||
|
}
|
7
ggml-cuda/mmvq.cuh
Normal file
7
ggml-cuda/mmvq.cuh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_mul_mat_vec_q(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream);
|
215
ggml-cuda/norm.cu
Normal file
215
ggml-cuda/norm.cu
Normal file
@ -0,0 +1,215 @@
|
|||||||
|
#include "norm.cuh"
|
||||||
|
|
||||||
|
template <int block_size>
|
||||||
|
static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
|
||||||
|
float2 mean_var = make_float2(0.f, 0.f);
|
||||||
|
|
||||||
|
for (int col = tid; col < ncols; col += block_size) {
|
||||||
|
const float xi = x[row*ncols + col];
|
||||||
|
mean_var.x += xi;
|
||||||
|
mean_var.y += xi * xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum up partial sums
|
||||||
|
mean_var = warp_reduce_sum(mean_var);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__shared__ float2 s_sum[32];
|
||||||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
if (lane_id == 0) {
|
||||||
|
s_sum[warp_id] = mean_var;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
mean_var = s_sum[lane_id];
|
||||||
|
mean_var = warp_reduce_sum(mean_var);
|
||||||
|
}
|
||||||
|
|
||||||
|
const float mean = mean_var.x / ncols;
|
||||||
|
const float var = mean_var.y / ncols - mean * mean;
|
||||||
|
const float inv_std = rsqrtf(var + eps);
|
||||||
|
|
||||||
|
for (int col = tid; col < ncols; col += block_size) {
|
||||||
|
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int block_size>
|
||||||
|
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
|
||||||
|
// blockIdx.x: num_groups idx
|
||||||
|
// threadIdx.x: block_size idx
|
||||||
|
int start = blockIdx.x * group_size;
|
||||||
|
int end = start + group_size;
|
||||||
|
|
||||||
|
start += threadIdx.x;
|
||||||
|
|
||||||
|
if (end >= ne_elements) {
|
||||||
|
end = ne_elements;
|
||||||
|
}
|
||||||
|
|
||||||
|
float tmp = 0.0f; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int j = start; j < end; j += block_size) {
|
||||||
|
tmp += x[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__shared__ float s_sum[32];
|
||||||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
if (lane_id == 0) {
|
||||||
|
s_sum[warp_id] = tmp;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
tmp = s_sum[lane_id];
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
float mean = tmp / group_size;
|
||||||
|
tmp = 0.0f;
|
||||||
|
|
||||||
|
for (int j = start; j < end; j += block_size) {
|
||||||
|
float xi = x[j] - mean;
|
||||||
|
dst[j] = xi;
|
||||||
|
tmp += xi * xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__shared__ float s_sum[32];
|
||||||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
if (lane_id == 0) {
|
||||||
|
s_sum[warp_id] = tmp;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
tmp = s_sum[lane_id];
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
float variance = tmp / group_size;
|
||||||
|
float scale = rsqrtf(variance + eps);
|
||||||
|
for (int j = start; j < end; j += block_size) {
|
||||||
|
dst[j] *= scale;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int block_size>
|
||||||
|
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
|
||||||
|
float tmp = 0.0f; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int col = tid; col < ncols; col += block_size) {
|
||||||
|
const float xi = x[row*ncols + col];
|
||||||
|
tmp += xi * xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum up partial sums
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__shared__ float s_sum[32];
|
||||||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
if (lane_id == 0) {
|
||||||
|
s_sum[warp_id] = tmp;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
tmp = s_sum[lane_id];
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
const float mean = tmp / ncols;
|
||||||
|
const float scale = rsqrtf(mean + eps);
|
||||||
|
|
||||||
|
for (int col = tid; col < ncols; col += block_size) {
|
||||||
|
dst[row*ncols + col] = scale * x[row*ncols + col];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||||
|
if (ncols < 1024) {
|
||||||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
|
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
|
} else {
|
||||||
|
const dim3 block_dims(1024, 1, 1);
|
||||||
|
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
|
||||||
|
static const float eps = 1e-6f;
|
||||||
|
if (group_size < 1024) {
|
||||||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
|
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
||||||
|
} else {
|
||||||
|
const dim3 block_dims(1024, 1, 1);
|
||||||
|
group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||||
|
if (ncols < 1024) {
|
||||||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
|
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
|
} else {
|
||||||
|
const dim3 block_dims(1024, 1, 1);
|
||||||
|
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
float eps;
|
||||||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
int num_groups = dst->op_params[0];
|
||||||
|
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||||||
|
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
float eps;
|
||||||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||||||
|
}
|
7
ggml-cuda/norm.cuh
Normal file
7
ggml-cuda/norm.cuh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
49
ggml-cuda/pad.cu
Normal file
49
ggml-cuda/pad.cu
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
#include "pad.cuh"
|
||||||
|
|
||||||
|
static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||||
|
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||||
|
// blockIdx.y: idx of ne1
|
||||||
|
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// operation
|
||||||
|
int offset_dst =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne00 +
|
||||||
|
blockIdx.z * ne00 * ne01;
|
||||||
|
dst[offset_dst] = x[offset_src];
|
||||||
|
} else {
|
||||||
|
dst[offset_dst] = 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void pad_f32_cuda(const float * x, float * dst,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int ne03,
|
||||||
|
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||||
|
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||||
|
dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||||
|
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||||
|
|
||||||
|
pad_f32_cuda(src0_d, dst_d,
|
||||||
|
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||||
|
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||||
|
}
|
5
ggml-cuda/pad.cuh
Normal file
5
ggml-cuda/pad.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_PAD_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
94
ggml-cuda/pool2d.cu
Normal file
94
ggml-cuda/pool2d.cu
Normal file
@ -0,0 +1,94 @@
|
|||||||
|
#include "pool2d.cuh"
|
||||||
|
|
||||||
|
template <typename Ti, typename To>
|
||||||
|
static __global__ void pool2d_nchw_kernel(
|
||||||
|
const int ih, const int iw, const int oh, const int ow,
|
||||||
|
const int kh, const int kw, const int sh, const int sw,
|
||||||
|
const int ph, const int pw, const int parallel_elements,
|
||||||
|
const Ti* src, To* dst, const enum ggml_op_pool op) {
|
||||||
|
int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (idx >= parallel_elements) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int I_HW = ih * iw;
|
||||||
|
const int O_HW = oh * ow;
|
||||||
|
const int nc = idx / O_HW;
|
||||||
|
const int cur_oh = idx % O_HW / ow;
|
||||||
|
const int cur_ow = idx % O_HW % ow;
|
||||||
|
const Ti* i_ptr = src + nc * I_HW;
|
||||||
|
To* o_ptr = dst + nc * O_HW;
|
||||||
|
const int start_h = cur_oh * sh - ph;
|
||||||
|
const int bh = max(0, start_h);
|
||||||
|
const int eh = min(ih, start_h + kh);
|
||||||
|
const int start_w = cur_ow * sw - pw;
|
||||||
|
const int bw = max(0, start_w);
|
||||||
|
const int ew = min(iw, start_w + kw);
|
||||||
|
const To scale = 1. / (kh * kw);
|
||||||
|
To res = 0;
|
||||||
|
|
||||||
|
switch (op) {
|
||||||
|
case GGML_OP_POOL_AVG: res = 0; break;
|
||||||
|
case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
|
||||||
|
default: assert(false);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = bh; i < eh; i += 1) {
|
||||||
|
for (int j = bw; j < ew; j += 1) {
|
||||||
|
#if __CUDA_ARCH__ >= 350
|
||||||
|
Ti cur = __ldg(i_ptr + i * iw + j);
|
||||||
|
#else
|
||||||
|
Ti cur = i_ptr[i * iw + j];
|
||||||
|
#endif
|
||||||
|
switch (op) {
|
||||||
|
case GGML_OP_POOL_AVG: res += cur * scale; break;
|
||||||
|
case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
|
||||||
|
default: assert(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
o_ptr[cur_oh * ow + cur_ow] = res;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void pool2d_nchw_kernel_f32_f32_cuda(
|
||||||
|
const int ih, const int iw, const int oh, const int ow,
|
||||||
|
const int kh, const int kw, const int sh, const int sw,
|
||||||
|
const int ph, const int pw, const int parallel_elements,
|
||||||
|
const float * src, float * dst, const enum ggml_op_pool op,
|
||||||
|
cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
|
||||||
|
dim3 block_nums(num_blocks);
|
||||||
|
pool2d_nchw_kernel<<<block_nums, CUDA_POOL2D_BLOCK_SIZE, 0, stream>>>(ih, iw, oh, ow, kh, kw, sh, sw, ph, pw, parallel_elements, src, dst, op);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
||||||
|
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
|
||||||
|
const int k0 = opts[1];
|
||||||
|
const int k1 = opts[2];
|
||||||
|
const int s0 = opts[3];
|
||||||
|
const int s1 = opts[4];
|
||||||
|
const int p0 = opts[5];
|
||||||
|
const int p1 = opts[6];
|
||||||
|
|
||||||
|
const int64_t IH = src0->ne[1];
|
||||||
|
const int64_t IW = src0->ne[0];
|
||||||
|
|
||||||
|
const int64_t N = dst->ne[3];
|
||||||
|
const int64_t OC = dst->ne[2];
|
||||||
|
const int64_t OH = dst->ne[1];
|
||||||
|
const int64_t OW = dst->ne[0];
|
||||||
|
|
||||||
|
const int parallel_elements = N * OC * OH * OW;
|
||||||
|
|
||||||
|
pool2d_nchw_kernel_f32_f32_cuda(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_d, dst_d, op, stream);
|
||||||
|
}
|
5
ggml-cuda/pool2d.cuh
Normal file
5
ggml-cuda/pool2d.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_POOL2D_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
45
ggml-cuda/quantize.cu
Normal file
45
ggml-cuda/quantize.cu
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
#include "quantize.cuh"
|
||||||
|
|
||||||
|
static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
|
||||||
|
const int ix = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (ix >= kx_padded) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int iy = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
|
||||||
|
const int i_padded = iy*kx_padded + ix;
|
||||||
|
|
||||||
|
block_q8_1 * y = (block_q8_1 *) vy;
|
||||||
|
|
||||||
|
const int ib = i_padded / QK8_1; // block index
|
||||||
|
const int iqs = i_padded % QK8_1; // quant index
|
||||||
|
|
||||||
|
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
|
||||||
|
float amax = fabsf(xi);
|
||||||
|
float sum = xi;
|
||||||
|
|
||||||
|
amax = warp_reduce_max(amax);
|
||||||
|
sum = warp_reduce_sum(sum);
|
||||||
|
|
||||||
|
const float d = amax / 127;
|
||||||
|
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
|
||||||
|
|
||||||
|
y[ib].qs[iqs] = q;
|
||||||
|
|
||||||
|
if (iqs > 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
reinterpret_cast<half&>(y[ib].ds.x) = d;
|
||||||
|
reinterpret_cast<half&>(y[ib].ds.y) = sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
|
||||||
|
const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
||||||
|
const dim3 num_blocks(block_num_x, ky, 1);
|
||||||
|
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
|
||||||
|
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
|
||||||
|
}
|
||||||
|
|
5
ggml-cuda/quantize.cuh
Normal file
5
ggml-cuda/quantize.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_QUANTIZE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream);
|
308
ggml-cuda/rope.cu
Normal file
308
ggml-cuda/rope.cu
Normal file
@ -0,0 +1,308 @@
|
|||||||
|
#include "rope.cuh"
|
||||||
|
|
||||||
|
struct rope_corr_dims {
|
||||||
|
float v[4];
|
||||||
|
};
|
||||||
|
|
||||||
|
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||||||
|
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||||
|
return 1.0f - min(1.0f, max(0.0f, y));
|
||||||
|
}
|
||||||
|
|
||||||
|
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||||
|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||||
|
static __device__ void rope_yarn(
|
||||||
|
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
||||||
|
float * cos_theta, float * sin_theta
|
||||||
|
) {
|
||||||
|
// Get n-d rotational scaling corrected for extrapolation
|
||||||
|
float theta_interp = freq_scale * theta_extrap;
|
||||||
|
float theta = theta_interp;
|
||||||
|
if (ext_factor != 0.0f) {
|
||||||
|
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
|
||||||
|
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||||
|
|
||||||
|
// Get n-d magnitude scaling corrected for interpolation
|
||||||
|
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
||||||
|
}
|
||||||
|
*cos_theta = cosf(theta) * mscale;
|
||||||
|
*sin_theta = sinf(theta) * mscale;
|
||||||
|
}
|
||||||
|
|
||||||
|
// rope == RoPE == rotary positional embedding
|
||||||
|
template<typename T, bool has_pos>
|
||||||
|
static __global__ void rope(
|
||||||
|
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||||||
|
float ext_factor, float attn_factor, rope_corr_dims corr_dims
|
||||||
|
) {
|
||||||
|
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
|
||||||
|
if (col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
const int i = row*ncols + col;
|
||||||
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
|
const int p = has_pos ? pos[i2] : 0;
|
||||||
|
const float theta_base = p*powf(freq_base, -float(col)/ncols);
|
||||||
|
|
||||||
|
float cos_theta, sin_theta;
|
||||||
|
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||||
|
|
||||||
|
const float x0 = x[i + 0];
|
||||||
|
const float x1 = x[i + 1];
|
||||||
|
|
||||||
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||||
|
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T, bool has_pos>
|
||||||
|
static __global__ void rope_neox(
|
||||||
|
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
|
||||||
|
) {
|
||||||
|
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
|
||||||
|
if (col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
const int ib = col / n_dims;
|
||||||
|
const int ic = col % n_dims;
|
||||||
|
|
||||||
|
if (ib > 0) {
|
||||||
|
const int i = row*ncols + ib*n_dims + ic;
|
||||||
|
|
||||||
|
dst[i + 0] = x[i + 0];
|
||||||
|
dst[i + 1] = x[i + 1];
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i = row*ncols + ib*n_dims + ic/2;
|
||||||
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
|
float cur_rot = inv_ndims * ic - ib;
|
||||||
|
|
||||||
|
const int p = has_pos ? pos[i2] : 0;
|
||||||
|
const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
|
||||||
|
|
||||||
|
float cos_theta, sin_theta;
|
||||||
|
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||||
|
|
||||||
|
const float x0 = x[i + 0];
|
||||||
|
const float x1 = x[i + n_dims/2];
|
||||||
|
|
||||||
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||||
|
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void rope_glm_f32(
|
||||||
|
const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||||||
|
int n_ctx
|
||||||
|
) {
|
||||||
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
const int half_n_dims = ncols/4;
|
||||||
|
|
||||||
|
if (col >= half_n_dims) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int i = row*ncols + col;
|
||||||
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
|
const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
|
||||||
|
// FIXME: this is likely wrong
|
||||||
|
const int p = pos != nullptr ? pos[i2] : 0;
|
||||||
|
|
||||||
|
const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
|
||||||
|
const float sin_theta = sinf(theta);
|
||||||
|
const float cos_theta = cosf(theta);
|
||||||
|
|
||||||
|
const float x0 = x[i + 0];
|
||||||
|
const float x1 = x[i + half_n_dims];
|
||||||
|
|
||||||
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||||
|
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
|
||||||
|
|
||||||
|
const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
|
||||||
|
const float sin_block_theta = sinf(block_theta);
|
||||||
|
const float cos_block_theta = cosf(block_theta);
|
||||||
|
|
||||||
|
const float x2 = x[i + half_n_dims * 2];
|
||||||
|
const float x3 = x[i + half_n_dims * 3];
|
||||||
|
|
||||||
|
dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
|
||||||
|
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
static void rope_cuda(
|
||||||
|
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||||
|
) {
|
||||||
|
GGML_ASSERT(ncols % 2 == 0);
|
||||||
|
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||||
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||||
|
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||||
|
if (pos == nullptr) {
|
||||||
|
rope<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
rope<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
static void rope_neox_cuda(
|
||||||
|
const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||||
|
) {
|
||||||
|
GGML_ASSERT(ncols % 2 == 0);
|
||||||
|
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||||
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||||
|
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||||
|
|
||||||
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
|
const float inv_ndims = -1.0f / n_dims;
|
||||||
|
|
||||||
|
if (pos == nullptr) {
|
||||||
|
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
|
theta_scale, inv_ndims
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
|
theta_scale, inv_ndims
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_glm_f32_cuda(
|
||||||
|
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, int n_ctx, cudaStream_t stream
|
||||||
|
) {
|
||||||
|
GGML_ASSERT(ncols % 4 == 0);
|
||||||
|
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
|
||||||
|
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
|
||||||
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||||
|
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_cuda_f16(
|
||||||
|
const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
|
||||||
|
|
||||||
|
rope_cuda<half>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_cuda_f32(
|
||||||
|
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
|
||||||
|
|
||||||
|
rope_cuda<float>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_neox_cuda_f16(
|
||||||
|
const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
|
||||||
|
|
||||||
|
rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_neox_cuda_f32(
|
||||||
|
const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||||
|
) {
|
||||||
|
|
||||||
|
rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT(src0->type == dst->type);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
|
const int64_t ne2 = dst->ne[2];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||||
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
|
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||||
|
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
|
||||||
|
|
||||||
|
// RoPE alteration for extended context
|
||||||
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||||
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||||
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||||
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||||
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||||
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||||
|
|
||||||
|
const int32_t * pos = nullptr;
|
||||||
|
if ((mode & 1) == 0) {
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||||
|
GGML_ASSERT(src1->ne[0] == ne2);
|
||||||
|
pos = (const int32_t *) src1_d;
|
||||||
|
}
|
||||||
|
|
||||||
|
const bool is_neox = mode & 2;
|
||||||
|
const bool is_glm = mode & 4;
|
||||||
|
|
||||||
|
rope_corr_dims corr_dims;
|
||||||
|
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
|
||||||
|
|
||||||
|
// compute
|
||||||
|
if (is_glm) {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream);
|
||||||
|
} else if (is_neox) {
|
||||||
|
if (src0->type == GGML_TYPE_F32) {
|
||||||
|
rope_neox_cuda_f32(
|
||||||
|
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
|
attn_factor, corr_dims, stream
|
||||||
|
);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16) {
|
||||||
|
rope_neox_cuda_f16(
|
||||||
|
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
|
attn_factor, corr_dims, stream
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (src0->type == GGML_TYPE_F32) {
|
||||||
|
rope_cuda_f32(
|
||||||
|
(const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
|
attn_factor, corr_dims, stream
|
||||||
|
);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16) {
|
||||||
|
rope_cuda_f16(
|
||||||
|
(const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
|
attn_factor, corr_dims, stream
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
5
ggml-cuda/rope.cuh
Normal file
5
ggml-cuda/rope.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_ROPE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
32
ggml-cuda/scale.cu
Normal file
32
ggml-cuda/scale.cu
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
#include "scale.cuh"
|
||||||
|
|
||||||
|
static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst[i] = scale * x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
||||||
|
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
float scale;
|
||||||
|
memcpy(&scale, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
}
|
5
ggml-cuda/scale.cuh
Normal file
5
ggml-cuda/scale.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_SCALE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
201
ggml-cuda/softmax.cu
Normal file
201
ggml-cuda/softmax.cu
Normal file
@ -0,0 +1,201 @@
|
|||||||
|
#include "softmax.cuh"
|
||||||
|
|
||||||
|
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||||
|
static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
|
||||||
|
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int rowx = blockIdx.x;
|
||||||
|
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
|
||||||
|
|
||||||
|
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
|
||||||
|
|
||||||
|
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
|
||||||
|
float slope = 0.0f;
|
||||||
|
|
||||||
|
// ALiBi
|
||||||
|
if (max_bias > 0.0f) {
|
||||||
|
const int h = rowx/nrows_y; // head index
|
||||||
|
|
||||||
|
const float base = h < n_head_log2 ? m0 : m1;
|
||||||
|
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||||
|
|
||||||
|
slope = powf(base, exp);
|
||||||
|
}
|
||||||
|
|
||||||
|
extern __shared__ float data_soft_max_f32[];
|
||||||
|
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
||||||
|
// shared memory buffer to cache values between iterations:
|
||||||
|
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
|
||||||
|
|
||||||
|
float max_val = -INFINITY;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||||
|
const int col = col0 + tid;
|
||||||
|
|
||||||
|
if (ncols_template == 0 && col >= ncols) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int ix = rowx*ncols + col;
|
||||||
|
const int iy = rowy*ncols + col;
|
||||||
|
|
||||||
|
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
|
||||||
|
|
||||||
|
vals[col] = val;
|
||||||
|
max_val = max(max_val, val);
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the max value in the block
|
||||||
|
max_val = warp_reduce_max(max_val);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
if (warp_id == 0) {
|
||||||
|
buf_iw[lane_id] = -INFINITY;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
if (lane_id == 0) {
|
||||||
|
buf_iw[warp_id] = max_val;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
max_val = buf_iw[lane_id];
|
||||||
|
max_val = warp_reduce_max(max_val);
|
||||||
|
}
|
||||||
|
|
||||||
|
float tmp = 0.0f; // partial sum
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||||
|
const int col = col0 + tid;
|
||||||
|
|
||||||
|
if (ncols_template == 0 && col >= ncols) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float val = expf(vals[col] - max_val);
|
||||||
|
tmp += val;
|
||||||
|
vals[col] = val;
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the sum of exps in the block
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__syncthreads();
|
||||||
|
if (warp_id == 0) {
|
||||||
|
buf_iw[lane_id] = 0.0f;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
if (lane_id == 0) {
|
||||||
|
buf_iw[warp_id] = tmp;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
tmp = buf_iw[lane_id];
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
const float inv_sum = 1.0f / tmp;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||||
|
const int col = col0 + tid;
|
||||||
|
|
||||||
|
if (ncols_template == 0 && col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int idst = rowx*ncols + col;
|
||||||
|
dst[idst] = vals[col] * inv_sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
|
||||||
|
int nth = WARP_SIZE;
|
||||||
|
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
||||||
|
const dim3 block_dims(nth, 1, 1);
|
||||||
|
const dim3 block_nums(nrows_x, 1, 1);
|
||||||
|
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
||||||
|
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
||||||
|
|
||||||
|
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||||||
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||||||
|
|
||||||
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||||
|
|
||||||
|
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
||||||
|
switch (ncols_x) {
|
||||||
|
case 32:
|
||||||
|
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 64:
|
||||||
|
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 128:
|
||||||
|
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 256:
|
||||||
|
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 512:
|
||||||
|
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 1024:
|
||||||
|
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 2048:
|
||||||
|
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 4096:
|
||||||
|
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
const size_t shmem_low = WARP_SIZE*sizeof(float);
|
||||||
|
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = src1 ? (const float *)src1->data : nullptr;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t nrows_x = ggml_nrows(src0);
|
||||||
|
const int64_t nrows_y = src0->ne[1];
|
||||||
|
|
||||||
|
float scale = 1.0f;
|
||||||
|
float max_bias = 0.0f;
|
||||||
|
|
||||||
|
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||||||
|
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||||||
|
|
||||||
|
// positions tensor
|
||||||
|
float * src2_dd = nullptr;
|
||||||
|
|
||||||
|
ggml_tensor * src2 = dst->src[2];
|
||||||
|
const bool use_src2 = src2 != nullptr;
|
||||||
|
|
||||||
|
if (use_src2) {
|
||||||
|
src2_dd = (float *)src2->data;
|
||||||
|
}
|
||||||
|
|
||||||
|
soft_max_f32_cuda(src0_d, src1_d, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||||
|
}
|
5
ggml-cuda/softmax.cuh
Normal file
5
ggml-cuda/softmax.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
|
||||||
|
|
||||||
|
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
40
ggml-cuda/sumrows.cu
Normal file
40
ggml-cuda/sumrows.cu
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
#include "sumrows.cuh"
|
||||||
|
|
||||||
|
static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
|
||||||
|
const int row = blockIdx.x;
|
||||||
|
const int col = threadIdx.x;
|
||||||
|
|
||||||
|
float sum = 0.0f;
|
||||||
|
for (int i = col; i < ncols; i += blockDim.x) {
|
||||||
|
sum += x[row * ncols + i];
|
||||||
|
}
|
||||||
|
|
||||||
|
sum = warp_reduce_sum(sum);
|
||||||
|
|
||||||
|
if (col == 0) {
|
||||||
|
dst[row] = sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
|
const dim3 block_nums(nrows, 1, 1);
|
||||||
|
k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
|
||||||
|
const int64_t ncols = src0->ne[0];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
|
||||||
|
}
|
3
ggml-cuda/sumrows.cuh
Normal file
3
ggml-cuda/sumrows.cuh
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
47
ggml-cuda/tsembd.cu
Normal file
47
ggml-cuda/tsembd.cu
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
#include "tsembd.cuh"
|
||||||
|
|
||||||
|
static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
|
||||||
|
// blockIDx.y: idx of timesteps->ne[0]
|
||||||
|
// blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
|
||||||
|
int i = blockIdx.y;
|
||||||
|
int j = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
float * embed_data = (float *)((char *)dst + i*nb1);
|
||||||
|
|
||||||
|
if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
|
||||||
|
embed_data[dim] = 0.f;
|
||||||
|
}
|
||||||
|
|
||||||
|
int half = dim / 2;
|
||||||
|
if (j >= half) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
float timestep = timesteps[i];
|
||||||
|
float freq = (float)expf(-logf(max_period) * j / half);
|
||||||
|
float arg = timestep * freq;
|
||||||
|
embed_data[j] = cosf(arg);
|
||||||
|
embed_data[j + half] = sinf(arg);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
|
||||||
|
const int dim, const int max_period, cudaStream_t stream) {
|
||||||
|
int half_ceil = (dim + 1) / 2;
|
||||||
|
int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
|
||||||
|
dim3 gridDim(num_blocks, ne00, 1);
|
||||||
|
timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int dim = dst->op_params[0];
|
||||||
|
const int max_period = dst->op_params[1];
|
||||||
|
|
||||||
|
timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream);
|
||||||
|
}
|
5
ggml-cuda/tsembd.cuh
Normal file
5
ggml-cuda/tsembd.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
240
ggml-cuda/unary.cu
Normal file
240
ggml-cuda/unary.cu
Normal file
@ -0,0 +1,240 @@
|
|||||||
|
#include "unary.cuh"
|
||||||
|
|
||||||
|
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
|
||||||
|
const float GELU_COEF_A = 0.044715f;
|
||||||
|
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
float xi = x[i];
|
||||||
|
dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
|
||||||
|
const float GELU_QUICK_COEF = -1.702f;
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void tanh_f32(const float * x, float * dst, int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = tanhf(x[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = fmaxf(x[i], 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = x[i] * x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||||
|
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||||
|
gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
||||||
|
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
|
||||||
|
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
||||||
|
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
||||||
|
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
|
||||||
|
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
||||||
|
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
|
||||||
|
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
float negative_slope;
|
||||||
|
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
27
ggml-cuda/unary.cuh
Normal file
27
ggml-cuda/unary.cuh
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_GELU_BLOCK_SIZE 256
|
||||||
|
#define CUDA_SILU_BLOCK_SIZE 256
|
||||||
|
#define CUDA_TANH_BLOCK_SIZE 256
|
||||||
|
#define CUDA_RELU_BLOCK_SIZE 256
|
||||||
|
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||||
|
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||||
|
#define CUDA_SQR_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
48
ggml-cuda/upscale.cu
Normal file
48
ggml-cuda/upscale.cu
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
#include "upscale.cuh"
|
||||||
|
|
||||||
|
static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
|
||||||
|
// blockIdx.z: idx of ne02*ne03
|
||||||
|
// blockIdx.y: idx of ne01*scale_factor, aka ne1
|
||||||
|
// blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
|
||||||
|
// ne00xne01: ne00 * ne01
|
||||||
|
int ne0 = ne00 * scale_factor;
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
// operation
|
||||||
|
int i00 = nidx / scale_factor;
|
||||||
|
int i01 = blockIdx.y / scale_factor;
|
||||||
|
int offset_src =
|
||||||
|
i00 +
|
||||||
|
i01 * ne00 +
|
||||||
|
blockIdx.z * ne00xne01;
|
||||||
|
int offset_dst =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
dst[offset_dst] = x[offset_src];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
|
||||||
|
const int scale_factor, cudaStream_t stream) {
|
||||||
|
int ne0 = (ne00 * scale_factor);
|
||||||
|
int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
||||||
|
dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
|
||||||
|
upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||||
|
|
||||||
|
const int scale_factor = dst->op_params[0];
|
||||||
|
|
||||||
|
upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream);
|
||||||
|
}
|
5
ggml-cuda/upscale.cuh
Normal file
5
ggml-cuda/upscale.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_UPSCALE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
1284
ggml-cuda/vecdotq.cuh
Normal file
1284
ggml-cuda/vecdotq.cuh
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user