mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
server: fix incorrectly reported token probabilities (#7125)
* server: normalize token probabilities * fix temperature == 0.0f
This commit is contained in:
parent
b6aa670203
commit
af0a5b6163
@ -35,6 +35,8 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
|
|||||||
|
|
||||||
result->prev.resize(params.n_prev);
|
result->prev.resize(params.n_prev);
|
||||||
|
|
||||||
|
result->n_considered = 0;
|
||||||
|
|
||||||
llama_sampling_set_rng_seed(result, params.seed);
|
llama_sampling_set_rng_seed(result, params.seed);
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
@ -64,6 +66,7 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
|
|||||||
|
|
||||||
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
||||||
ctx->cur.clear();
|
ctx->cur.clear();
|
||||||
|
ctx->n_considered = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
|
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
|
||||||
@ -253,6 +256,8 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ctx_sampling->n_considered = cur_p.size;
|
||||||
|
|
||||||
return id;
|
return id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -81,6 +81,7 @@ struct llama_sampling_context {
|
|||||||
// TODO: replace with ring-buffer
|
// TODO: replace with ring-buffer
|
||||||
std::vector<llama_token> prev;
|
std::vector<llama_token> prev;
|
||||||
std::vector<llama_token_data> cur;
|
std::vector<llama_token_data> cur;
|
||||||
|
size_t n_considered;
|
||||||
|
|
||||||
std::mt19937 rng;
|
std::mt19937 rng;
|
||||||
};
|
};
|
||||||
|
@ -272,7 +272,7 @@ node index.js
|
|||||||
|
|
||||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
|
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
|
||||||
|
|
||||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token. Default: `0`
|
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0`
|
||||||
|
|
||||||
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
|
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
|
||||||
|
|
||||||
|
@ -2266,17 +2266,31 @@ struct server_context {
|
|||||||
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
||||||
result.tok = id;
|
result.tok = id;
|
||||||
|
|
||||||
const int32_t n_probs = slot.sparams.n_probs;
|
const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
|
||||||
if (slot.sparams.temp <= 0 && n_probs > 0) {
|
if (n_probs > 0) {
|
||||||
// for llama_sample_token_greedy we need to sort candidates
|
const size_t n_considered = slot.ctx_sampling->n_considered;
|
||||||
llama_sample_softmax(ctx, &cur_p);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (size_t i = 0; i < std::min(cur_p.size, (size_t) n_probs); ++i) {
|
// Make sure at least n_probs top tokens are at the front of the vector:
|
||||||
result.probs.push_back({
|
if (slot.sparams.temp == 0.0f && n_probs > n_considered) {
|
||||||
cur_p.data[i].id,
|
llama_sample_top_k(ctx, &cur_p, n_probs, 0);
|
||||||
cur_p.data[i].p
|
}
|
||||||
});
|
|
||||||
|
if (slot.sparams.temp == 0.0f) {
|
||||||
|
// With greedy sampling the probabilities have possibly not been calculated.
|
||||||
|
for (size_t i = 0; i < n_probs; ++i) {
|
||||||
|
result.probs.push_back({
|
||||||
|
cur_p.data[i].id,
|
||||||
|
i == 0 ? 1.0f : 0.0f
|
||||||
|
});
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (size_t i = 0; i < n_probs; ++i) {
|
||||||
|
result.probs.push_back({
|
||||||
|
cur_p.data[i].id,
|
||||||
|
i >= n_considered ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!process_token(result, slot)) {
|
if (!process_token(result, slot)) {
|
||||||
|
Loading…
Reference in New Issue
Block a user