mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
Merge branch 'master' into compilade/fix-server-long-system-prompt
This commit is contained in:
commit
af2f84c964
4
.github/workflows/bench.yml
vendored
4
.github/workflows/bench.yml
vendored
@ -129,6 +129,8 @@ jobs:
|
|||||||
|
|
||||||
- name: Server bench
|
- name: Server bench
|
||||||
id: server_bench
|
id: server_bench
|
||||||
|
env:
|
||||||
|
HEAD_REF: ${{ github.head_ref || github.ref_name }}
|
||||||
run: |
|
run: |
|
||||||
set -eux
|
set -eux
|
||||||
|
|
||||||
@ -137,7 +139,7 @@ jobs:
|
|||||||
python bench.py \
|
python bench.py \
|
||||||
--runner-label ${{ env.RUNNER_LABEL }} \
|
--runner-label ${{ env.RUNNER_LABEL }} \
|
||||||
--name ${{ github.job }} \
|
--name ${{ github.job }} \
|
||||||
--branch ${{ github.head_ref || github.ref_name }} \
|
--branch $HEAD_REF \
|
||||||
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
|
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
|
||||||
--scenario script.js \
|
--scenario script.js \
|
||||||
--duration ${{ github.event.inputs.duration || env.DURATION }} \
|
--duration ${{ github.event.inputs.duration || env.DURATION }} \
|
||||||
|
22
.github/workflows/build.yml
vendored
22
.github/workflows/build.yml
vendored
@ -47,7 +47,7 @@ jobs:
|
|||||||
sysctl -a
|
sysctl -a
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF ..
|
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF ..
|
||||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
@ -105,7 +105,7 @@ jobs:
|
|||||||
sysctl -a
|
sysctl -a
|
||||||
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
||||||
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||||
cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF
|
cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF
|
||||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
@ -222,7 +222,7 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF
|
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF
|
||||||
cmake --build . --config Release -j $(nproc)
|
cmake --build . --config Release -j $(nproc)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
@ -696,22 +696,20 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
include:
|
include:
|
||||||
- build: 'rpc-x64'
|
|
||||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=ON'
|
|
||||||
- build: 'noavx-x64'
|
- build: 'noavx-x64'
|
||||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx2-x64'
|
- build: 'avx2-x64'
|
||||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx-x64'
|
- build: 'avx-x64'
|
||||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx512-x64'
|
- build: 'avx512-x64'
|
||||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'openblas-x64'
|
- build: 'openblas-x64'
|
||||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||||
- build: 'kompute-x64'
|
- build: 'kompute-x64'
|
||||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'vulkan-x64'
|
- build: 'vulkan-x64'
|
||||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'llvm-arm64'
|
- build: 'llvm-arm64'
|
||||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'msvc-arm64'
|
- build: 'msvc-arm64'
|
||||||
|
@ -6,15 +6,13 @@ on:
|
|||||||
- '.github/workflows/python-check-requirements.yml'
|
- '.github/workflows/python-check-requirements.yml'
|
||||||
- 'scripts/check-requirements.sh'
|
- 'scripts/check-requirements.sh'
|
||||||
- 'convert*.py'
|
- 'convert*.py'
|
||||||
- 'requirements.txt'
|
- '**/requirements*.txt'
|
||||||
- 'requirements/*.txt'
|
|
||||||
pull_request:
|
pull_request:
|
||||||
paths:
|
paths:
|
||||||
- '.github/workflows/python-check-requirements.yml'
|
- '.github/workflows/python-check-requirements.yml'
|
||||||
- 'scripts/check-requirements.sh'
|
- 'scripts/check-requirements.sh'
|
||||||
- 'convert*.py'
|
- 'convert*.py'
|
||||||
- 'requirements.txt'
|
- '**/requirements*.txt'
|
||||||
- 'requirements/*.txt'
|
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||||
|
@ -186,10 +186,12 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||||||
|
|
||||||
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
|
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
|
||||||
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
|
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
|
||||||
|
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
|
||||||
|
|
||||||
**Infrastructure:**
|
**Infrastructure:**
|
||||||
|
|
||||||
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
|
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
|
||||||
|
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
|
||||||
|
|
||||||
**Games:**
|
**Games:**
|
||||||
- [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.
|
- [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.
|
||||||
|
@ -369,6 +369,9 @@ namespace grammar_parser {
|
|||||||
}
|
}
|
||||||
// Validate the state to ensure that all rules are defined
|
// Validate the state to ensure that all rules are defined
|
||||||
for (const auto & rule : state.rules) {
|
for (const auto & rule : state.rules) {
|
||||||
|
if (rule.empty()) {
|
||||||
|
throw std::runtime_error("Undefined rule");
|
||||||
|
}
|
||||||
for (const auto & elem : rule) {
|
for (const auto & elem : rule) {
|
||||||
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
|
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
|
||||||
// Ensure that the rule at that location exists
|
// Ensure that the rule at that location exists
|
||||||
|
@ -80,7 +80,14 @@ The following release is verified with good quality:
|
|||||||
|
|
||||||
### Intel GPU
|
### Intel GPU
|
||||||
|
|
||||||
**Verified devices**
|
SYCL backend supports Intel GPU Family:
|
||||||
|
|
||||||
|
- Intel Data Center Max Series
|
||||||
|
- Intel Flex Series, Arc Series
|
||||||
|
- Intel Built-in Arc GPU
|
||||||
|
- Intel iGPU in Core CPU (11th Generation Core CPU and newer, refer to [oneAPI supported GPU](https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html#inpage-nav-1-1)).
|
||||||
|
|
||||||
|
#### Verified devices
|
||||||
|
|
||||||
| Intel GPU | Status | Verified Model |
|
| Intel GPU | Status | Verified Model |
|
||||||
|-------------------------------|---------|---------------------------------------|
|
|-------------------------------|---------|---------------------------------------|
|
||||||
@ -88,7 +95,7 @@ The following release is verified with good quality:
|
|||||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
||||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
||||||
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
|
| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
|
||||||
|
|
||||||
*Notes:*
|
*Notes:*
|
||||||
|
|
||||||
@ -237,6 +244,13 @@ Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA devic
|
|||||||
### II. Build llama.cpp
|
### II. Build llama.cpp
|
||||||
|
|
||||||
#### Intel GPU
|
#### Intel GPU
|
||||||
|
|
||||||
|
```
|
||||||
|
./examples/sycl/build.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
# Export relevant ENV variables
|
# Export relevant ENV variables
|
||||||
source /opt/intel/oneapi/setvars.sh
|
source /opt/intel/oneapi/setvars.sh
|
||||||
@ -276,23 +290,26 @@ cmake --build build --config Release -j -v
|
|||||||
|
|
||||||
### III. Run the inference
|
### III. Run the inference
|
||||||
|
|
||||||
1. Retrieve and prepare model
|
#### Retrieve and prepare model
|
||||||
|
|
||||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||||
|
|
||||||
2. Enable oneAPI running environment
|
##### Check device
|
||||||
|
|
||||||
|
1. Enable oneAPI running environment
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
source /opt/intel/oneapi/setvars.sh
|
source /opt/intel/oneapi/setvars.sh
|
||||||
```
|
```
|
||||||
|
|
||||||
3. List devices information
|
2. List devices information
|
||||||
|
|
||||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
./build/bin/llama-ls-sycl-device
|
./build/bin/llama-ls-sycl-device
|
||||||
```
|
```
|
||||||
|
|
||||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
||||||
```
|
```
|
||||||
found 2 SYCL devices:
|
found 2 SYCL devices:
|
||||||
@ -304,12 +321,37 @@ found 2 SYCL devices:
|
|||||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
#### Choose level-zero devices
|
||||||
|
|
||||||
4. Launch inference
|
|Chosen Device ID|Setting|
|
||||||
|
|-|-|
|
||||||
|
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
|
||||||
|
|1|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|
||||||
|
|0 & 1|`export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
|
||||||
|
|
||||||
|
#### Execute
|
||||||
|
|
||||||
|
Choose one of following methods to run.
|
||||||
|
|
||||||
|
1. Script
|
||||||
|
|
||||||
|
- Use device 0:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
./examples/sycl/run_llama2.sh 0
|
||||||
|
```
|
||||||
|
- Use multiple devices:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
./examples/sycl/run_llama2.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Command line
|
||||||
|
Launch inference
|
||||||
|
|
||||||
There are two device selection modes:
|
There are two device selection modes:
|
||||||
|
|
||||||
- Single device: Use one device target specified by the user.
|
- Single device: Use one device assigned by user. Default device id is 0.
|
||||||
- Multiple devices: Automatically choose the devices with the same backend.
|
- Multiple devices: Automatically choose the devices with the same backend.
|
||||||
|
|
||||||
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
|
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
|
||||||
@ -326,11 +368,6 @@ Examples:
|
|||||||
```sh
|
```sh
|
||||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||||
```
|
```
|
||||||
or run by script:
|
|
||||||
|
|
||||||
```sh
|
|
||||||
./examples/sycl/run_llama2.sh 0
|
|
||||||
```
|
|
||||||
|
|
||||||
- Use multiple devices:
|
- Use multiple devices:
|
||||||
|
|
||||||
@ -338,12 +375,6 @@ or run by script:
|
|||||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||||
```
|
```
|
||||||
|
|
||||||
Otherwise, you can run the script:
|
|
||||||
|
|
||||||
```sh
|
|
||||||
./examples/sycl/run_llama2.sh
|
|
||||||
```
|
|
||||||
|
|
||||||
*Notes:*
|
*Notes:*
|
||||||
|
|
||||||
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
|
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
|
||||||
@ -390,7 +421,7 @@ c. Verify installation
|
|||||||
In the oneAPI command line, run the following to print the available SYCL devices:
|
In the oneAPI command line, run the following to print the available SYCL devices:
|
||||||
|
|
||||||
```
|
```
|
||||||
sycl-ls
|
sycl-ls.exe
|
||||||
```
|
```
|
||||||
|
|
||||||
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
|
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
|
||||||
@ -411,6 +442,18 @@ b. The new Visual Studio will install Ninja as default. (If not, please install
|
|||||||
|
|
||||||
### II. Build llama.cpp
|
### II. Build llama.cpp
|
||||||
|
|
||||||
|
You could download the release package for Windows directly, which including binary files and depended oneAPI dll files.
|
||||||
|
|
||||||
|
Choose one of following methods to build from source code.
|
||||||
|
|
||||||
|
1. Script
|
||||||
|
|
||||||
|
```sh
|
||||||
|
.\examples\sycl\win-build-sycl.bat
|
||||||
|
```
|
||||||
|
|
||||||
|
2. CMake
|
||||||
|
|
||||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
||||||
|
|
||||||
```
|
```
|
||||||
@ -425,12 +468,8 @@ cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPI
|
|||||||
cmake --build build --config Release -j
|
cmake --build build --config Release -j
|
||||||
```
|
```
|
||||||
|
|
||||||
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
|
|
||||||
```sh
|
|
||||||
.\examples\sycl\win-build-sycl.bat
|
|
||||||
```
|
|
||||||
|
|
||||||
Or, use CMake presets to build:
|
Or, use CMake presets to build:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
cmake --preset x64-windows-sycl-release
|
cmake --preset x64-windows-sycl-release
|
||||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||||
@ -442,7 +481,9 @@ cmake --preset x64-windows-sycl-debug
|
|||||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||||
```
|
```
|
||||||
|
|
||||||
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
3. Visual Studio
|
||||||
|
|
||||||
|
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||||
|
|
||||||
*Notes:*
|
*Notes:*
|
||||||
|
|
||||||
@ -450,23 +491,25 @@ Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choos
|
|||||||
|
|
||||||
### III. Run the inference
|
### III. Run the inference
|
||||||
|
|
||||||
1. Retrieve and prepare model
|
#### Retrieve and prepare model
|
||||||
|
|
||||||
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||||
|
|
||||||
2. Enable oneAPI running environment
|
##### Check device
|
||||||
|
|
||||||
|
1. Enable oneAPI running environment
|
||||||
|
|
||||||
On the oneAPI command line window, run the following and step into the llama.cpp directory:
|
On the oneAPI command line window, run the following and step into the llama.cpp directory:
|
||||||
```
|
```
|
||||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||||
```
|
```
|
||||||
|
|
||||||
3. List devices information
|
2. List devices information
|
||||||
|
|
||||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
||||||
|
|
||||||
```
|
```
|
||||||
build\bin\ls-sycl-device.exe
|
build\bin\llama-ls-sycl-device.exe
|
||||||
```
|
```
|
||||||
|
|
||||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
||||||
@ -479,9 +522,27 @@ found 2 SYCL devices:
|
|||||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||||
|
|
||||||
```
|
```
|
||||||
|
#### Choose level-zero devices
|
||||||
|
|
||||||
|
|Chosen Device ID|Setting|
|
||||||
|
|-|-|
|
||||||
|
|0|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
|
||||||
|
|1|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|
||||||
|
|0 & 1|`set ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
|
||||||
|
|
||||||
4. Launch inference
|
#### Execute
|
||||||
|
|
||||||
|
Choose one of following methods to run.
|
||||||
|
|
||||||
|
1. Script
|
||||||
|
|
||||||
|
```
|
||||||
|
examples\sycl\win-run-llama2.bat
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Command line
|
||||||
|
|
||||||
|
Launch inference
|
||||||
|
|
||||||
There are two device selection modes:
|
There are two device selection modes:
|
||||||
|
|
||||||
@ -508,11 +569,7 @@ build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website ca
|
|||||||
```
|
```
|
||||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||||
```
|
```
|
||||||
Otherwise, run the following wrapper script:
|
|
||||||
|
|
||||||
```
|
|
||||||
.\examples\sycl\win-run-llama2.bat
|
|
||||||
```
|
|
||||||
|
|
||||||
Note:
|
Note:
|
||||||
|
|
||||||
@ -526,17 +583,18 @@ Or
|
|||||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## Environment Variable
|
## Environment Variable
|
||||||
|
|
||||||
#### Build
|
#### Build
|
||||||
|
|
||||||
| Name | Value | Function |
|
| Name | Value | Function |
|
||||||
|--------------------|-----------------------------------|---------------------------------------------|
|
|--------------------|-----------------------------------|---------------------------------------------|
|
||||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
|
||||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
|
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
|
||||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||||
| CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. |
|
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||||
| CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||||
|
|
||||||
#### Runtime
|
#### Runtime
|
||||||
|
|
||||||
@ -572,9 +630,18 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
|||||||
```
|
```
|
||||||
Otherwise, please double-check the GPU driver installation steps.
|
Otherwise, please double-check the GPU driver installation steps.
|
||||||
|
|
||||||
|
- Can I report Ollama issue on Intel GPU to llama.cpp SYCL backend?
|
||||||
|
|
||||||
|
No. We can't support Ollama issue directly, because we aren't familiar with Ollama.
|
||||||
|
|
||||||
|
Sugguest reproducing on llama.cpp and report similar issue to llama.cpp. We will surpport it.
|
||||||
|
|
||||||
|
It's same for other projects including llama.cpp SYCL backend.
|
||||||
|
|
||||||
|
|
||||||
### **GitHub contribution**:
|
### **GitHub contribution**:
|
||||||
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
|
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
|
||||||
|
|
||||||
## TODO
|
## TODO
|
||||||
|
|
||||||
- Support row layer split for multiple card runs.
|
- NA
|
||||||
|
@ -17,9 +17,9 @@ For example:
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
./bin/llama-export-lora \
|
./bin/llama-export-lora \
|
||||||
-m open-llama-3b-v2-q8_0.gguf \
|
-m open-llama-3b-v2.gguf \
|
||||||
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
|
-o open-llama-3b-v2-english2tokipona-chat.gguf \
|
||||||
--lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.gguf
|
--lora lora-open-llama-3b-v2-english2tokipona-chat-LATEST.gguf
|
||||||
```
|
```
|
||||||
|
|
||||||
Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
|
Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
|
||||||
|
@ -10,6 +10,12 @@
|
|||||||
|
|
||||||
static bool g_verbose = false;
|
static bool g_verbose = false;
|
||||||
|
|
||||||
|
struct tensor_transformation {
|
||||||
|
struct ggml_tensor * in;
|
||||||
|
struct ggml_tensor * out;
|
||||||
|
bool is_copy;
|
||||||
|
};
|
||||||
|
|
||||||
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
|
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
|
||||||
int id = gguf_find_key(ctx_gguf, key.c_str());
|
int id = gguf_find_key(ctx_gguf, key.c_str());
|
||||||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
|
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
|
||||||
@ -198,8 +204,7 @@ struct lora_merge_ctx {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// mapping base tensor to out tensor (same shape with base, but different type)
|
// mapping base tensor to out tensor (same shape with base, but different type)
|
||||||
// if out_tensor == nullptr, we only copy it
|
std::vector<tensor_transformation> trans;
|
||||||
std::vector<std::pair<struct ggml_tensor *, struct ggml_tensor *>> base_to_out_tensors;
|
|
||||||
for (auto & it : base_model.tensors) {
|
for (auto & it : base_model.tensors) {
|
||||||
bool t_a = true;
|
bool t_a = true;
|
||||||
bool t_b = true;
|
bool t_b = true;
|
||||||
@ -212,14 +217,22 @@ struct lora_merge_ctx {
|
|||||||
// only copy
|
// only copy
|
||||||
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
|
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
|
||||||
ggml_set_name(cpy_tensor, base_tensor->name);
|
ggml_set_name(cpy_tensor, base_tensor->name);
|
||||||
base_to_out_tensors.push_back(std::make_pair(cpy_tensor, nullptr));
|
trans.push_back({
|
||||||
|
cpy_tensor,
|
||||||
|
cpy_tensor,
|
||||||
|
true,
|
||||||
|
});
|
||||||
gguf_add_tensor(ctx_out, cpy_tensor);
|
gguf_add_tensor(ctx_out, cpy_tensor);
|
||||||
} else if (t_a && t_b) {
|
} else if (t_a && t_b) {
|
||||||
// need merging
|
// need merging
|
||||||
struct ggml_tensor * out_tensor = ggml_new_tensor(
|
struct ggml_tensor * out_tensor = ggml_new_tensor(
|
||||||
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
|
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
|
||||||
ggml_set_name(out_tensor, base_tensor->name);
|
ggml_set_name(out_tensor, base_tensor->name);
|
||||||
base_to_out_tensors.push_back(std::make_pair(base_tensor, out_tensor));
|
trans.push_back({
|
||||||
|
base_tensor,
|
||||||
|
out_tensor,
|
||||||
|
false,
|
||||||
|
});
|
||||||
gguf_add_tensor(ctx_out, out_tensor);
|
gguf_add_tensor(ctx_out, out_tensor);
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
|
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
|
||||||
@ -234,12 +247,12 @@ struct lora_merge_ctx {
|
|||||||
|
|
||||||
// process base model tensors
|
// process base model tensors
|
||||||
size_t n_merged = 0;
|
size_t n_merged = 0;
|
||||||
for (auto & it : base_to_out_tensors) {
|
for (auto & it : trans) {
|
||||||
if (it.second != nullptr) {
|
if (!it.is_copy) {
|
||||||
merge_tensor(it.first, it.second);
|
merge_tensor(it.in, it.out);
|
||||||
n_merged++;
|
n_merged++;
|
||||||
} else {
|
} else {
|
||||||
copy_tensor(it.first);
|
copy_tensor(it.in);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -252,7 +265,7 @@ struct lora_merge_ctx {
|
|||||||
}
|
}
|
||||||
|
|
||||||
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
|
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
|
||||||
printf("%s : wrote %ld tensors to output file\n", __func__, base_to_out_tensors.size());
|
printf("%s : wrote %ld tensors to output file\n", __func__, trans.size());
|
||||||
}
|
}
|
||||||
|
|
||||||
void copy_tensor(struct ggml_tensor * base) {
|
void copy_tensor(struct ggml_tensor * base) {
|
||||||
@ -285,6 +298,10 @@ struct lora_merge_ctx {
|
|||||||
for (size_t i = 0; i < adapters.size(); ++i) {
|
for (size_t i = 0; i < adapters.size(); ++i) {
|
||||||
auto t_a = adapters[i]->get_tensor(name_lora_a);
|
auto t_a = adapters[i]->get_tensor(name_lora_a);
|
||||||
auto t_b = adapters[i]->get_tensor(name_lora_b);
|
auto t_b = adapters[i]->get_tensor(name_lora_b);
|
||||||
|
// TODO: add support for quantized lora
|
||||||
|
if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) {
|
||||||
|
throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32");
|
||||||
|
}
|
||||||
inp_a[i] = ggml_dup_tensor(ctx, t_a);
|
inp_a[i] = ggml_dup_tensor(ctx, t_a);
|
||||||
inp_b[i] = ggml_dup_tensor(ctx, t_b);
|
inp_b[i] = ggml_dup_tensor(ctx, t_b);
|
||||||
}
|
}
|
||||||
|
@ -2,4 +2,4 @@
|
|||||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
pillow~=10.2.0
|
pillow~=10.2.0
|
||||||
torch~=2.2.1
|
torch~=2.2.1
|
||||||
torchvision==0.17.1
|
torchvision~=0.17.1
|
||||||
|
@ -631,6 +631,7 @@ struct server_context {
|
|||||||
|
|
||||||
bool clean_kv_cache = true;
|
bool clean_kv_cache = true;
|
||||||
bool add_bos_token = true;
|
bool add_bos_token = true;
|
||||||
|
bool has_eos_token = false;
|
||||||
|
|
||||||
int32_t n_ctx; // total context for all clients / slots
|
int32_t n_ctx; // total context for all clients / slots
|
||||||
|
|
||||||
@ -693,7 +694,7 @@ struct server_context {
|
|||||||
n_ctx = llama_n_ctx(ctx);
|
n_ctx = llama_n_ctx(ctx);
|
||||||
|
|
||||||
add_bos_token = llama_should_add_bos_token(model);
|
add_bos_token = llama_should_add_bos_token(model);
|
||||||
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
has_eos_token = llama_add_eos_token(model) != 1;
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -1031,7 +1032,7 @@ struct server_context {
|
|||||||
{
|
{
|
||||||
slot.sparams.logit_bias.clear();
|
slot.sparams.logit_bias.clear();
|
||||||
|
|
||||||
if (json_value(data, "ignore_eos", false)) {
|
if (json_value(data, "ignore_eos", false) && has_eos_token) {
|
||||||
slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
|
slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
6
flake.lock
generated
6
flake.lock
generated
@ -20,11 +20,11 @@
|
|||||||
},
|
},
|
||||||
"nixpkgs": {
|
"nixpkgs": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1722421184,
|
"lastModified": 1723175592,
|
||||||
"narHash": "sha256-/DJBI6trCeVnasdjUo9pbnodCLZcFqnVZiLUfqLH4jA=",
|
"narHash": "sha256-M0xJ3FbDUc4fRZ84dPGx5VvgFsOzds77KiBMW/mMTnI=",
|
||||||
"owner": "NixOS",
|
"owner": "NixOS",
|
||||||
"repo": "nixpkgs",
|
"repo": "nixpkgs",
|
||||||
"rev": "9f918d616c5321ad374ae6cb5ea89c9e04bf3e58",
|
"rev": "5e0ca22929f3342b19569b21b2f3462f053e497b",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
|
@ -244,6 +244,8 @@
|
|||||||
#define GGML_EXIT_SUCCESS 0
|
#define GGML_EXIT_SUCCESS 0
|
||||||
#define GGML_EXIT_ABORTED 1
|
#define GGML_EXIT_ABORTED 1
|
||||||
|
|
||||||
|
#define GGML_ROPE_TYPE_NEOX 2
|
||||||
|
|
||||||
#define GGUF_MAGIC "GGUF"
|
#define GGUF_MAGIC "GGUF"
|
||||||
|
|
||||||
#define GGUF_VERSION 3
|
#define GGUF_VERSION 3
|
||||||
@ -1453,8 +1455,8 @@ extern "C" {
|
|||||||
struct ggml_tensor * b);
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
// rotary position embedding
|
// rotary position embedding
|
||||||
// if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
|
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
|
||||||
// if mode & 2 == 1, GPT-NeoX style
|
// if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
|
||||||
//
|
//
|
||||||
// b is an int32 vector with size a->ne[2], it contains the positions
|
// b is an int32 vector with size a->ne[2], it contains the positions
|
||||||
GGML_API struct ggml_tensor * ggml_rope(
|
GGML_API struct ggml_tensor * ggml_rope(
|
||||||
|
@ -2881,7 +2881,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
|||||||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast,
|
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast,
|
||||||
beta_slow, corr_dims);
|
beta_slow, corr_dims);
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
// init cos/sin cache
|
// init cos/sin cache
|
||||||
ggml_cann_pool_alloc sin_allocator(
|
ggml_cann_pool_alloc sin_allocator(
|
||||||
|
@ -226,7 +226,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
const int32_t * pos = (const int32_t *) src1_d;
|
const int32_t * pos = (const int32_t *) src1_d;
|
||||||
|
|
||||||
|
@ -2313,7 +2313,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
id<MTLComputePipelineState> pipeline = nil;
|
id<MTLComputePipelineState> pipeline = nil;
|
||||||
|
|
||||||
|
@ -226,7 +226,7 @@ void ggml_sycl_op_rope(
|
|||||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
const int32_t * pos = (const int32_t *) src1_dd;
|
const int32_t * pos = (const int32_t *) src1_dd;
|
||||||
|
|
||||||
|
@ -268,6 +268,10 @@ struct vk_subbuffer {
|
|||||||
vk_buffer buffer;
|
vk_buffer buffer;
|
||||||
uint64_t offset;
|
uint64_t offset;
|
||||||
uint64_t size;
|
uint64_t size;
|
||||||
|
|
||||||
|
operator vk::DescriptorBufferInfo() const {
|
||||||
|
return { buffer->buffer, offset, size };
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct vk_semaphore {
|
struct vk_semaphore {
|
||||||
@ -1063,13 +1067,14 @@ static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
|
|||||||
|
|
||||||
static void ggml_vk_sync_buffers(vk_context& ctx) {
|
static void ggml_vk_sync_buffers(vk_context& ctx) {
|
||||||
VK_LOG_DEBUG("ggml_vk_sync_buffers()");
|
VK_LOG_DEBUG("ggml_vk_sync_buffers()");
|
||||||
const std::vector<vk::MemoryBarrier> mem_barriers{ { { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite }, { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite } } };
|
|
||||||
|
|
||||||
ctx->s->buffer.pipelineBarrier(
|
ctx->s->buffer.pipelineBarrier(
|
||||||
ctx->q->stage_flags,
|
ctx->q->stage_flags,
|
||||||
ctx->q->stage_flags,
|
ctx->q->stage_flags,
|
||||||
{},
|
{},
|
||||||
mem_barriers,
|
{ {
|
||||||
|
{vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite},
|
||||||
|
{vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite}
|
||||||
|
} },
|
||||||
{},
|
{},
|
||||||
{}
|
{}
|
||||||
);
|
);
|
||||||
@ -2420,28 +2425,23 @@ static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bo
|
|||||||
return s;
|
return s;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, std::vector<vk_subbuffer>&& buffers, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
|
|
||||||
|
|
||||||
|
static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list<vk::DescriptorBufferInfo> const& descriptor_buffer_infos, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
|
||||||
const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]);
|
const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]);
|
||||||
const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]);
|
const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]);
|
||||||
const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]);
|
const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]);
|
||||||
VK_LOG_DEBUG("ggml_vk_dispatch_pipeline(" << pipeline->name << ", {";
|
VK_LOG_DEBUG("ggml_vk_dispatch_pipeline(" << pipeline->name << ", {";
|
||||||
for (auto& buffer : buffers) {
|
for (auto& buffer : descriptor_buffer_infos) {
|
||||||
std::cerr << "(" << buffer.buffer << ", " << buffer.offset << ", " << buffer.size << "), ";
|
std::cerr << "(" << buffer << ", " << buffer.offset << ", " << buffer.size << "), ";
|
||||||
}
|
}
|
||||||
std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))");
|
std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))");
|
||||||
std::vector<vk::DescriptorBufferInfo> descriptor_buffer_infos;
|
|
||||||
std::vector<vk::WriteDescriptorSet> write_descriptor_sets;
|
|
||||||
GGML_ASSERT(pipeline->descriptor_set_idx < pipeline->descriptor_sets.size());
|
GGML_ASSERT(pipeline->descriptor_set_idx < pipeline->descriptor_sets.size());
|
||||||
GGML_ASSERT(buffers.size() == pipeline->parameter_count);
|
GGML_ASSERT(descriptor_buffer_infos.size() == pipeline->parameter_count);
|
||||||
vk::DescriptorSet& descriptor_set = pipeline->descriptor_sets[pipeline->descriptor_set_idx++];
|
|
||||||
for (uint32_t i = 0; i < pipeline->parameter_count; i++) {
|
|
||||||
descriptor_buffer_infos.push_back({buffers[i].buffer->buffer, buffers[i].offset, buffers[i].size});
|
|
||||||
}
|
|
||||||
for (uint32_t i = 0; i < pipeline->parameter_count; i++) {
|
|
||||||
write_descriptor_sets.push_back({descriptor_set, i, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &descriptor_buffer_infos[i]});
|
|
||||||
}
|
|
||||||
|
|
||||||
ctx->device->device.updateDescriptorSets(write_descriptor_sets, {});
|
vk::DescriptorSet& descriptor_set = pipeline->descriptor_sets[pipeline->descriptor_set_idx++];
|
||||||
|
vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() };
|
||||||
|
ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {});
|
||||||
|
|
||||||
subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
|
subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
|
||||||
subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline);
|
subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline);
|
||||||
@ -3123,7 +3123,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||||||
} else if (qx_needs_dequant) {
|
} else if (qx_needs_dequant) {
|
||||||
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
|
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { { d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, { d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
|
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
|
||||||
}
|
}
|
||||||
if (y_non_contig) {
|
if (y_non_contig) {
|
||||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
||||||
@ -3312,7 +3312,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||||||
};
|
};
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
||||||
{ { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne22 * ne23} },
|
{ vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} },
|
||||||
sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z });
|
sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z });
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -3384,7 +3384,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||||||
// compute
|
// compute
|
||||||
const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -3459,7 +3459,8 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||||||
// compute
|
// compute
|
||||||
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
|
||||||
|
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -3634,7 +3635,8 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||||||
} else if (qx_needs_dequant) {
|
} else if (qx_needs_dequant) {
|
||||||
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
|
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { { d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, { d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
|
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0,
|
||||||
|
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
|
||||||
}
|
}
|
||||||
if (y_non_contig) {
|
if (y_non_contig) {
|
||||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
||||||
@ -3834,7 +3836,8 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||||||
};
|
};
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
||||||
{ { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne22 * ne23}, { d_ids, ids_buf_offset, ids_sz } },
|
{ vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 },
|
||||||
|
vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23}, vk_subbuffer{ d_ids, ids_buf_offset, ids_sz } },
|
||||||
sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z });
|
sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z });
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -4050,7 +4053,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
{
|
{
|
||||||
const int mode = ((const int32_t *) dst->op_params)[2];
|
const int mode = ((const int32_t *) dst->op_params)[2];
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
if (is_neox) {
|
if (is_neox) {
|
||||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||||
@ -4381,7 +4384,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||||||
}
|
}
|
||||||
|
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
} else if (op == GGML_OP_ROPE) {
|
} else if (op == GGML_OP_ROPE) {
|
||||||
// Empty src2 is possible in rope, but the shader needs a buffer
|
// Empty src2 is possible in rope, but the shader needs a buffer
|
||||||
vk_subbuffer subbuf_z;
|
vk_subbuffer subbuf_z;
|
||||||
@ -4392,20 +4395,20 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||||||
}
|
}
|
||||||
|
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
} else if (op == GGML_OP_IM2COL) {
|
} else if (op == GGML_OP_IM2COL) {
|
||||||
// im2col uses only src1 and dst buffers
|
// im2col uses only src1 and dst buffers
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
} else if (use_src2) {
|
} else if (use_src2) {
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_Z, z_buf_offset, z_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
} else if (use_src1) {
|
} else if (use_src1) {
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
} else {
|
} else {
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
|
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
|
||||||
@ -4442,10 +4445,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||||||
|
|
||||||
if (use_src1) {
|
if (use_src1) {
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_Y, y_buf_offset + y_offset, y_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset + x_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset + y_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
} else {
|
} else {
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset + x_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -14094,7 +14094,7 @@ static void ggml_compute_forward_rope_f32(
|
|||||||
float corr_dims[2];
|
float corr_dims[2];
|
||||||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
const float * freq_factors = NULL;
|
const float * freq_factors = NULL;
|
||||||
if (src2 != NULL) {
|
if (src2 != NULL) {
|
||||||
@ -14219,7 +14219,7 @@ static void ggml_compute_forward_rope_f16(
|
|||||||
float corr_dims[2];
|
float corr_dims[2];
|
||||||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
const float * freq_factors = NULL;
|
const float * freq_factors = NULL;
|
||||||
if (src2 != NULL) {
|
if (src2 != NULL) {
|
||||||
@ -21129,7 +21129,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||||||
(int64_t) info->ne[2] *
|
(int64_t) info->ne[2] *
|
||||||
(int64_t) info->ne[3];
|
(int64_t) info->ne[3];
|
||||||
|
|
||||||
if (ne % ggml_blck_size(info->type) != 0) {
|
if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) {
|
||||||
fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
|
fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
|
||||||
__func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
|
__func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
|
||||||
fclose(file);
|
fclose(file);
|
||||||
|
@ -11,7 +11,7 @@ void main() {
|
|||||||
const uint i2 = gl_WorkGroupID.y;
|
const uint i2 = gl_WorkGroupID.y;
|
||||||
const uint i1 = gl_WorkGroupID.x;
|
const uint i1 = gl_WorkGroupID.x;
|
||||||
|
|
||||||
const bool is_neox = (pcs.mode & 2) != 0;
|
const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0;
|
||||||
|
|
||||||
float corr_dims[2];
|
float corr_dims[2];
|
||||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||||
|
@ -11,7 +11,7 @@ void main() {
|
|||||||
const uint i2 = gl_WorkGroupID.y;
|
const uint i2 = gl_WorkGroupID.y;
|
||||||
const uint i1 = gl_WorkGroupID.x;
|
const uint i1 = gl_WorkGroupID.x;
|
||||||
|
|
||||||
const bool is_neox = (pcs.mode & 2) != 0;
|
const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0;
|
||||||
|
|
||||||
float corr_dims[2];
|
float corr_dims[2];
|
||||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
#include "common.comp"
|
#include "common.comp"
|
||||||
|
|
||||||
|
#define GGML_ROPE_TYPE_NEOX 2
|
||||||
|
|
||||||
// TODO: use a local size of 32 or more (Metal uses 1024)
|
// TODO: use a local size of 32 or more (Metal uses 1024)
|
||||||
layout(local_size_x = 1) in;
|
layout(local_size_x = 1) in;
|
||||||
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
237
gguf-py/tests/test_quants.py
Executable file
237
gguf-py/tests/test_quants.py
Executable file
@ -0,0 +1,237 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Test gguf.quants so that it exactly matches the C implementation of the (de)quantization
|
||||||
|
|
||||||
|
# NOTE: this is kind of a mess, but at least it worked for initially testing the Python implementations.
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from math import prod
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
import ctypes
|
||||||
|
import logging
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Necessary to load the local gguf package
|
||||||
|
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||||
|
|
||||||
|
import gguf
|
||||||
|
from gguf.constants import GGMLQuantizationType
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger("test-quants")
|
||||||
|
|
||||||
|
|
||||||
|
c_float_p = ctypes.POINTER(ctypes.c_float)
|
||||||
|
|
||||||
|
|
||||||
|
class ggml_init_params(ctypes.Structure):
|
||||||
|
_fields_ = [
|
||||||
|
("mem_size", ctypes.c_size_t),
|
||||||
|
("mem_buffer", ctypes.c_void_p),
|
||||||
|
("no_alloc", ctypes.c_bool),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class GGMLQuants:
|
||||||
|
libggml: ctypes.CDLL
|
||||||
|
|
||||||
|
def __init__(self, libggml: Path):
|
||||||
|
self.libggml = ctypes.CDLL(str(libggml))
|
||||||
|
self.libggml.ggml_quantize_chunk.restype = ctypes.c_size_t
|
||||||
|
# enum ggml_type type,
|
||||||
|
# const float * src,
|
||||||
|
# void * dst,
|
||||||
|
# int64_t start,
|
||||||
|
# int64_t nrows,
|
||||||
|
# int64_t n_per_row,
|
||||||
|
# const float * imatrix) {
|
||||||
|
self.libggml.ggml_quantize_chunk.argtypes = (
|
||||||
|
ctypes.c_int,
|
||||||
|
ctypes.POINTER(ctypes.c_float),
|
||||||
|
ctypes.c_void_p,
|
||||||
|
ctypes.c_int64,
|
||||||
|
ctypes.c_int64,
|
||||||
|
ctypes.c_int64,
|
||||||
|
ctypes.POINTER(ctypes.c_float),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.libggml.ggml_quantize_requires_imatrix.restype = ctypes.c_bool
|
||||||
|
self.libggml.ggml_quantize_requires_imatrix.argtypes = (ctypes.c_int,)
|
||||||
|
|
||||||
|
for t in (
|
||||||
|
"q4_0", "q4_1", "q5_0", "q5_1", "q8_0",
|
||||||
|
"q2_K", "q3_K", "q4_K", "q5_K", "q6_K",
|
||||||
|
"iq2_xxs", "iq2_xs", "iq2_s", "iq3_xxs", "iq3_s", "iq1_s", "iq1_m",
|
||||||
|
"iq4_nl", "iq4_xs",
|
||||||
|
):
|
||||||
|
dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + t)
|
||||||
|
dequant_func.restype = None
|
||||||
|
dequant_func.argtypes = (ctypes.c_void_p, ctypes.POINTER(ctypes.c_float), ctypes.c_int64)
|
||||||
|
|
||||||
|
self.libggml.ggml_fp16_to_fp32_row.restype = None
|
||||||
|
self.libggml.ggml_fp16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64)
|
||||||
|
self.libggml.ggml_bf16_to_fp32_row.restype = None
|
||||||
|
self.libggml.ggml_bf16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64)
|
||||||
|
|
||||||
|
self.libggml.ggml_init.argtypes = (ggml_init_params,)
|
||||||
|
|
||||||
|
self.libggml.ggml_init(ggml_init_params(1 * 1024 * 1024, 0, False))
|
||||||
|
|
||||||
|
def dequantize(self, tensor: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
|
||||||
|
result = np.zeros(gguf.quant_shape_from_byte_shape(tensor.shape, qtype), dtype=np.float32, order="C")
|
||||||
|
if qtype == GGMLQuantizationType.F32:
|
||||||
|
# no-op
|
||||||
|
result = tensor.view(np.float32)
|
||||||
|
elif qtype == GGMLQuantizationType.F16:
|
||||||
|
self.libggml.ggml_fp16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size)
|
||||||
|
elif qtype == GGMLQuantizationType.BF16:
|
||||||
|
self.libggml.ggml_bf16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size)
|
||||||
|
else:
|
||||||
|
lw_qname = qtype.name.lower()
|
||||||
|
if lw_qname[-1] == "k":
|
||||||
|
lw_qname = lw_qname[:-1] + "K"
|
||||||
|
dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + lw_qname)
|
||||||
|
dequant_func(tensor.ctypes.data_as(ctypes.c_void_p), result.ctypes.data_as(c_float_p), result.size)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def quantize(self, data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
|
||||||
|
result = np.zeros(gguf.quant_shape_to_byte_shape(data.shape, qtype), dtype=np.uint8, order="C")
|
||||||
|
if self.libggml.ggml_quantize_requires_imatrix(qtype.value):
|
||||||
|
# TODO: is a column-wise sum of squares appropriate?
|
||||||
|
qw = np.sum((data * data).reshape((-1, data.shape[-1])), axis=0).ctypes.data_as(c_float_p)
|
||||||
|
else:
|
||||||
|
qw = ctypes.cast(0, c_float_p)
|
||||||
|
result_size = self.libggml.ggml_quantize_chunk(qtype.value, data.ctypes.data_as(c_float_p), result.ctypes.data_as(ctypes.c_void_p), 0, prod(data.shape[:-1]), data.shape[-1], qw)
|
||||||
|
assert result.size == result_size
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def compare_tensors(t1: np.ndarray, t2: np.ndarray, qtype: GGMLQuantizationType) -> bool:
|
||||||
|
same = np.array_equal(t1, t2)
|
||||||
|
if same:
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
block_size, type_size = gguf.GGML_QUANT_SIZES[qtype]
|
||||||
|
if t1.dtype == np.float32:
|
||||||
|
t1 = t1.reshape((-1, block_size))
|
||||||
|
t2 = t2.reshape((-1, block_size))
|
||||||
|
else:
|
||||||
|
t1 = t1.reshape((-1, type_size))
|
||||||
|
t2 = t2.reshape((-1, type_size))
|
||||||
|
x = t1.view(np.uint8) ^ t2.view(np.uint8)
|
||||||
|
diff_bits = np.count_nonzero(np.unpackbits(x, axis=-1), axis=-1)
|
||||||
|
num_bad_blocks = np.count_nonzero(diff_bits, axis=0)
|
||||||
|
if num_bad_blocks == 0 and t1.shape == t2.shape:
|
||||||
|
logger.debug("Bits are equal, but arrays don't match, likely contains NANs")
|
||||||
|
return True
|
||||||
|
logger.debug(f"{num_bad_blocks} bad blocks ({100 * num_bad_blocks / x.shape[0]:.6f}%)")
|
||||||
|
bad_block_id = np.argmax(diff_bits, axis=0)
|
||||||
|
logger.debug(f"Worst block id: {bad_block_id}")
|
||||||
|
logger.debug(f"Sample bad block ({diff_bits[bad_block_id]} differing bits):\n{t1[bad_block_id]}\nReference:\n{t2[bad_block_id]}")
|
||||||
|
|
||||||
|
sum_diff_bits = np.sum(diff_bits)
|
||||||
|
logger.debug(f"{sum_diff_bits} bits differ ({100 * sum_diff_bits/(x.size * 8):.6f}%)")
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def do_test(libggml_path: Path, quick: bool = False):
|
||||||
|
ggml_quants = GGMLQuants(libggml_path)
|
||||||
|
|
||||||
|
np.set_printoptions(precision=None, threshold=(4 * 256) + 1, formatter={"int": lambda n: "0x%02X" % n})
|
||||||
|
|
||||||
|
r = np.random.randn(8, 1024, 1024).astype(np.float32, copy=False)
|
||||||
|
|
||||||
|
for qtype in (GGMLQuantizationType.F16, *gguf.quants._type_traits.keys()):
|
||||||
|
has_dequantize = False
|
||||||
|
has_quantize = False
|
||||||
|
|
||||||
|
try:
|
||||||
|
gguf.dequantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][1]), dtype=np.uint8), qtype)
|
||||||
|
has_dequantize = True
|
||||||
|
except (NotImplementedError, AssertionError) as e:
|
||||||
|
if isinstance(e, AssertionError):
|
||||||
|
logger.error(f"Error with {qtype.name}: {e}")
|
||||||
|
raise e
|
||||||
|
try:
|
||||||
|
gguf.quantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][0]), dtype=np.float32), qtype)
|
||||||
|
has_quantize = True
|
||||||
|
except (NotImplementedError, AssertionError) as e:
|
||||||
|
if isinstance(e, AssertionError):
|
||||||
|
logger.error(f"Error with {qtype.name}: {e}")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
if not has_dequantize and not has_quantize:
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.info(f"Testing {qtype.name}")
|
||||||
|
|
||||||
|
rc = r.copy(order="C")
|
||||||
|
|
||||||
|
pyq = None
|
||||||
|
ggq = None
|
||||||
|
|
||||||
|
if has_quantize:
|
||||||
|
logger.debug(f"Quantizing to {qtype.name} with Python")
|
||||||
|
pyq = gguf.quants.quantize(rc, qtype)
|
||||||
|
|
||||||
|
logger.debug(f"Quantizing to {qtype.name} with C")
|
||||||
|
ggq = ggml_quants.quantize(rc, qtype)
|
||||||
|
|
||||||
|
if qtype == GGMLQuantizationType.F16:
|
||||||
|
pyq = pyq.view(np.uint8)
|
||||||
|
quant_equal = compare_tensors(pyq, ggq, qtype)
|
||||||
|
|
||||||
|
if not quant_equal:
|
||||||
|
logger.error(f"Quantization to {qtype.name} does not match ❌")
|
||||||
|
else:
|
||||||
|
logger.info(f"Quantization to {qtype.name} matches exactly ✅")
|
||||||
|
|
||||||
|
if has_dequantize:
|
||||||
|
if ggq is None and not quick:
|
||||||
|
logger.debug(f"Quantizing to {qtype.name} with C")
|
||||||
|
ggq = ggml_quants.quantize(rc, qtype)
|
||||||
|
|
||||||
|
if ggq is not None:
|
||||||
|
logger.debug(f"Dequantizing from {qtype.name} with Python")
|
||||||
|
pydq = gguf.quants.dequantize(ggq, qtype)
|
||||||
|
logger.debug(f"Dequantizing from {qtype.name} with C")
|
||||||
|
ggdq = ggml_quants.dequantize(ggq, qtype)
|
||||||
|
|
||||||
|
dequant_equal = compare_tensors(pydq, ggdq, qtype)
|
||||||
|
|
||||||
|
if not dequant_equal:
|
||||||
|
logger.error(f"Dequantization from {qtype.name} does not match ❌")
|
||||||
|
else:
|
||||||
|
logger.info(f"Dequantization from {qtype.name} matches exactly ✅")
|
||||||
|
|
||||||
|
rq_shape = gguf.quants.quant_shape_to_byte_shape((8, 1024, 1024 // 2), qtype)
|
||||||
|
rq = np.random.random(rq_shape).astype(np.float16).view(np.uint8)
|
||||||
|
|
||||||
|
logger.debug(f"Dequantizing random f16 data as {qtype.name} with Python")
|
||||||
|
pydq = gguf.quants.dequantize(rq, qtype)
|
||||||
|
logger.debug(f"Dequantizing random f16 data as {qtype.name} with C")
|
||||||
|
ggdq = ggml_quants.dequantize(rq, qtype)
|
||||||
|
|
||||||
|
dequant_equal = compare_tensors(pydq, ggdq, qtype)
|
||||||
|
|
||||||
|
if not dequant_equal:
|
||||||
|
logger.error(f"Dequantization from random f16 data as {qtype.name} does not match ❌")
|
||||||
|
else:
|
||||||
|
logger.info(f"Dequantization from random f16 data as {qtype.name} matches exactly ✅")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Test Python (de)quantization against the reference C implementation")
|
||||||
|
parser.add_argument("--libggml", type=Path, default=Path(__file__).parent.parent.parent / "build" / "ggml" / "src" / "libggml.so", help="The path to libggml.so")
|
||||||
|
parser.add_argument("--quick", action="store_true", help="Don't quantize with C when it's not strictly necessary")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.DEBUG)
|
||||||
|
|
||||||
|
do_test(args.libggml, args.quick)
|
@ -95,13 +95,10 @@ extern "C" {
|
|||||||
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
|
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
|
||||||
};
|
};
|
||||||
|
|
||||||
// note: these values should be synchronized with ggml_rope
|
|
||||||
// TODO: maybe move this enum to ggml.h (ggml_rope_type)
|
|
||||||
enum llama_rope_type {
|
enum llama_rope_type {
|
||||||
LLAMA_ROPE_TYPE_NONE = -1,
|
LLAMA_ROPE_TYPE_NONE = -1,
|
||||||
LLAMA_ROPE_TYPE_NORM = 0,
|
LLAMA_ROPE_TYPE_NORM = 0,
|
||||||
LLAMA_ROPE_TYPE_NEOX = 2,
|
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
|
||||||
LLAMA_ROPE_TYPE_GLM = 4,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
|
enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
|
||||||
|
@ -85,14 +85,14 @@ void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_arra
|
|||||||
constexpr float bucket_low = -10.0f;
|
constexpr float bucket_low = -10.0f;
|
||||||
constexpr float bucket_high = 10.0f;
|
constexpr float bucket_high = 10.0f;
|
||||||
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
|
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
|
||||||
constexpr float bucker_inter = -bucket_low * bucket_scale;
|
constexpr float bucket_inter = -bucket_low * bucket_scale;
|
||||||
|
|
||||||
std::vector<int> bucket_idx(candidates->size);
|
std::vector<int> bucket_idx(candidates->size);
|
||||||
std::vector<int> histo(nbuckets, 0);
|
std::vector<int> histo(nbuckets, 0);
|
||||||
|
|
||||||
for (int i = 0; i < (int)candidates->size; ++i) {
|
for (int i = 0; i < (int)candidates->size; ++i) {
|
||||||
const float val = candidates->data[i].logit;
|
const float val = candidates->data[i].logit;
|
||||||
int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
|
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
|
||||||
ib = std::max(0, std::min(nbuckets-1, ib));
|
ib = std::max(0, std::min(nbuckets-1, ib));
|
||||||
bucket_idx[i] = ib;
|
bucket_idx[i] = ib;
|
||||||
++histo[ib];
|
++histo[ib];
|
||||||
|
@ -3575,13 +3575,8 @@ namespace GGUFMeta {
|
|||||||
|
|
||||||
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
|
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
|
||||||
|
|
||||||
// TODO: update when needed or think of some clever automatic way to do this
|
static size_t llama_model_max_nodes(const llama_model & model) {
|
||||||
static size_t llama_model_max_nodes(const llama_model & /*model*/) {
|
return std::max<size_t>(8192, model.tensors_by_name.size()*5);
|
||||||
//if (model.arch == LLM_ARCH_LLAMA && model.hparams.n_layer > ??) { // llama-3 405B
|
|
||||||
// return 32768;
|
|
||||||
//}
|
|
||||||
|
|
||||||
return 8192;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
struct llama_model_loader {
|
struct llama_model_loader {
|
||||||
@ -14722,12 +14717,15 @@ static int llama_decode_internal(
|
|||||||
res = nullptr;
|
res = nullptr;
|
||||||
embd = nullptr;
|
embd = nullptr;
|
||||||
} else if (cparams.embeddings) {
|
} else if (cparams.embeddings) {
|
||||||
res = nullptr; // do not extract logits for embedding case
|
res = nullptr; // do not extract logits for embedding case
|
||||||
embd = gf->nodes[gf->n_nodes - 1];
|
embd = nullptr;
|
||||||
if (strcmp(embd->name, "result_embd_pooled") != 0) {
|
for (int i = gf->n_nodes - 1; i >= 0; --i) {
|
||||||
embd = gf->nodes[gf->n_nodes - 2];
|
if (strcmp(gf->nodes[i]->name, "result_embd_pooled") == 0) {
|
||||||
|
embd = gf->nodes[i];
|
||||||
|
break;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
|
GGML_ASSERT(embd != nullptr && "missing embeddings tensor");
|
||||||
} else {
|
} else {
|
||||||
embd = nullptr; // do not extract embeddings when not needed
|
embd = nullptr; // do not extract embeddings when not needed
|
||||||
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
|
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
|
||||||
|
Loading…
x
Reference in New Issue
Block a user