mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-24 02:19:18 +01:00
llama : add llama_vocab
, functions -> methods, naming (#11110)
* llama : functions -> methods (#11110) * llama : add struct llama_vocab to the API (#11156) ggml-ci * hparams : move vocab params to llama_vocab (#11159) ggml-ci * vocab : more pimpl (#11165) ggml-ci * vocab : minor tokenization optimizations (#11160) ggml-ci Co-authored-by: Diego Devesa <slarengh@gmail.com> * lora : update API names (#11167) ggml-ci * llama : update API names to use correct prefix (#11174) * llama : update API names to use correct prefix ggml-ci * cont ggml-ci * cont ggml-ci * minor [no ci] * vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174) ggml-ci * vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174) ggml-ci --------- Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
parent
c05e8c9934
commit
afa8a9ec9b
common
examples
batched-bench
batched.swift/Sources
batched
convert-llama2c-to-ggml
cvector-generator
embedding
eval-callback
export-lora
gritlm
imatrix
infill
llama-bench
llama.android/llama/src/main/cpp
llama.swiftui/llama.cpp.swift
llava
lookahead
lookup
main
parallel
passkey
perplexity
quantize-stats
retrieval
run
save-load-state
server
simple-chat
simple
speculative-simple
speculative
tokenize
tts
include
src
llama-adapter.cppllama-adapter.hllama-arch.cppllama-arch.hllama-context.cppllama-context.hllama-grammar.cppllama-hparams.hllama-kv-cache.cppllama-mmap.cppllama-model-loader.cppllama-model-loader.hllama-model.cppllama-model.hllama-quant.cppllama-sampling.cppllama-sampling.hllama-vocab.cppllama-vocab.hllama.cpp
tests
@ -857,21 +857,23 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (params.reranking) {
|
||||
bool ok = true;
|
||||
|
||||
if (llama_token_bos(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have a BOS token, reranking will not work\n", __func__);
|
||||
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have an EOS token, reranking will not work\n", __func__);
|
||||
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (llama_token_sep(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have a SEP token, reranking will not work\n", __func__);
|
||||
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
@ -884,7 +886,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
llama_model_free(model);
|
||||
@ -898,7 +900,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
if (!params.control_vectors.empty()) {
|
||||
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
|
||||
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
|
||||
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_model_n_layer(model);
|
||||
|
||||
const auto cvec = common_control_vector_load(params.control_vectors);
|
||||
if (cvec.n_embd == -1) {
|
||||
@ -908,7 +910,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
int err = llama_control_vector_apply(lctx,
|
||||
int err = llama_apply_adapter_cvec(
|
||||
lctx,
|
||||
cvec.data.data(),
|
||||
cvec.data.size(),
|
||||
cvec.n_embd,
|
||||
@ -924,8 +927,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_lora_adapter_ptr lora;
|
||||
lora.reset(llama_lora_adapter_init(model, la.path.c_str()));
|
||||
llama_adapter_lora_ptr lora;
|
||||
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
|
||||
if (lora == nullptr) {
|
||||
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
|
||||
llama_free(lctx);
|
||||
@ -938,17 +941,17 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
}
|
||||
|
||||
if (!params.lora_init_without_apply) {
|
||||
common_lora_adapters_apply(lctx, params.lora_adapters);
|
||||
common_set_adapter_lora(lctx, params.lora_adapters);
|
||||
}
|
||||
|
||||
if (params.sampling.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
||||
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
||||
params.sampling.ignore_eos = false;
|
||||
}
|
||||
|
||||
if (params.sampling.ignore_eos) {
|
||||
for (llama_token i = 0; i < llama_n_vocab(model); i++) {
|
||||
if (llama_token_is_eog(model, i)) {
|
||||
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
|
||||
if (llama_vocab_is_eog(vocab, i)) {
|
||||
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
|
||||
params.sampling.logit_bias.push_back({i, -INFINITY});
|
||||
}
|
||||
@ -969,8 +972,9 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
|
||||
|
||||
std::vector<llama_token> tmp;
|
||||
llama_token bos = llama_token_bos(model);
|
||||
llama_token eos = llama_token_eos(model);
|
||||
llama_token bos = llama_vocab_bos(vocab);
|
||||
llama_token eos = llama_vocab_eos(vocab);
|
||||
|
||||
// some models (e.g. T5) don't have a BOS token
|
||||
if (bos != LLAMA_TOKEN_NULL) {
|
||||
tmp.push_back(bos);
|
||||
@ -1005,11 +1009,11 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_info> & lora) {
|
||||
llama_lora_adapter_clear(ctx);
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
|
||||
llama_clear_adapter_lora(ctx);
|
||||
for (auto & la : lora) {
|
||||
if (la.scale != 0.0f) {
|
||||
llama_lora_adapter_set(ctx, la.ptr, la.scale);
|
||||
llama_set_adapter_lora(ctx, la.ptr, la.scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1559,21 +1563,23 @@ std::vector<llama_token> common_tokenize(
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
return common_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
return common_tokenize(vocab, text, add_special, parse_special);
|
||||
}
|
||||
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
// upper limit for the number of tokens
|
||||
int n_tokens = text.length() + 2 * add_special;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
@ -1582,12 +1588,18 @@ std::vector<llama_token> common_tokenize(
|
||||
}
|
||||
|
||||
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
return common_token_to_piece(vocab, token, special);
|
||||
}
|
||||
|
||||
std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
|
||||
std::string piece;
|
||||
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
|
||||
const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
|
||||
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
|
||||
if (n_chars < 0) {
|
||||
piece.resize(-n_chars);
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
|
||||
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
|
||||
GGML_ASSERT(check == -n_chars);
|
||||
}
|
||||
else {
|
||||
@ -1597,13 +1609,19 @@ std::string common_token_to_piece(const struct llama_context * ctx, llama_token
|
||||
return piece;
|
||||
}
|
||||
|
||||
std::string common_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
return common_detokenize(vocab, tokens, special);
|
||||
}
|
||||
|
||||
std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string text;
|
||||
text.resize(std::max(text.capacity(), tokens.size()));
|
||||
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
if (n_chars < 0) {
|
||||
text.resize(-n_chars);
|
||||
n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
|
||||
}
|
||||
|
||||
@ -1631,7 +1649,7 @@ std::string common_get_builtin_chat_template(const struct llama_model * model) {
|
||||
|
||||
bool common_chat_verify_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
@ -1642,16 +1660,16 @@ std::string common_chat_apply_template(const struct llama_model * model,
|
||||
int alloc_size = 0;
|
||||
bool fallback = false; // indicate if we must fallback to default chatml
|
||||
std::vector<llama_chat_message> chat;
|
||||
for (auto & msg : msgs) {
|
||||
for (const auto & msg : msgs) {
|
||||
chat.push_back({msg.role.c_str(), msg.content.c_str()});
|
||||
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
|
||||
}
|
||||
|
||||
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
|
||||
const char * ptr_tmpl = tmpl.empty() ? llama_model_chat_template(model) : tmpl.c_str();
|
||||
std::vector<char> buf(alloc_size);
|
||||
|
||||
// run the first time to get the total output length
|
||||
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
int32_t res = llama_chat_apply_template(ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
|
||||
// error: chat template is not supported
|
||||
if (res < 0) {
|
||||
@ -1659,18 +1677,17 @@ std::string common_chat_apply_template(const struct llama_model * model,
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
} else {
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
fallback = true;
|
||||
}
|
||||
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
res = llama_chat_apply_template("chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
fallback = true;
|
||||
}
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
if ((size_t) res > buf.size()) {
|
||||
buf.resize(res);
|
||||
res = llama_chat_apply_template(
|
||||
fallback ? nullptr : model,
|
||||
fallback ? "chatml" : ptr_tmpl,
|
||||
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
}
|
||||
|
@ -24,11 +24,11 @@
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct common_lora_adapter_info {
|
||||
struct common_adapter_lora_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
|
||||
struct llama_lora_adapter * ptr;
|
||||
struct llama_adapter_lora * ptr;
|
||||
};
|
||||
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
@ -246,8 +246,8 @@ struct common_params {
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||||
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
|
||||
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
|
||||
|
||||
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
@ -481,7 +481,7 @@ struct common_init_result {
|
||||
llama_model_ptr model;
|
||||
llama_context_ptr context;
|
||||
|
||||
std::vector<llama_lora_adapter_ptr> lora;
|
||||
std::vector<llama_adapter_lora_ptr> lora;
|
||||
};
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
@ -503,7 +503,7 @@ struct llama_model * common_load_model_from_hf(
|
||||
const struct llama_model_params & params);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_info> & lora);
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
@ -541,7 +541,7 @@ std::vector<llama_token> common_tokenize(
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
@ -553,11 +553,21 @@ std::string common_token_to_piece(
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
|
||||
std::string common_token_to_piece(
|
||||
const struct llama_vocab * vocab,
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// optionally renders special/control tokens
|
||||
std::string common_detokenize(
|
||||
llama_context * ctx,
|
||||
const struct llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
std::string common_detokenize(
|
||||
const struct llama_vocab * vocab,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
|
@ -113,7 +113,10 @@ struct common_sampler {
|
||||
void set_logits(struct llama_context * ctx, int idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
cur.resize(n_vocab);
|
||||
|
||||
@ -142,13 +145,15 @@ std::string common_params_sampling::print() const {
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
auto * result = new common_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
||||
/* .grmr = */ llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"),
|
||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
|
||||
/* .cur = */ {},
|
||||
@ -157,7 +162,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
|
||||
llama_sampler_chain_add(result->chain,
|
||||
llama_sampler_init_logit_bias(
|
||||
llama_n_vocab(model),
|
||||
llama_vocab_n_tokens(vocab),
|
||||
params.logit_bias.size(),
|
||||
params.logit_bias.data()));
|
||||
|
||||
@ -172,7 +177,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
@ -194,7 +199,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
@ -206,7 +211,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
} else if (params.mirostat == 2) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
||||
|
@ -79,10 +79,13 @@ bool common_speculative_are_compatible(
|
||||
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
|
||||
const struct llama_model * model_dft = llama_get_model(ctx_dft);
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
const struct llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
|
||||
const struct llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
|
||||
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
const bool vocab_type_dft = llama_vocab_type(vocab_dft);
|
||||
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
@ -91,34 +94,34 @@ bool common_speculative_are_compatible(
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
|
||||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)) {
|
||||
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt));
|
||||
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft));
|
||||
if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
|
||||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
|
||||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
|
||||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) {
|
||||
LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
|
||||
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt));
|
||||
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_n_vocab(model_tgt);
|
||||
const int n_vocab_dft = llama_n_vocab(model_dft);
|
||||
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
|
||||
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
|
||||
|
||||
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
|
||||
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
|
||||
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
__func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
__func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
|
||||
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
||||
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
||||
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
|
||||
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but "
|
||||
LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but "
|
||||
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
|
@ -50,7 +50,7 @@ int main(int argc, char ** argv) {
|
||||
// ensure enough sequences are available
|
||||
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
|
@ -23,12 +23,12 @@ defer {
|
||||
}
|
||||
|
||||
let model_params = llama_model_default_params()
|
||||
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
|
||||
guard let model = llama_model_load_from_file(modelPath.cString(using: .utf8), model_params) else {
|
||||
print("Failed to load model")
|
||||
exit(1)
|
||||
}
|
||||
defer {
|
||||
llama_free_model(model)
|
||||
llama_model_free(model)
|
||||
}
|
||||
|
||||
var tokens = tokenize(text: prompt, add_bos: true)
|
||||
@ -141,7 +141,7 @@ while n_cur <= n_len {
|
||||
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
i_batch[i] = -1
|
||||
// print("")
|
||||
if n_parallel > 1 {
|
||||
|
@ -48,10 +48,12 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = common_tokenize(model, params.prompt, true);
|
||||
tokens_list = common_tokenize(vocab, params.prompt, true);
|
||||
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
|
||||
|
||||
@ -62,7 +64,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
|
||||
auto sparams = llama_sampler_chain_default_params();
|
||||
sparams.no_perf = false;
|
||||
@ -121,7 +123,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
|
||||
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
|
||||
decoder_start_token_id = llama_token_bos(model);
|
||||
decoder_start_token_id = llama_vocab_bos(vocab);
|
||||
}
|
||||
|
||||
common_batch_clear(batch);
|
||||
@ -174,7 +176,7 @@ int main(int argc, char ** argv) {
|
||||
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
|
||||
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_predict) {
|
||||
i_batch[i] = -1;
|
||||
LOG("\n");
|
||||
if (n_parallel > 1) {
|
||||
|
@ -911,7 +911,7 @@ int main(int argc, char ** argv) {
|
||||
load_vocab(params.fn_vocab_model, &config, &vocab);
|
||||
|
||||
struct my_llama_model model;
|
||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||
model.hparams.n_vocab = config.vocab_size; //llama_vocab_n_vocab(lctx);
|
||||
model.hparams.n_ctx = params.n_ctx;
|
||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||
model.hparams.n_ff = config.hidden_dim;
|
||||
|
@ -273,7 +273,9 @@ struct tokenized_prompt {
|
||||
size_t max_seq_len;
|
||||
|
||||
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
tokens_pos = common_tokenize(ctx, pos, add_bos, true);
|
||||
tokens_neg = common_tokenize(ctx, neg, add_bos, true);
|
||||
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
|
||||
@ -421,8 +423,8 @@ int main(int argc, char ** argv) {
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
int n_layers = llama_n_layer(model);
|
||||
int n_embd = llama_n_embd(model);
|
||||
int n_layers = llama_model_n_layer(model);
|
||||
int n_embd = llama_model_n_embd(model);
|
||||
|
||||
// get model hint param (a.k.a model arch name)
|
||||
char model_hint[128];
|
||||
|
@ -105,7 +105,9 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
@ -148,7 +150,7 @@ int main(int argc, char ** argv) {
|
||||
// check if the last token is SEP
|
||||
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
|
||||
for (auto & inp : inputs) {
|
||||
if (inp.empty() || inp.back() != llama_token_sep(model)) {
|
||||
if (inp.empty() || inp.back() != llama_vocab_sep(vocab)) {
|
||||
LOG_WRN("%s: last token in the prompt is not SEP\n", __func__);
|
||||
LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
|
||||
}
|
||||
@ -181,7 +183,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// allocate output
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const int n_embd = llama_model_n_embd(model);
|
||||
std::vector<float> embeddings(n_embd_count * n_embd, 0);
|
||||
float * emb = embeddings.data();
|
||||
|
||||
|
@ -127,7 +127,10 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
}
|
||||
|
||||
static bool run(llama_context * ctx, const common_params & params) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
|
@ -8,7 +8,6 @@
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <fstream>
|
||||
|
||||
static bool g_verbose = false;
|
||||
@ -130,7 +129,7 @@ struct lora_merge_ctx {
|
||||
|
||||
lora_merge_ctx(
|
||||
std::string & base_fname,
|
||||
std::vector<common_lora_adapter_info> & lora_files,
|
||||
std::vector<common_adapter_lora_info> & lora_files,
|
||||
std::string & outfile,
|
||||
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
@ -11,6 +11,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
std::vector<std::vector<float>> result;
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
@ -19,16 +20,16 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
|
||||
const std::string input_string = instruction + sentences[i];
|
||||
|
||||
std::vector<llama_token> inputs = common_tokenize(model, input_string, true, false);
|
||||
std::vector<llama_token> inputs = common_tokenize(vocab, input_string, true, false);
|
||||
|
||||
const int32_t n_toks = inputs.size();
|
||||
|
||||
// GritLM seems to have EOS = ""
|
||||
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L18
|
||||
// inputs.push_back(llama_token_eos(model));
|
||||
// inputs.push_back(llama_vocab_eos(vocab));
|
||||
|
||||
// we want to ignore instruction tokens for mean pooling
|
||||
const int32_t n_inst = common_tokenize(model, instruction, true, false).size();
|
||||
const int32_t n_inst = common_tokenize(vocab, instruction, true, false).size();
|
||||
|
||||
#ifdef GRIT_DEBUG
|
||||
// debug tokens - should be matching as referenced in the GritLM sample
|
||||
@ -52,7 +53,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
// get embedding dimensions
|
||||
uint64_t n_embd = llama_n_embd(model);
|
||||
uint64_t n_embd = llama_model_n_embd(model);
|
||||
|
||||
// allocate embedding output
|
||||
std::vector<float> emb_unorm(n_embd, 0.0f);
|
||||
@ -97,7 +98,9 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
std::string result;
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
llama_token eos_token = llama_token_eos(model);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
@ -105,7 +108,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
std::vector<llama_token> inputs = common_tokenize(model, prompt, false, true);
|
||||
std::vector<llama_token> inputs = common_tokenize(vocab, prompt, false, true);
|
||||
int32_t i_current_token = 0;
|
||||
|
||||
while (true) {
|
||||
@ -168,7 +171,7 @@ int main(int argc, char * argv[]) {
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
|
||||
// create generation context
|
||||
llama_context * ctx = llama_new_context_with_model(model, cparams);
|
||||
llama_context * ctx = llama_init_from_model(model, cparams);
|
||||
|
||||
auto sparams = llama_sampler_chain_default_params();
|
||||
|
||||
@ -197,7 +200,7 @@ int main(int argc, char * argv[]) {
|
||||
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
|
||||
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const int n_embd = llama_model_n_embd(model);
|
||||
|
||||
const float cosine_sim_q0_d0 = common_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q0_d1 = common_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
|
||||
|
@ -7,7 +7,6 @@
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <sstream>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <vector>
|
||||
@ -40,7 +39,7 @@ public:
|
||||
void set_params(common_params params) { m_params = std::move(params); }
|
||||
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
void save_imatrix(int ncall = -1) const;
|
||||
bool load_imatrix(const char * file_name);
|
||||
bool load_imatrix(const char * fname);
|
||||
private:
|
||||
std::unordered_map<std::string, Stats> m_stats;
|
||||
common_params m_params;
|
||||
@ -429,10 +428,13 @@ static void process_logits(
|
||||
}
|
||||
|
||||
static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
@ -468,7 +470,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
const int n_chunk_max = tokens.size() / n_ctx;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
int count = 0;
|
||||
@ -508,7 +510,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
tokens[batch_start] = llama_vocab_bos(vocab);
|
||||
}
|
||||
|
||||
common_batch_clear(batch);
|
||||
@ -627,7 +629,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
if (params.n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, params.n_ctx);
|
||||
|
@ -139,7 +139,9 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG_DBG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
@ -152,28 +154,28 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> embd_end;
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
GGML_ASSERT(llama_token_fim_pre(model) >= 0);
|
||||
GGML_ASSERT(llama_token_fim_suf(model) >= 0);
|
||||
GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0);
|
||||
GGML_ASSERT(llama_vocab_fim_suf(vocab) >= 0);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
const llama_token middle_token = llama_token_fim_mid(model);
|
||||
const llama_token middle_token = llama_vocab_fim_mid(vocab);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
@ -185,7 +187,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
@ -420,10 +422,10 @@ int main(int argc, char ** argv) {
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// deal with eot token in infill mode
|
||||
if ((common_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if ((common_sampler_last(smpl) == llama_vocab_eot(vocab) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
|
||||
}
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
@ -463,13 +465,13 @@ int main(int argc, char ** argv) {
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
@ -484,7 +486,7 @@ int main(int argc, char ** argv) {
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||
else if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@ -500,7 +502,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_DBG("adding input prefix BOS token\n");
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
@ -563,7 +565,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) {
|
||||
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !params.interactive) {
|
||||
break;
|
||||
}
|
||||
|
||||
@ -575,7 +577,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
if (!params.interactive && n_remain <= 0) {
|
||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
|
@ -1401,7 +1401,8 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_th
|
||||
llama_set_n_threads(ctx, n_threads, n_threads);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const int32_t n_vocab = llama_n_vocab(model);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
std::vector<llama_token> tokens(n_batch);
|
||||
|
||||
@ -1409,7 +1410,7 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_th
|
||||
|
||||
while (n_processed < n_prompt) {
|
||||
int n_tokens = std::min(n_prompt - n_processed, n_batch);
|
||||
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
|
||||
tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
|
||||
for (int i = 1; i < n_tokens; i++) {
|
||||
tokens[i] = std::rand() % n_vocab;
|
||||
}
|
||||
@ -1424,9 +1425,10 @@ static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
|
||||
llama_set_n_threads(ctx, n_threads, n_threads);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const int32_t n_vocab = llama_n_vocab(model);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
|
||||
llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
|
||||
|
||||
for (int i = 0; i < n_gen; i++) {
|
||||
llama_decode(ctx, llama_batch_get_one(&token, 1));
|
||||
@ -1537,7 +1539,7 @@ int main(int argc, char ** argv) {
|
||||
prev_inst = &inst;
|
||||
}
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
|
||||
llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
|
||||
llama_model_free(lmodel);
|
||||
|
@ -87,7 +87,7 @@ Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring fi
|
||||
auto path_to_model = env->GetStringUTFChars(filename, 0);
|
||||
LOGi("Loading model from %s", path_to_model);
|
||||
|
||||
auto model = llama_load_model_from_file(path_to_model, model_params);
|
||||
auto model = llama_model_load_from_file(path_to_model, model_params);
|
||||
env->ReleaseStringUTFChars(filename, path_to_model);
|
||||
|
||||
if (!model) {
|
||||
@ -102,7 +102,7 @@ Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring fi
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1model(JNIEnv *, jobject, jlong model) {
|
||||
llama_free_model(reinterpret_cast<llama_model *>(model));
|
||||
llama_model_free(reinterpret_cast<llama_model *>(model));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
@ -405,6 +405,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
const auto sampler = reinterpret_cast<llama_sampler *>(sampler_pointer);
|
||||
const auto model = llama_get_model(context);
|
||||
const auto vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (!la_int_var) la_int_var = env->GetObjectClass(intvar_ncur);
|
||||
if (!la_int_var_value) la_int_var_value = env->GetMethodID(la_int_var, "getValue", "()I");
|
||||
@ -414,7 +415,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
const auto new_token_id = llama_sampler_sample(sampler, context, -1);
|
||||
|
||||
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
@ -52,8 +52,8 @@ actor LlamaContext {
|
||||
deinit {
|
||||
llama_sampler_free(sampling)
|
||||
llama_batch_free(batch)
|
||||
llama_model_free(model)
|
||||
llama_free(context)
|
||||
llama_free_model(model)
|
||||
llama_backend_free()
|
||||
}
|
||||
|
||||
@ -65,7 +65,7 @@ actor LlamaContext {
|
||||
model_params.n_gpu_layers = 0
|
||||
print("Running on simulator, force use n_gpu_layers = 0")
|
||||
#endif
|
||||
let model = llama_load_model_from_file(path, model_params)
|
||||
let model = llama_model_load_from_file(path, model_params)
|
||||
guard let model else {
|
||||
print("Could not load model at \(path)")
|
||||
throw LlamaError.couldNotInitializeContext
|
||||
@ -151,7 +151,7 @@ actor LlamaContext {
|
||||
|
||||
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
|
||||
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
print("\n")
|
||||
is_done = true
|
||||
let new_token_str = String(cString: temporary_invalid_cchars + [0])
|
||||
|
@ -47,8 +47,12 @@ static const char * sample(struct common_sampler * smpl,
|
||||
int * n_past) {
|
||||
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx_llama);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
if (llama_vocab_is_eog(vocab, id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = common_token_to_piece(ctx_llama, id);
|
||||
@ -239,11 +243,10 @@ static struct llava_context * llava_init_context(common_params * params, llama_m
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
|
||||
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
||||
|
@ -384,7 +384,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
|
||||
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
|
||||
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
||||
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
|
||||
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
|
||||
if (n_image_embd != n_llama_embd) {
|
||||
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
@ -456,7 +456,7 @@ struct llava_embd_batch {
|
||||
};
|
||||
|
||||
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
|
||||
|
||||
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
|
||||
int n_eval = image_embed->n_image_pos - i;
|
||||
|
@ -54,7 +54,7 @@ static struct llava_context * llava_init_context(common_params * params, llama_m
|
||||
ctx_params.n_ctx = params->n_ctx;
|
||||
}
|
||||
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
||||
@ -167,8 +167,12 @@ static const char * sample(struct common_sampler * smpl,
|
||||
int * n_past) {
|
||||
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx_llama);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
if (llama_vocab_is_eog(vocab, id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = common_token_to_piece(ctx_llama, id);
|
||||
|
@ -27,7 +27,7 @@
|
||||
|
||||
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed,
|
||||
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
|
||||
const int patch_size = 14 * 2;
|
||||
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0);
|
||||
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0);
|
||||
@ -132,8 +132,12 @@ static const char * sample(struct common_sampler * smpl,
|
||||
int * n_past, int * st_pos_id) {
|
||||
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx_llama);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
if (llama_vocab_is_eog(vocab, id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = common_token_to_piece(ctx_llama, id);
|
||||
@ -328,11 +332,10 @@ static struct llava_context * llava_init_context(common_params * params, llama_m
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
|
||||
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
||||
@ -481,7 +484,7 @@ static void debug_test_mrope_2d() {
|
||||
}
|
||||
|
||||
static void debug_dump_img_embed(struct llava_context * ctx_llava) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
|
||||
int n_embd = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama));
|
||||
int ne = n_embd * 4;
|
||||
float vals[56 * 56 * 3];
|
||||
// float embd[ne];
|
||||
|
@ -61,6 +61,8 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
std::vector<llama_token> all;
|
||||
@ -147,7 +149,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// here we keep adding new n-grams as we go
|
||||
ngram_container ngrams_observed(llama_n_vocab(model), N, G);
|
||||
ngram_container ngrams_observed(llama_vocab_n_tokens(vocab), N, G);
|
||||
|
||||
// debug
|
||||
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
|
||||
@ -297,7 +299,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
if (llama_token_is_eog(model, id)) {
|
||||
if (llama_vocab_is_eog(vocab, id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
|
||||
|
@ -36,6 +36,8 @@ int main(int argc, char ** argv){
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
@ -136,7 +138,7 @@ int main(int argc, char ** argv){
|
||||
LOG("%s", token_str.c_str());
|
||||
}
|
||||
|
||||
if (llama_token_is_eog(model, id)) {
|
||||
if (llama_vocab_is_eog(vocab, id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
|
||||
|
@ -5,7 +5,6 @@
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
@ -163,6 +162,8 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
|
||||
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
||||
@ -196,7 +197,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
@ -241,9 +242,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
if (!llama_model_has_encoder(model)) {
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
}
|
||||
|
||||
LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
|
||||
@ -269,7 +270,7 @@ int main(int argc, char ** argv) {
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
if (add_bos) {
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
} else {
|
||||
LOG_ERR("input is empty\n");
|
||||
@ -495,7 +496,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
|
||||
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
|
||||
decoder_start_token_id = llama_token_bos(model);
|
||||
decoder_start_token_id = llama_vocab_bos(vocab);
|
||||
}
|
||||
|
||||
embd_inp.clear();
|
||||
@ -742,7 +743,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// deal with end of generation tokens in interactive mode
|
||||
if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||
if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found an EOG token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@ -776,7 +777,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_DBG("adding input prefix BOS token\n");
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
@ -830,8 +831,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if user stop generation mid-way, we must add EOT to finish model's last response
|
||||
if (need_insert_eot && format_chat) {
|
||||
llama_token eot = llama_token_eot(model);
|
||||
embd_inp.push_back(eot == LLAMA_TOKEN_NULL ? llama_token_eos(model) : eot);
|
||||
llama_token eot = llama_vocab_eot(vocab);
|
||||
embd_inp.push_back(eot == LLAMA_TOKEN_NULL ? llama_vocab_eos(vocab) : eot);
|
||||
need_insert_eot = false;
|
||||
}
|
||||
|
||||
@ -866,7 +867,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
|
||||
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !(params.interactive)) {
|
||||
LOG(" [end of text]\n");
|
||||
break;
|
||||
}
|
||||
|
@ -135,6 +135,8 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
if (params.prompt.empty()) {
|
||||
LOG_INF("\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||
@ -358,7 +360,7 @@ int main(int argc, char ** argv) {
|
||||
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
|
||||
|
||||
if (client.n_decoded > 2 &&
|
||||
(llama_token_is_eog(model, id) ||
|
||||
(llama_vocab_is_eog(vocab, id) ||
|
||||
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
|
||||
client.response.find("User:") != std::string::npos ||
|
||||
client.response.find('\n') != std::string::npos)) {
|
||||
|
@ -70,15 +70,17 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = common_context_params_to_llama(params);
|
||||
|
||||
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
|
||||
ctx_params.n_ctx = llama_model_n_ctx_train(model)*n_grp + n_keep;
|
||||
|
||||
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
if (ctx == NULL) {
|
||||
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
@ -223,7 +225,7 @@ int main(int argc, char ** argv) {
|
||||
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
|
||||
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len) {
|
||||
LOG("\n");
|
||||
|
||||
break;
|
||||
|
@ -296,8 +296,11 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
@ -338,7 +341,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
@ -382,7 +385,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
tokens[batch_start] = llama_vocab_bos(vocab);
|
||||
}
|
||||
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
@ -444,8 +447,11 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
|
||||
std::ofstream logits_stream;
|
||||
if (!params.logits_file.empty()) {
|
||||
@ -485,7 +491,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
@ -557,7 +563,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
|
||||
tokens[seq_start] = llama_vocab_bos(vocab);
|
||||
}
|
||||
|
||||
for (int k = 0; k < batch_size; ++k) {
|
||||
@ -732,6 +738,9 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
|
||||
}
|
||||
|
||||
static void hellaswag_score(llama_context * ctx, const common_params & params) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// Calculates hellaswag score (acc_norm) from prompt
|
||||
//
|
||||
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
||||
@ -765,7 +774,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
|
||||
size_t hs_task_count = prompt_lines.size()/6;
|
||||
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||
|
||||
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool is_spm = llama_vocab_type(vocab) == LLAMA_VOCAB_TYPE_SPM;
|
||||
LOG_INF("================================= is_spm = %d\n", is_spm);
|
||||
|
||||
// The tasks should be randomized so the score stabilizes quickly.
|
||||
@ -848,7 +857,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
@ -1072,6 +1081,8 @@ static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string
|
||||
*
|
||||
*/
|
||||
static void winogrande_score(llama_context * ctx, const common_params & params) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
constexpr int k_min_trailing_ctx = 3;
|
||||
|
||||
@ -1130,7 +1141,7 @@ static void winogrande_score(llama_context * ctx, const common_params & params)
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
const int max_tasks_per_batch = 128;
|
||||
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
@ -1374,6 +1385,8 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choic
|
||||
// https://huggingface.co/datasets/truthful_qa
|
||||
//
|
||||
static void multiple_choice_score(llama_context * ctx, const common_params & params) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
std::istringstream strstream(params.prompt);
|
||||
uint32_t n_task;
|
||||
@ -1482,7 +1495,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
@ -1655,6 +1668,9 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
|
||||
}
|
||||
|
||||
static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (params.logits_file.empty()) {
|
||||
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
|
||||
return;
|
||||
@ -1688,8 +1704,8 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
|
||||
return;
|
||||
}
|
||||
if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
|
||||
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
|
||||
if (n_vocab != llama_vocab_n_tokens(vocab)) {
|
||||
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_vocab_n_tokens(vocab));
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk);
|
||||
@ -1701,8 +1717,8 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
const int n_batch = params.n_batch;
|
||||
const int num_batches = (n_ctx + n_batch - 1)/n_batch;
|
||||
const int nv = 2*((n_vocab + 1)/2) + 4;
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
|
||||
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
|
||||
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
||||
@ -1761,7 +1777,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
tokens[batch_start] = llama_vocab_bos(vocab);
|
||||
}
|
||||
|
||||
common_batch_clear(batch);
|
||||
@ -1995,7 +2011,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
|
||||
if (params.n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
|
||||
|
@ -319,7 +319,7 @@ int main(int argc, char ** argv) {
|
||||
auto cparams = llama_context_default_params();
|
||||
cparams.n_ctx = 256;
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
ctx = llama_init_from_model(model, cparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
|
@ -159,7 +159,9 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
@ -192,8 +194,8 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
// add eos if not present
|
||||
if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) {
|
||||
inp.push_back(llama_token_eos(model));
|
||||
if (llama_vocab_eos(vocab) >= 0 && (inp.empty() || inp.back() != llama_vocab_eos(vocab))) {
|
||||
inp.push_back(llama_vocab_eos(vocab));
|
||||
}
|
||||
chunk.tokens = inp;
|
||||
}
|
||||
@ -215,7 +217,7 @@ int main(int argc, char ** argv) {
|
||||
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
// allocate output
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const int n_embd = llama_model_n_embd(model);
|
||||
std::vector<float> embeddings(n_chunks * n_embd, 0);
|
||||
float * emb = embeddings.data();
|
||||
|
||||
|
@ -685,7 +685,7 @@ class LlamaData {
|
||||
|
||||
// Initializes the context with the specified parameters
|
||||
llama_context_ptr initialize_context(const llama_model_ptr & model, const Opt & opt) {
|
||||
llama_context_ptr context(llama_new_context_with_model(model.get(), opt.ctx_params));
|
||||
llama_context_ptr context(llama_init_from_model(model.get(), opt.ctx_params));
|
||||
if (!context) {
|
||||
printe("%s: error: failed to create the llama_context\n", __func__);
|
||||
}
|
||||
@ -713,11 +713,11 @@ static void add_message(const char * role, const std::string & text, LlamaData &
|
||||
// Function to apply the chat template and resize `formatted` if needed
|
||||
static int apply_chat_template(LlamaData & llama_data, const bool append) {
|
||||
int result = llama_chat_apply_template(
|
||||
llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append,
|
||||
llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(), llama_data.messages.size(), append,
|
||||
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
|
||||
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
|
||||
llama_data.fmtted.resize(result);
|
||||
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
|
||||
result = llama_chat_apply_template(llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(),
|
||||
llama_data.messages.size(), append, llama_data.fmtted.data(),
|
||||
llama_data.fmtted.size());
|
||||
}
|
||||
@ -726,11 +726,11 @@ static int apply_chat_template(LlamaData & llama_data, const bool append) {
|
||||
}
|
||||
|
||||
// Function to tokenize the prompt
|
||||
static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt,
|
||||
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
|
||||
std::vector<llama_token> & prompt_tokens) {
|
||||
const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
prompt_tokens.resize(n_prompt_tokens);
|
||||
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
|
||||
true) < 0) {
|
||||
printe("failed to tokenize the prompt\n");
|
||||
return -1;
|
||||
@ -753,9 +753,9 @@ static int check_context_size(const llama_context_ptr & ctx, const llama_batch &
|
||||
}
|
||||
|
||||
// convert the token to a string
|
||||
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
|
||||
static int convert_token_to_string(const llama_vocab * vocab, const llama_token token_id, std::string & piece) {
|
||||
char buf[256];
|
||||
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
|
||||
int n = llama_token_to_piece(vocab, token_id, buf, sizeof(buf), 0, true);
|
||||
if (n < 0) {
|
||||
printe("failed to convert token to piece\n");
|
||||
return 1;
|
||||
@ -773,8 +773,10 @@ static void print_word_and_concatenate_to_response(const std::string & piece, st
|
||||
|
||||
// helper function to evaluate a prompt and generate a response
|
||||
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(llama_data.model.get());
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
if (tokenize_prompt(llama_data.model, prompt, tokens) < 0) {
|
||||
if (tokenize_prompt(vocab, prompt, tokens) < 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -790,12 +792,12 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
|
||||
|
||||
// sample the next token, check is it an end of generation?
|
||||
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
|
||||
if (llama_token_is_eog(llama_data.model.get(), new_token_id)) {
|
||||
if (llama_vocab_is_eog(vocab, new_token_id)) {
|
||||
break;
|
||||
}
|
||||
|
||||
std::string piece;
|
||||
if (convert_token_to_string(llama_data.model, new_token_id, piece)) {
|
||||
if (convert_token_to_string(vocab, new_token_id, piece)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -97,7 +97,7 @@ int main(int argc, char ** argv) {
|
||||
printf("\n\n");
|
||||
|
||||
// make new context
|
||||
llama_context * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
llama_context * ctx2 = llama_init_from_model(model, common_context_params_to_llama(params));
|
||||
|
||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||
|
||||
@ -154,7 +154,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// make new context
|
||||
llama_context * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
llama_context * ctx3 = llama_init_from_model(model, common_context_params_to_llama(params));
|
||||
|
||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||
|
||||
|
@ -98,7 +98,7 @@ struct slot_params {
|
||||
int64_t t_max_prompt_ms = -1; // TODO: implement
|
||||
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
|
||||
|
||||
std::vector<common_lora_adapter_info> lora;
|
||||
std::vector<common_adapter_lora_info> lora;
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
std::vector<std::string> response_fields;
|
||||
@ -198,15 +198,17 @@ struct server_task {
|
||||
bool metrics_reset_bucket = false;
|
||||
|
||||
// used by SERVER_TASK_TYPE_SET_LORA
|
||||
std::vector<common_lora_adapter_info> set_lora;
|
||||
std::vector<common_adapter_lora_info> set_lora;
|
||||
|
||||
server_task(server_task_type type) : type(type) {}
|
||||
|
||||
static slot_params params_from_json_cmpl(
|
||||
const llama_model * model,
|
||||
const llama_context * ctx,
|
||||
const common_params & params_base,
|
||||
const json & data) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
slot_params params;
|
||||
|
||||
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
|
||||
@ -329,7 +331,7 @@ struct server_task {
|
||||
|
||||
const auto & logit_bias = data.find("logit_bias");
|
||||
if (logit_bias != data.end() && logit_bias->is_array()) {
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
for (const auto & el : *logit_bias) {
|
||||
// TODO: we may want to throw errors here, in case "el" is incorrect
|
||||
if (el.is_array() && el.size() == 2) {
|
||||
@ -348,7 +350,7 @@ struct server_task {
|
||||
params.sampling.logit_bias.push_back({tok, bias});
|
||||
}
|
||||
} else if (el[0].is_string()) {
|
||||
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
|
||||
auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
|
||||
for (auto tok : toks) {
|
||||
params.sampling.logit_bias.push_back({tok, bias});
|
||||
}
|
||||
@ -1131,7 +1133,7 @@ struct server_slot {
|
||||
|
||||
common_speculative * spec = nullptr;
|
||||
|
||||
std::vector<common_lora_adapter_info> lora;
|
||||
std::vector<common_adapter_lora_info> lora;
|
||||
|
||||
// the index relative to completion multi-task request
|
||||
size_t index = 0;
|
||||
@ -1633,6 +1635,8 @@ struct server_context {
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
|
||||
const llama_vocab * vocab = nullptr;
|
||||
|
||||
llama_model * model_dft = nullptr;
|
||||
|
||||
llama_context_params cparams_dft;
|
||||
@ -1690,10 +1694,12 @@ struct server_context {
|
||||
return false;
|
||||
}
|
||||
|
||||
vocab = llama_model_get_vocab(model);
|
||||
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
add_bos_token = llama_add_bos_token(model);
|
||||
has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
|
||||
add_bos_token = llama_vocab_get_add_bos(vocab);
|
||||
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!params_base.speculative.model.empty()) {
|
||||
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
|
||||
@ -1736,7 +1742,8 @@ struct server_context {
|
||||
|
||||
bool validate_builtin_chat_template() const {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
int32_t chat_res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
|
||||
const char * tmpl = llama_model_chat_template(model);
|
||||
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
|
||||
return chat_res > 0;
|
||||
}
|
||||
|
||||
@ -1756,7 +1763,7 @@ struct server_context {
|
||||
if (model_dft) {
|
||||
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
|
||||
|
||||
slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
|
||||
slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
|
||||
if (slot.ctx_dft == nullptr) {
|
||||
SRV_ERR("%s", "failed to create draft context\n");
|
||||
return;
|
||||
@ -1891,7 +1898,7 @@ struct server_context {
|
||||
}
|
||||
|
||||
if (slot.params.ignore_eos && has_eos_token) {
|
||||
slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
|
||||
slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
|
||||
}
|
||||
|
||||
{
|
||||
@ -2047,14 +2054,14 @@ struct server_context {
|
||||
slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
|
||||
}
|
||||
|
||||
if (llama_token_is_eog(model, result.tok)) {
|
||||
if (llama_vocab_is_eog(vocab, result.tok)) {
|
||||
slot.stop = STOP_TYPE_EOS;
|
||||
slot.has_next_token = false;
|
||||
|
||||
SLT_DBG(slot, "%s", "stopped by EOS\n");
|
||||
}
|
||||
|
||||
const auto n_ctx_train = llama_n_ctx_train(model);
|
||||
const auto n_ctx_train = llama_model_n_ctx_train(model);
|
||||
|
||||
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
|
||||
slot.truncated = true;
|
||||
@ -2074,7 +2081,7 @@ struct server_context {
|
||||
|
||||
void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
|
||||
size_t n_probs = slot.params.sampling.n_probs;
|
||||
size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
size_t n_vocab = llama_vocab_n_tokens(vocab);
|
||||
if (post_sampling) {
|
||||
const auto * cur_p = common_sampler_get_candidates(slot.smpl);
|
||||
const size_t max_probs = cur_p->size;
|
||||
@ -2225,7 +2232,7 @@ struct server_context {
|
||||
res->n_tokens = slot.n_prompt_tokens;
|
||||
res->oaicompat = slot.params.oaicompat;
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const int n_embd = llama_model_n_embd(model);
|
||||
|
||||
std::vector<float> embd_res(n_embd, 0.0f);
|
||||
|
||||
@ -2927,7 +2934,7 @@ struct server_context {
|
||||
// make sure we're in the right embedding mode
|
||||
llama_set_embeddings(ctx, slot_batched->is_non_causal());
|
||||
// apply lora, only need to do it once per batch
|
||||
common_lora_adapters_apply(ctx, slot_batched->lora);
|
||||
common_set_adapter_lora(ctx, slot_batched->lora);
|
||||
}
|
||||
|
||||
// process the created batch of tokens
|
||||
@ -3129,10 +3136,10 @@ struct server_context {
|
||||
|
||||
json model_meta() const {
|
||||
return json {
|
||||
{"vocab_type", llama_vocab_type (model)},
|
||||
{"n_vocab", llama_n_vocab (model)},
|
||||
{"n_ctx_train", llama_n_ctx_train (model)},
|
||||
{"n_embd", llama_n_embd (model)},
|
||||
{"vocab_type", llama_vocab_type (vocab)},
|
||||
{"n_vocab", llama_vocab_n_tokens (vocab)},
|
||||
{"n_ctx_train", llama_model_n_ctx_train(model)},
|
||||
{"n_embd", llama_model_n_embd (model)},
|
||||
{"n_params", llama_model_n_params (model)},
|
||||
{"size", llama_model_size (model)},
|
||||
};
|
||||
@ -3639,7 +3646,7 @@ int main(int argc, char ** argv) {
|
||||
std::vector<server_task> tasks;
|
||||
|
||||
try {
|
||||
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
|
||||
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, data.at("prompt"), true, true);
|
||||
tasks.reserve(tokenized_prompts.size());
|
||||
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
|
||||
server_task task = server_task(type);
|
||||
@ -3649,7 +3656,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
task.prompt_tokens = std::move(tokenized_prompts[i]);
|
||||
task.params = server_task::params_from_json_cmpl(
|
||||
ctx_server.model,
|
||||
ctx_server.ctx,
|
||||
ctx_server.params_base,
|
||||
data);
|
||||
@ -3745,13 +3751,13 @@ int main(int argc, char ** argv) {
|
||||
const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
|
||||
// check model compatibility
|
||||
std::string err;
|
||||
if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
|
||||
if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
|
||||
err += "prefix token is missing. ";
|
||||
}
|
||||
if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
|
||||
if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
|
||||
err += "suffix token is missing. ";
|
||||
}
|
||||
if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
|
||||
if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
|
||||
err += "middle token is missing. ";
|
||||
}
|
||||
if (!err.empty()) {
|
||||
@ -3797,10 +3803,10 @@ int main(int argc, char ** argv) {
|
||||
data["input_extra"] = input_extra; // default to empty array if it's not exist
|
||||
|
||||
std::string prompt = json_value(data, "prompt", std::string());
|
||||
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, false, true);
|
||||
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
|
||||
SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
|
||||
data["prompt"] = format_infill(
|
||||
ctx_server.ctx,
|
||||
ctx_server.vocab,
|
||||
data.at("input_prefix"),
|
||||
data.at("input_suffix"),
|
||||
data.at("input_extra"),
|
||||
@ -3857,7 +3863,7 @@ int main(int argc, char ** argv) {
|
||||
const bool add_special = json_value(body, "add_special", false);
|
||||
const bool with_pieces = json_value(body, "with_pieces", false);
|
||||
|
||||
llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
|
||||
llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
|
||||
|
||||
if (with_pieces) {
|
||||
for (const auto& token : tokens) {
|
||||
@ -3933,7 +3939,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
|
||||
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
|
||||
for (const auto & tokens : tokenized_prompts) {
|
||||
// this check is necessary for models that do not add BOS token to the input
|
||||
if (tokens.empty()) {
|
||||
@ -4033,20 +4039,20 @@ int main(int argc, char ** argv) {
|
||||
return;
|
||||
}
|
||||
|
||||
llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
|
||||
llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
|
||||
|
||||
// create and queue the task
|
||||
json responses = json::array();
|
||||
bool error = false;
|
||||
{
|
||||
std::vector<server_task> tasks;
|
||||
std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
|
||||
std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
|
||||
tasks.reserve(tokenized_docs.size());
|
||||
for (size_t i = 0; i < tokenized_docs.size(); i++) {
|
||||
server_task task = server_task(SERVER_TASK_TYPE_RERANK);
|
||||
task.id = ctx_server.queue_tasks.get_new_id();
|
||||
task.index = i;
|
||||
task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
|
||||
task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
|
||||
tasks.push_back(task);
|
||||
}
|
||||
|
||||
|
@ -118,7 +118,7 @@ static json json_get_nested_values(const std::vector<std::string> & paths, const
|
||||
* - only string, example: "string"
|
||||
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
|
||||
*/
|
||||
static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
|
||||
static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
|
||||
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
||||
// or the first element of the json_prompt array is a string.
|
||||
llama_tokens prompt_tokens;
|
||||
@ -131,10 +131,10 @@ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_
|
||||
|
||||
llama_tokens p;
|
||||
if (first) {
|
||||
p = common_tokenize(ctx, s, add_special, parse_special);
|
||||
p = common_tokenize(vocab, s, add_special, parse_special);
|
||||
first = false;
|
||||
} else {
|
||||
p = common_tokenize(ctx, s, false, parse_special);
|
||||
p = common_tokenize(vocab, s, false, parse_special);
|
||||
}
|
||||
|
||||
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
||||
@ -148,7 +148,7 @@ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_
|
||||
}
|
||||
} else {
|
||||
auto s = json_prompt.template get<std::string>();
|
||||
prompt_tokens = common_tokenize(ctx, s, add_special, parse_special);
|
||||
prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
|
||||
}
|
||||
|
||||
return prompt_tokens;
|
||||
@ -166,11 +166,11 @@ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_
|
||||
* - "prompt": [[12, 34, 56], [78, 90, 12]]
|
||||
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
|
||||
*/
|
||||
static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
|
||||
static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
|
||||
std::vector<llama_tokens> result;
|
||||
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
|
||||
// string or mixed
|
||||
result.push_back(tokenize_mixed(ctx, json_prompt, add_special, parse_special));
|
||||
result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
|
||||
} else if (json_is_array_of_numbers(json_prompt)) {
|
||||
// array of tokens
|
||||
result.push_back(json_prompt.get<llama_tokens>());
|
||||
@ -179,7 +179,7 @@ static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, con
|
||||
result.reserve(json_prompt.size());
|
||||
for (const auto & p : json_prompt) {
|
||||
if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
|
||||
result.push_back(tokenize_mixed(ctx, p, add_special, parse_special));
|
||||
result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
|
||||
} else if (json_is_array_of_numbers(p)) {
|
||||
// array of tokens
|
||||
result.push_back(p.get<llama_tokens>());
|
||||
@ -231,21 +231,23 @@ static size_t validate_utf8(const std::string& text) {
|
||||
//
|
||||
|
||||
// format rerank task: [BOS]query[EOS][SEP]doc[EOS]
|
||||
static llama_tokens format_rerank(const struct llama_model * model, const llama_tokens & query, const llama_tokens & doc) {
|
||||
static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) {
|
||||
llama_tokens result;
|
||||
|
||||
result.reserve(doc.size() + query.size() + 4);
|
||||
result.push_back(llama_token_bos(model));
|
||||
result.push_back(llama_vocab_bos(vocab));
|
||||
result.insert(result.end(), query.begin(), query.end());
|
||||
result.push_back(llama_token_eos(model));
|
||||
result.push_back(llama_token_sep(model));
|
||||
result.push_back(llama_vocab_eos(vocab));
|
||||
result.push_back(llama_vocab_sep(vocab));
|
||||
result.insert(result.end(), doc.begin(), doc.end());
|
||||
result.push_back(llama_token_eos(model));
|
||||
result.push_back(llama_vocab_eos(vocab));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// format infill task
|
||||
static llama_tokens format_infill(
|
||||
const llama_context * ctx,
|
||||
const llama_vocab * vocab,
|
||||
const json & input_prefix,
|
||||
const json & input_suffix,
|
||||
const json & input_extra,
|
||||
@ -272,15 +274,14 @@ static llama_tokens format_infill(
|
||||
llama_tokens extra_tokens;
|
||||
extra_tokens.reserve(n_ctx);
|
||||
|
||||
auto model = llama_get_model(ctx);
|
||||
auto tokens_prefix = tokenize_mixed(ctx, input_prefix, false, false);
|
||||
auto tokens_suffix = tokenize_mixed(ctx, input_suffix, false, false);
|
||||
auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
|
||||
auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);
|
||||
|
||||
if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
|
||||
if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
|
||||
// TODO: make project name an input
|
||||
static const auto k_fim_repo = common_tokenize(ctx, "myproject\n", false, false);
|
||||
static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);
|
||||
|
||||
extra_tokens.push_back(llama_token_fim_rep(model));
|
||||
extra_tokens.push_back(llama_vocab_fim_rep(vocab));
|
||||
extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
|
||||
}
|
||||
for (const auto & chunk : input_extra) {
|
||||
@ -288,28 +289,28 @@ static llama_tokens format_infill(
|
||||
const std::string text = json_value(chunk, "text", std::string());
|
||||
const std::string filename = json_value(chunk, "filename", std::string("tmp"));
|
||||
|
||||
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
|
||||
const auto k_fim_file = common_tokenize(ctx, filename + "\n", false, false);
|
||||
if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
|
||||
const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);
|
||||
|
||||
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
|
||||
extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
|
||||
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
|
||||
} else {
|
||||
// chunk separator in binary form to avoid confusing the AI
|
||||
static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
|
||||
static const auto k_chunk_prefix_tokens = common_tokenize(ctx, k_chunk_prefix_str, false, false);
|
||||
static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);
|
||||
|
||||
extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
|
||||
}
|
||||
|
||||
const auto chunk_tokens = common_tokenize(ctx, text, false, false);
|
||||
const auto chunk_tokens = common_tokenize(vocab, text, false, false);
|
||||
extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
|
||||
}
|
||||
|
||||
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
|
||||
if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
|
||||
// TODO: current filename
|
||||
static const auto k_fim_file = common_tokenize(ctx, "filename\n", false, false);
|
||||
static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);
|
||||
|
||||
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
|
||||
extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
|
||||
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
|
||||
}
|
||||
|
||||
@ -325,15 +326,15 @@ static llama_tokens format_infill(
|
||||
tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
|
||||
tokens_suffix.resize(n_suffix_take);
|
||||
|
||||
tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
|
||||
tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
|
||||
tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
|
||||
tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
|
||||
tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
|
||||
auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
|
||||
|
||||
if (llama_add_bos_token(model)) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
|
||||
if (llama_vocab_get_add_bos(vocab)) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
|
||||
SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
|
||||
@ -342,7 +343,7 @@ static llama_tokens format_infill(
|
||||
embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
embd_inp.push_back(llama_token_fim_mid(model));
|
||||
embd_inp.push_back(llama_vocab_fim_mid(vocab));
|
||||
|
||||
return embd_inp;
|
||||
}
|
||||
@ -764,14 +765,18 @@ static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias)
|
||||
return data;
|
||||
}
|
||||
|
||||
static std::string safe_json_to_str(json data) {
|
||||
static std::string safe_json_to_str(const json & data) {
|
||||
return data.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
}
|
||||
|
||||
static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
|
||||
std::vector<llama_token_data> cur;
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
cur.resize(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
@ -799,8 +804,8 @@ static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx
|
||||
}
|
||||
|
||||
static bool are_lora_equal(
|
||||
const std::vector<common_lora_adapter_info> & l1,
|
||||
const std::vector<common_lora_adapter_info> & l2) {
|
||||
const std::vector<common_adapter_lora_info> & l1,
|
||||
const std::vector<common_adapter_lora_info> & l2) {
|
||||
if (l1.size() != l2.size()) {
|
||||
return false;
|
||||
}
|
||||
@ -814,10 +819,10 @@ static bool are_lora_equal(
|
||||
}
|
||||
|
||||
// parse lora config from JSON request, returned a copy of lora_base with updated scale
|
||||
static std::vector<common_lora_adapter_info> parse_lora_request(
|
||||
const std::vector<common_lora_adapter_info> & lora_base,
|
||||
static std::vector<common_adapter_lora_info> parse_lora_request(
|
||||
const std::vector<common_adapter_lora_info> & lora_base,
|
||||
const json & data) {
|
||||
std::vector<common_lora_adapter_info> lora(lora_base);
|
||||
std::vector<common_adapter_lora_info> lora(lora_base);
|
||||
int max_idx = lora.size();
|
||||
|
||||
// clear existing value
|
||||
|
@ -75,12 +75,14 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// initialize the context
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.n_ctx = n_ctx;
|
||||
ctx_params.n_batch = n_ctx;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
if (!ctx) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
@ -97,9 +99,9 @@ int main(int argc, char ** argv) {
|
||||
std::string response;
|
||||
|
||||
// tokenize the prompt
|
||||
const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
std::vector<llama_token> prompt_tokens(n_prompt_tokens);
|
||||
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
|
||||
GGML_ABORT("failed to tokenize the prompt\n");
|
||||
}
|
||||
|
||||
@ -124,13 +126,13 @@ int main(int argc, char ** argv) {
|
||||
new_token_id = llama_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id)) {
|
||||
if (llama_vocab_is_eog(vocab, new_token_id)) {
|
||||
break;
|
||||
}
|
||||
|
||||
// convert the token to a string, print it and add it to the response
|
||||
char buf[256];
|
||||
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
|
||||
int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
|
||||
if (n < 0) {
|
||||
GGML_ABORT("failed to convert token to piece\n");
|
||||
}
|
||||
@ -159,12 +161,14 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
|
||||
const char * tmpl = llama_model_chat_template(model);
|
||||
|
||||
// add the user input to the message list and format it
|
||||
messages.push_back({"user", strdup(user.c_str())});
|
||||
int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
|
||||
int new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
|
||||
if (new_len > (int)formatted.size()) {
|
||||
formatted.resize(new_len);
|
||||
new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
|
||||
new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
|
||||
}
|
||||
if (new_len < 0) {
|
||||
fprintf(stderr, "failed to apply the chat template\n");
|
||||
@ -181,7 +185,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// add the response to the messages
|
||||
messages.push_back({"assistant", strdup(response.c_str())});
|
||||
prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0);
|
||||
prev_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), false, nullptr, 0);
|
||||
if (prev_len < 0) {
|
||||
fprintf(stderr, "failed to apply the chat template\n");
|
||||
return 1;
|
||||
|
@ -84,6 +84,7 @@ int main(int argc, char ** argv) {
|
||||
model_params.n_gpu_layers = ngl;
|
||||
|
||||
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
@ -93,11 +94,11 @@ int main(int argc, char ** argv) {
|
||||
// tokenize the prompt
|
||||
|
||||
// find the number of tokens in the prompt
|
||||
const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
|
||||
// allocate space for the tokens and tokenize the prompt
|
||||
std::vector<llama_token> prompt_tokens(n_prompt);
|
||||
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
|
||||
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@ -112,7 +113,7 @@ int main(int argc, char ** argv) {
|
||||
// enable performance counters
|
||||
ctx_params.no_perf = false;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
@ -131,7 +132,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
for (auto id : prompt_tokens) {
|
||||
char buf[128];
|
||||
int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true);
|
||||
int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
|
||||
return 1;
|
||||
@ -164,12 +165,12 @@ int main(int argc, char ** argv) {
|
||||
new_token_id = llama_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id)) {
|
||||
if (llama_vocab_is_eog(vocab, new_token_id)) {
|
||||
break;
|
||||
}
|
||||
|
||||
char buf[128];
|
||||
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
|
||||
int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
|
||||
return 1;
|
||||
|
@ -45,6 +45,8 @@ int main(int argc, char ** argv) {
|
||||
model_tgt = llama_init_tgt.model.get();
|
||||
ctx_tgt = llama_init_tgt.context.get();
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model_tgt);
|
||||
|
||||
// load the draft model
|
||||
params.devices = params.speculative.devices;
|
||||
params.model = params.speculative.model;
|
||||
@ -196,7 +198,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
id_last = ids[i];
|
||||
|
||||
if (llama_token_is_eog(model_tgt, id_last)) {
|
||||
if (llama_vocab_is_eog(vocab, id_last)) {
|
||||
has_eos = true;
|
||||
break;
|
||||
}
|
||||
|
@ -90,10 +90,13 @@ int main(int argc, char ** argv) {
|
||||
model_dft = llama_init_dft.model.get();
|
||||
ctx_dft = llama_init_dft.context.get();
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
const llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
|
||||
const llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
|
||||
LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
const bool vocab_type_dft = llama_vocab_type(vocab_dft);
|
||||
LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
@ -103,18 +106,18 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (
|
||||
llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
|
||||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)
|
||||
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
|
||||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
|
||||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
|
||||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
|
||||
) {
|
||||
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_n_vocab(model_tgt);
|
||||
const int n_vocab_dft = llama_n_vocab(model_dft);
|
||||
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
|
||||
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
|
||||
const int vocab_diff = n_vocab_tgt > n_vocab_dft
|
||||
? n_vocab_tgt - n_vocab_dft
|
||||
: n_vocab_dft - n_vocab_tgt;
|
||||
@ -122,13 +125,13 @@ int main(int argc, char ** argv) {
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
|
||||
LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
|
||||
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
||||
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
||||
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
|
||||
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
|
||||
LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
|
||||
@ -170,7 +173,7 @@ int main(int argc, char ** argv) {
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
|
||||
// the 2 models should have the same vocab
|
||||
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
||||
//GGML_ASSERT(n_vocab == llama_vocab_n_tokens(model_dft));
|
||||
|
||||
// how many tokens to draft each time
|
||||
int n_draft = params.speculative.n_max;
|
||||
@ -386,7 +389,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if (llama_token_is_eog(model_tgt, token_id)) {
|
||||
if (llama_vocab_is_eog(vocab_tgt, token_id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
++n_predict;
|
||||
|
@ -344,8 +344,10 @@ int main(int raw_argc, char ** raw_argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
if (!ctx) {
|
||||
fprintf(stderr, "Error: could not create context.\n");
|
||||
return 1;
|
||||
@ -365,7 +367,7 @@ int main(int raw_argc, char ** raw_argv) {
|
||||
prompt = stdin_buffer.str();
|
||||
}
|
||||
|
||||
const bool model_wants_add_bos = llama_add_bos_token(model);
|
||||
const bool model_wants_add_bos = llama_vocab_get_add_bos(vocab);
|
||||
const bool add_bos = model_wants_add_bos && !no_bos;
|
||||
const bool parse_special = !no_parse_special;
|
||||
const bool escape = !no_escape;
|
||||
@ -375,7 +377,7 @@ int main(int raw_argc, char ** raw_argv) {
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
tokens = common_tokenize(model, prompt, add_bos, parse_special);
|
||||
tokens = common_tokenize(vocab, prompt, add_bos, parse_special);
|
||||
|
||||
if (printing_ids) {
|
||||
printf("[");
|
||||
|
@ -414,15 +414,15 @@ static void prompt_add(llama_tokens & prompt, const llama_tokens & tokens) {
|
||||
prompt.insert(prompt.end(), tokens.begin(), tokens.end());
|
||||
}
|
||||
|
||||
static void prompt_add(llama_tokens & prompt, const llama_model * model, const std::string & txt, bool add_special, bool parse_special) {
|
||||
auto tmp = common_tokenize(model, txt, add_special, parse_special);
|
||||
static void prompt_add(llama_tokens & prompt, const llama_vocab * vocab, const std::string & txt, bool add_special, bool parse_special) {
|
||||
auto tmp = common_tokenize(vocab, txt, add_special, parse_special);
|
||||
prompt_add(prompt, tmp);
|
||||
}
|
||||
|
||||
static void prompt_init(llama_tokens & prompt, const llama_model * model) {
|
||||
static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
|
||||
prompt.clear();
|
||||
|
||||
prompt_add(prompt, model, "<|im_start|>\n", true, true);
|
||||
prompt_add(prompt, vocab, "<|im_start|>\n", true, true);
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
@ -462,6 +462,8 @@ int main(int argc, char ** argv) {
|
||||
model_ttc = llama_init_ttc.model.get();
|
||||
ctx_ttc = llama_init_ttc.context.get();
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model_ttc);
|
||||
|
||||
// TODO: refactor in a common struct
|
||||
params.model = params.vocoder.model;
|
||||
params.model_url = params.vocoder.model_url;
|
||||
@ -499,9 +501,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::vector<llama_token> prompt_inp;
|
||||
|
||||
prompt_init(prompt_inp, model_ttc);
|
||||
prompt_init(prompt_inp, vocab);
|
||||
|
||||
prompt_add(prompt_inp, model_ttc, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true);
|
||||
prompt_add(prompt_inp, vocab, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true);
|
||||
|
||||
// convert the input text into the necessary format expected by OuteTTS
|
||||
{
|
||||
@ -509,10 +511,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
|
||||
|
||||
prompt_add(prompt_inp, model_ttc, prompt_clean, false, true);
|
||||
prompt_add(prompt_inp, vocab, prompt_clean, false, true);
|
||||
}
|
||||
|
||||
prompt_add(prompt_inp, model_ttc, "<|text_end|>\n", false, true);
|
||||
prompt_add(prompt_inp, vocab, "<|text_end|>\n", false, true);
|
||||
|
||||
// disabled to save time on tokenizing each time
|
||||
// TODO: load voices from the json files
|
||||
@ -549,7 +551,7 @@ it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><
|
||||
looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|>
|
||||
lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)";
|
||||
|
||||
auto tmp = common_tokenize(model_ttc, voice_data, false, true);
|
||||
auto tmp = common_tokenize(vocab, voice_data, false, true);
|
||||
printf("\n\n");
|
||||
for (int i = 0; i < tmp.size(); ++i) {
|
||||
printf("%d, ", tmp[i]);
|
||||
@ -735,9 +737,9 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
||||
const auto * cands = common_sampler_get_candidates(smpl[i]);
|
||||
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model_ttc, new_token_id) || n_decode == n_predict) {
|
||||
if (llama_vocab_is_eog(vocab, new_token_id) || n_decode == n_predict) {
|
||||
std::string reason;
|
||||
if (llama_token_is_eog(model_ttc, new_token_id)) {
|
||||
if (llama_vocab_is_eog(vocab, new_token_id)) {
|
||||
reason = "eos";
|
||||
} else {
|
||||
reason = "n_predict";
|
||||
@ -873,7 +875,7 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
||||
|
||||
#if 1
|
||||
// spectral operations
|
||||
const int n_embd = llama_n_embd(model_cts);
|
||||
const int n_embd = llama_model_n_embd(model_cts);
|
||||
const float * embd = llama_get_embeddings(ctx_cts);
|
||||
|
||||
auto audio = embd_to_audio(embd, n_codes, n_embd, params.cpuparams.n_threads);
|
||||
|
@ -20,11 +20,11 @@ struct llama_sampler_deleter {
|
||||
void operator()(llama_sampler * sampler) { llama_sampler_free(sampler); }
|
||||
};
|
||||
|
||||
struct llama_lora_adapter_deleter {
|
||||
void operator()(llama_lora_adapter * lora_adapter) { llama_lora_adapter_free(lora_adapter); }
|
||||
struct llama_adapter_lora_deleter {
|
||||
void operator()(llama_adapter_lora * adapter) { llama_adapter_lora_free(adapter); }
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<llama_model, llama_model_deleter> llama_model_ptr;
|
||||
typedef std::unique_ptr<llama_context, llama_context_deleter> llama_context_ptr;
|
||||
typedef std::unique_ptr<llama_sampler, llama_sampler_deleter> llama_sampler_ptr;
|
||||
typedef std::unique_ptr<llama_lora_adapter, llama_lora_adapter_deleter> llama_lora_adapter_ptr;
|
||||
typedef std::unique_ptr<llama_adapter_lora, llama_adapter_lora_deleter> llama_adapter_lora_ptr;
|
||||
|
162
include/llama.h
162
include/llama.h
@ -56,7 +56,7 @@ extern "C" {
|
||||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
// struct llama_vocab; // TODO: add in the future
|
||||
struct llama_vocab;
|
||||
struct llama_model;
|
||||
struct llama_context;
|
||||
struct llama_sampler;
|
||||
@ -385,8 +385,7 @@ extern "C" {
|
||||
} llama_chat_message;
|
||||
|
||||
// lora adapter
|
||||
// TODO: rename to llama_adapter_lora
|
||||
struct llama_lora_adapter;
|
||||
struct llama_adapter_lora;
|
||||
|
||||
// Helpers for getting default parameters
|
||||
// TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
|
||||
@ -400,6 +399,9 @@ extern "C" {
|
||||
// Call once at the start of the program
|
||||
LLAMA_API void llama_backend_init(void);
|
||||
|
||||
// Call once at the end of the program - currently only used for MPI
|
||||
LLAMA_API void llama_backend_free(void);
|
||||
|
||||
//optional:
|
||||
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
|
||||
|
||||
@ -408,10 +410,8 @@ extern "C" {
|
||||
struct llama_context * ctx,
|
||||
ggml_threadpool_t threadpool,
|
||||
ggml_threadpool_t threadpool_batch);
|
||||
LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
|
||||
|
||||
// Call once at the end of the program - currently only used for MPI
|
||||
LLAMA_API void llama_backend_free(void);
|
||||
LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
|
||||
|
||||
DEPRECATED(LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
@ -427,11 +427,15 @@ extern "C" {
|
||||
|
||||
LLAMA_API void llama_model_free(struct llama_model * model);
|
||||
|
||||
// TODO: rename to llama_init_from_model
|
||||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
LLAMA_API struct llama_context * llama_init_from_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
DEPRECATED(LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params),
|
||||
"use llama_init_from_model instead");
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
@ -449,20 +453,30 @@ extern "C" {
|
||||
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_head (const struct llama_model * model);
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model), "use llama_model_n_ctx_train instead");
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_embd (const struct llama_model * model), "use llama_model_n_embd instead");
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_layer (const struct llama_model * model), "use llama_model_n_layer instead");
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_head (const struct llama_model * model), "use llama_model_n_head instead");
|
||||
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_vocab (const struct llama_vocab * vocab), "use llama_vocab_n_tokens instead");
|
||||
|
||||
LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||||
|
||||
LLAMA_API const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_model_rope_type(const struct llama_model * model);
|
||||
|
||||
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
|
||||
|
||||
// Get the model's RoPE frequency scaling factor
|
||||
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||||
LLAMA_API float llama_model_rope_freq_scale_train(const struct llama_model * model);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab);
|
||||
|
||||
LLAMA_API int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab);
|
||||
|
||||
// Functions to access the model's GGUF metadata scalar values
|
||||
// - The functions return the length of the string on success, or -1 on failure
|
||||
@ -488,6 +502,9 @@ extern "C" {
|
||||
// Returns the total size of all the tensors in the model in bytes
|
||||
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
||||
|
||||
// Get the default chat template. Returns nullptr if not available
|
||||
LLAMA_API const char * llama_model_chat_template(const struct llama_model * model);
|
||||
|
||||
// Returns the total number of parameters in the model
|
||||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||||
|
||||
@ -515,34 +532,31 @@ extern "C" {
|
||||
//
|
||||
|
||||
// Load a LoRA adapter from file
|
||||
// TODO: rename to llama_adapter_lora_init
|
||||
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
|
||||
LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init(
|
||||
struct llama_model * model,
|
||||
const char * path_lora);
|
||||
|
||||
// Manually free a LoRA adapter
|
||||
// Note: loaded adapters will be free when the associated model is deleted
|
||||
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
|
||||
|
||||
// The following functions operate on a llama_context, hence the naming: llama_verb_...
|
||||
|
||||
// Add a loaded LoRA adapter to given context
|
||||
// This will not modify model's weight
|
||||
// TODO: rename to llama_set_adapter_lora
|
||||
LLAMA_API int32_t llama_lora_adapter_set(
|
||||
LLAMA_API int32_t llama_set_adapter_lora(
|
||||
struct llama_context * ctx,
|
||||
struct llama_lora_adapter * adapter,
|
||||
struct llama_adapter_lora * adapter,
|
||||
float scale);
|
||||
|
||||
// Remove a specific LoRA adapter from given context
|
||||
// Return -1 if the adapter is not present in the context
|
||||
// TODO: rename to llama_rm_adapter_lora
|
||||
LLAMA_API int32_t llama_lora_adapter_remove(
|
||||
LLAMA_API int32_t llama_rm_adapter_lora(
|
||||
struct llama_context * ctx,
|
||||
struct llama_lora_adapter * adapter);
|
||||
struct llama_adapter_lora * adapter);
|
||||
|
||||
// Remove all LoRA adapters from given context
|
||||
// TODO: rename to llama_clear_adapter_lora
|
||||
LLAMA_API void llama_lora_adapter_clear(struct llama_context * ctx);
|
||||
|
||||
// Manually free a LoRA adapter
|
||||
// Note: loaded adapters will be free when the associated model is deleted
|
||||
// TODO: rename to llama_adapter_lora_free
|
||||
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
|
||||
LLAMA_API void llama_clear_adapter_lora(struct llama_context * ctx);
|
||||
|
||||
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
|
||||
// the currently loaded vector.
|
||||
@ -550,9 +564,8 @@ extern "C" {
|
||||
// to an n_embd x n_layers buffer starting from layer 1.
|
||||
// il_start and il_end are the layer range the vector should apply to (both inclusive)
|
||||
// See llama_control_vector_load in common to load a control vector.
|
||||
// TODO: rename to llama_adapter_cvec_apply
|
||||
LLAMA_API int32_t llama_control_vector_apply(
|
||||
struct llama_context * lctx,
|
||||
LLAMA_API int32_t llama_apply_adapter_cvec(
|
||||
struct llama_context * ctx,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
@ -908,41 +921,57 @@ extern "C" {
|
||||
// Vocab
|
||||
//
|
||||
|
||||
LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
|
||||
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
// Identify if Token Id is a control token or a render-able token
|
||||
LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||||
LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
|
||||
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
|
||||
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
|
||||
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||||
LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
|
||||
LLAMA_API llama_token llama_vocab_bos(const struct llama_vocab * vocab); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_vocab_eos(const struct llama_vocab * vocab); // end-of-sentence
|
||||
LLAMA_API llama_token llama_vocab_eot(const struct llama_vocab * vocab); // end-of-turn
|
||||
LLAMA_API llama_token llama_vocab_cls(const struct llama_vocab * vocab); // classification
|
||||
LLAMA_API llama_token llama_vocab_sep(const struct llama_vocab * vocab); // sentence separator
|
||||
LLAMA_API llama_token llama_vocab_nl (const struct llama_vocab * vocab); // next-line
|
||||
LLAMA_API llama_token llama_vocab_pad(const struct llama_vocab * vocab); // padding
|
||||
|
||||
LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
|
||||
LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
|
||||
LLAMA_API bool llama_vocab_get_add_bos(const struct llama_vocab * vocab);
|
||||
LLAMA_API bool llama_vocab_get_add_eos(const struct llama_vocab * vocab);
|
||||
|
||||
// infill tokens
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
|
||||
LLAMA_API llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab);
|
||||
|
||||
LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
|
||||
DEPRECATED(LLAMA_API const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token), "use llama_vocabable_get_text instead");
|
||||
DEPRECATED(LLAMA_API float llama_token_get_score(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_score instead");
|
||||
DEPRECATED(LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_attr instead");
|
||||
DEPRECATED(LLAMA_API bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_eog instead");
|
||||
DEPRECATED(LLAMA_API bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_control instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_bos(const struct llama_vocab * vocab), "use llama_vocab_bos instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_eos(const struct llama_vocab * vocab), "use llama_vocab_eos instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_eot(const struct llama_vocab * vocab), "use llama_vocab_eot instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_cls(const struct llama_vocab * vocab), "use llama_vocab_cls instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_sep(const struct llama_vocab * vocab), "use llama_vocab_sep instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_nl (const struct llama_vocab * vocab), "use llama_vocab_nl instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_pad(const struct llama_vocab * vocab), "use llama_vocab_pad instead");
|
||||
DEPRECATED(LLAMA_API bool llama_add_bos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_bos instead");
|
||||
DEPRECATED(LLAMA_API bool llama_add_eos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_eos instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_pre(const struct llama_vocab * vocab), "use llama_vocab_fim_pre instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_suf(const struct llama_vocab * vocab), "use llama_vocab_fim_suf instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_mid(const struct llama_vocab * vocab), "use llama_vocab_fim_mid instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_pad(const struct llama_vocab * vocab), "use llama_vocab_fim_pad instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_rep(const struct llama_vocab * vocab), "use llama_vocab_fim_rep instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_sep(const struct llama_vocab * vocab), "use llama_vocab_fim_sep instead");
|
||||
|
||||
//
|
||||
// Tokenization
|
||||
@ -958,7 +987,7 @@ extern "C" {
|
||||
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
|
||||
/// as plaintext. Does not insert a leading space.
|
||||
LLAMA_API int32_t llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const char * text,
|
||||
int32_t text_len,
|
||||
llama_token * tokens,
|
||||
@ -972,7 +1001,7 @@ extern "C" {
|
||||
// User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
|
||||
// @param special If true, special tokens are rendered in the output.
|
||||
LLAMA_API int32_t llama_token_to_piece(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length,
|
||||
@ -986,7 +1015,7 @@ extern "C" {
|
||||
/// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
|
||||
/// @param unparse_special If true, special tokens are rendered in the output.
|
||||
LLAMA_API int32_t llama_detokenize(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
char * text,
|
||||
@ -1009,7 +1038,6 @@ extern "C" {
|
||||
/// @param length The size of the allocated buffer
|
||||
/// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
|
||||
LLAMA_API int32_t llama_chat_apply_template(
|
||||
const struct llama_model * model,
|
||||
const char * tmpl,
|
||||
const struct llama_chat_message * chat,
|
||||
size_t n_msg,
|
||||
@ -1057,7 +1085,6 @@ extern "C" {
|
||||
// llama_sampler_free(smpl);
|
||||
//
|
||||
// TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
|
||||
// TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
|
||||
//
|
||||
|
||||
typedef void * llama_sampler_context_t;
|
||||
@ -1157,7 +1184,7 @@ extern "C" {
|
||||
float eta);
|
||||
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root);
|
||||
|
||||
@ -1170,7 +1197,8 @@ extern "C" {
|
||||
|
||||
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_dry(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
int32_t n_ctx_train,
|
||||
float dry_multiplier,
|
||||
float dry_base,
|
||||
int32_t dry_allowed_length,
|
||||
@ -1204,7 +1232,7 @@ extern "C" {
|
||||
// 3. discard non-EOG tokens with low prob
|
||||
// 4. if no tokens are left -> pick EOT
|
||||
//
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab);
|
||||
|
||||
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
|
||||
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
|
||||
|
@ -1,5 +1,7 @@
|
||||
#include "llama-adapter.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-mmap.h"
|
||||
#include "llama-model.h"
|
||||
|
||||
#include <algorithm>
|
||||
@ -9,7 +11,7 @@
|
||||
|
||||
// vec
|
||||
|
||||
struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
|
||||
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
|
||||
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
||||
return nullptr;
|
||||
}
|
||||
@ -17,7 +19,7 @@ struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
|
||||
return tensors[il];
|
||||
}
|
||||
|
||||
struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
ggml_tensor * layer_dir = tensor_for(il);
|
||||
if (layer_dir != nullptr) {
|
||||
cur = ggml_add(ctx, cur, layer_dir);
|
||||
@ -26,12 +28,12 @@ struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, s
|
||||
return cur;
|
||||
}
|
||||
|
||||
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
|
||||
bool llama_adapter_cvec::init(const llama_model & model) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
GGML_ASSERT(cvec.tensors.empty());
|
||||
GGML_ASSERT(cvec.ctxs.empty());
|
||||
GGML_ASSERT(cvec.bufs.empty());
|
||||
GGML_ASSERT(tensors.empty());
|
||||
GGML_ASSERT(ctxs.empty());
|
||||
GGML_ASSERT(bufs.empty());
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
@ -50,7 +52,7 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
|
||||
}
|
||||
|
||||
ctx_map[buft] = ctx;
|
||||
cvec.ctxs.emplace_back(ctx);
|
||||
ctxs.emplace_back(ctx);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
@ -59,21 +61,21 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
|
||||
};
|
||||
|
||||
// make tensors
|
||||
cvec.tensors.reserve(hparams.n_layer);
|
||||
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||||
tensors.reserve(hparams.n_layer);
|
||||
tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
|
||||
ggml_backend_buffer_type_t buft = model.select_buft(il);
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
if (!ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
|
||||
cvec.tensors.push_back(tensor);
|
||||
tensors.push_back(tensor);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
cvec.bufs.reserve(ctx_map.size());
|
||||
bufs.reserve(ctx_map.size());
|
||||
for (auto it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx = it.second;
|
||||
@ -83,14 +85,13 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
cvec.bufs.emplace_back(buf);
|
||||
bufs.emplace_back(buf);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t llama_control_vector_apply(
|
||||
struct llama_control_vector & cvec,
|
||||
int32_t llama_adapter_cvec::apply(
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
@ -101,8 +102,8 @@ int32_t llama_control_vector_apply(
|
||||
|
||||
if (data == nullptr) {
|
||||
// disable the current control vector (but leave allocated for later)
|
||||
cvec.layer_start = -1;
|
||||
cvec.layer_end = -1;
|
||||
layer_start = -1;
|
||||
layer_end = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -111,21 +112,21 @@ int32_t llama_control_vector_apply(
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (cvec.tensors.empty()) {
|
||||
if (!llama_control_vector_init(cvec, model)) {
|
||||
if (tensors.empty()) {
|
||||
if (!init(model)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
cvec.layer_start = il_start;
|
||||
cvec.layer_end = il_end;
|
||||
layer_start = il_start;
|
||||
layer_end = il_end;
|
||||
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
assert(cvec.tensors[il] != nullptr);
|
||||
assert(tensors[il] != nullptr);
|
||||
|
||||
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
||||
if (off + n_embd <= len) {
|
||||
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
|
||||
ggml_backend_tensor_set(tensors[il], data + off, 0, n_embd * ggml_element_size(tensors[il]));
|
||||
}
|
||||
}
|
||||
|
||||
@ -134,7 +135,7 @@ int32_t llama_control_vector_apply(
|
||||
|
||||
// lora
|
||||
|
||||
llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
|
||||
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) {
|
||||
const std::string name(w->name);
|
||||
|
||||
const auto pos = ab_map.find(name);
|
||||
@ -145,11 +146,7 @@ llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
||||
delete adapter;
|
||||
}
|
||||
|
||||
static void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
|
||||
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
|
||||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||||
|
||||
ggml_context * ctx_init;
|
||||
@ -221,7 +218,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
};
|
||||
|
||||
// bundle lora_a and lora_b into pairs
|
||||
std::map<std::string, llama_lora_weight> ab_map;
|
||||
std::map<std::string, llama_adapter_lora_weight> ab_map;
|
||||
auto str_endswith = [](const std::string & str, const std::string & suffix) {
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
};
|
||||
@ -231,14 +228,14 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
if (str_endswith(name, ".lora_a")) {
|
||||
replace_all(name, ".lora_a", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(cur, nullptr);
|
||||
ab_map[name] = llama_adapter_lora_weight(cur, nullptr);
|
||||
} else {
|
||||
ab_map[name].a = cur;
|
||||
}
|
||||
} else if (str_endswith(name, ".lora_b")) {
|
||||
replace_all(name, ".lora_b", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(nullptr, cur);
|
||||
ab_map[name] = llama_adapter_lora_weight(nullptr, cur);
|
||||
} else {
|
||||
ab_map[name].b = cur;
|
||||
}
|
||||
@ -254,7 +251,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
// add tensors
|
||||
for (auto & it : ab_map) {
|
||||
const std::string & name = it.first;
|
||||
llama_lora_weight & w = it.second;
|
||||
llama_adapter_lora_weight & w = it.second;
|
||||
bool is_token_embd = str_endswith(name, "token_embd.weight");
|
||||
|
||||
if (!w.a || !w.b) {
|
||||
@ -262,7 +259,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
}
|
||||
|
||||
// device buft and device ctx
|
||||
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
|
||||
const auto * model_tensor = model.get_tensor(name.c_str());
|
||||
if (!model_tensor) {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
|
||||
}
|
||||
@ -288,7 +285,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||||
ggml_set_name(tensor_a, w.a->name);
|
||||
ggml_set_name(tensor_b, w.b->name);
|
||||
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
|
||||
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
@ -330,11 +327,11 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||||
}
|
||||
|
||||
struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
|
||||
struct llama_lora_adapter * adapter = new llama_lora_adapter();
|
||||
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
|
||||
struct llama_adapter_lora * adapter = new llama_adapter_lora();
|
||||
|
||||
try {
|
||||
llama_lora_adapter_init_impl(*model, path_lora, *adapter);
|
||||
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
|
||||
return adapter;
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
@ -344,3 +341,7 @@ struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model,
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
|
||||
delete adapter;
|
||||
}
|
||||
|
@ -1,34 +1,25 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-hparams.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
// TODO: pimpl
|
||||
|
||||
//
|
||||
// llama_adapter_cvec
|
||||
//
|
||||
|
||||
// TODO: rename to llama_adapter_cvec
|
||||
struct llama_control_vector {
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
|
||||
int32_t layer_start = -1;
|
||||
int32_t layer_end = -1;
|
||||
|
||||
struct llama_adapter_cvec {
|
||||
struct ggml_tensor * tensor_for(int il) const;
|
||||
|
||||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
|
||||
};
|
||||
|
||||
int32_t llama_control_vector_apply(
|
||||
struct llama_control_vector & cvec,
|
||||
int32_t apply(
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
@ -36,38 +27,48 @@ int32_t llama_control_vector_apply(
|
||||
int32_t il_start,
|
||||
int32_t il_end);
|
||||
|
||||
private:
|
||||
bool init(const llama_model & model);
|
||||
|
||||
int32_t layer_start = -1;
|
||||
int32_t layer_end = -1;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
};
|
||||
|
||||
//
|
||||
// llama_adapter_lora
|
||||
//
|
||||
|
||||
// TODO: rename to llama_adapter_lora_weight
|
||||
struct llama_lora_weight {
|
||||
struct llama_adapter_lora_weight {
|
||||
struct ggml_tensor * a = nullptr;
|
||||
struct ggml_tensor * b = nullptr;
|
||||
|
||||
// get actual scale based on rank and alpha
|
||||
float get_scale(float alpha, float adapter_scale) {
|
||||
float get_scale(float alpha, float adapter_scale) const {
|
||||
const float rank = (float) b->ne[0];
|
||||
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
|
||||
return scale;
|
||||
}
|
||||
|
||||
llama_lora_weight() = default;
|
||||
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
llama_adapter_lora_weight() = default;
|
||||
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
};
|
||||
|
||||
// TODO: rename to llama_adapter_lora
|
||||
struct llama_lora_adapter {
|
||||
struct llama_adapter_lora {
|
||||
// map tensor name to lora_a_b
|
||||
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
|
||||
std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
float alpha;
|
||||
|
||||
llama_lora_adapter() = default;
|
||||
~llama_lora_adapter() = default;
|
||||
llama_adapter_lora() = default;
|
||||
~llama_adapter_lora() = default;
|
||||
|
||||
llama_lora_weight * get_weight(struct ggml_tensor * w);
|
||||
llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
|
||||
};
|
||||
|
@ -178,6 +178,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
|
||||
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
|
||||
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
|
||||
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat.template" },
|
||||
{ LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" },
|
||||
{ LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" },
|
||||
{ LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" },
|
||||
|
@ -176,6 +176,7 @@ enum llm_kv {
|
||||
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
|
||||
LLM_KV_TOKENIZER_HF_JSON,
|
||||
LLM_KV_TOKENIZER_RWKV,
|
||||
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
|
||||
LLM_KV_TOKENIZER_FIM_PRE_ID,
|
||||
LLM_KV_TOKENIZER_FIM_SUF_ID,
|
||||
LLM_KV_TOKENIZER_FIM_MID_ID,
|
||||
|
@ -1,5 +1,8 @@
|
||||
#include "llama-context.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-mmap.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
@ -467,11 +470,12 @@ void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) {
|
||||
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
|
||||
const auto & cparams = lctx.cparams;
|
||||
const auto & hparams = lctx.model.hparams;
|
||||
const auto & vocab = lctx.model.vocab;
|
||||
|
||||
const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
|
||||
|
||||
const auto n_batch = cparams.n_batch;
|
||||
const auto n_vocab = hparams.n_vocab;
|
||||
const auto n_vocab = vocab.n_tokens();
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
// TODO: use a per-batch flag for logits presence instead
|
||||
@ -504,7 +508,7 @@ size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
|
||||
|
||||
auto * buft = ggml_backend_cpu_buffer_type();
|
||||
// try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory
|
||||
auto * output_dev = lctx.model.dev_output.dev;
|
||||
auto * output_dev = lctx.model.dev_output();
|
||||
auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr;
|
||||
if (output_dev_host_buft) {
|
||||
buft = output_dev_host_buft;
|
||||
@ -538,7 +542,7 @@ size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
|
||||
void llama_output_reorder(struct llama_context & ctx) {
|
||||
std::vector<size_t> & out_ids = ctx.sbatch.out_ids;
|
||||
if (!out_ids.empty()) {
|
||||
const uint32_t n_vocab = ctx.model.hparams.n_vocab;
|
||||
const uint32_t n_vocab = ctx.model.vocab.n_tokens();
|
||||
const uint32_t n_embd = ctx.model.hparams.n_embd;
|
||||
|
||||
const int32_t n_outputs = ctx.n_outputs;
|
||||
@ -722,7 +726,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
||||
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
|
||||
}
|
||||
|
||||
return ctx->logits + j*ctx->model.hparams.n_vocab;
|
||||
return ctx->logits + j*ctx->model.vocab.n_tokens();
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
|
||||
#ifndef NDEBUG
|
||||
@ -882,7 +886,7 @@ struct llama_data_write {
|
||||
}
|
||||
|
||||
void write_logits(const struct llama_context * ctx) {
|
||||
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_vocab);
|
||||
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.vocab.n_tokens());
|
||||
|
||||
write(&logits_size, sizeof(logits_size));
|
||||
|
||||
|
@ -25,9 +25,9 @@ struct llama_context {
|
||||
struct llama_cparams cparams;
|
||||
struct llama_sbatch sbatch; // TODO: revisit if needed
|
||||
struct llama_kv_cache kv_self;
|
||||
struct llama_control_vector cvec;
|
||||
struct llama_adapter_cvec cvec;
|
||||
|
||||
std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
|
||||
std::unordered_map<struct llama_adapter_lora *, float> lora;
|
||||
|
||||
std::vector<ggml_backend_ptr> backends;
|
||||
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
|
||||
|
@ -1092,9 +1092,9 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
const llama_token id = cur_p->data[i].id;
|
||||
const std::string & piece = grammar.vocab->cache_token_to_piece.at(id);
|
||||
const std::string & piece = grammar.vocab->token_to_piece(id);
|
||||
|
||||
if (llama_token_is_eog_impl(*grammar.vocab, id)) {
|
||||
if (grammar.vocab->is_eog(id)) {
|
||||
if (!allow_eog) {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
@ -1115,7 +1115,7 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) {
|
||||
GGML_ASSERT(grammar.vocab != nullptr);
|
||||
|
||||
if (llama_token_is_eog_impl(*grammar.vocab, token)) {
|
||||
if (grammar.vocab->is_eog(token)) {
|
||||
for (const auto & stack : grammar.stacks) {
|
||||
if (stack.empty()) {
|
||||
return;
|
||||
@ -1124,7 +1124,7 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
const std::string & piece = grammar.vocab->cache_token_to_piece.at(token);
|
||||
const std::string & piece = grammar.vocab->token_to_piece(token);
|
||||
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
|
||||
|
@ -30,7 +30,6 @@ struct llama_hparams {
|
||||
bool use_par_res;
|
||||
bool swin_norm;
|
||||
|
||||
uint32_t n_vocab = 0;
|
||||
uint32_t n_ctx_train; // context size the model was trained on
|
||||
uint32_t n_embd;
|
||||
uint32_t n_embd_features = 0;
|
||||
@ -41,7 +40,6 @@ struct llama_hparams {
|
||||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
uint32_t n_vocab_type = 0; // for BERT-style token types
|
||||
uint32_t n_rel_attn_bkts = 0;
|
||||
|
||||
// for WavTokenizer
|
||||
|
@ -79,7 +79,7 @@ bool llama_kv_cache_init(
|
||||
|
||||
ggml_backend_buffer_type_t buft;
|
||||
if (offload) {
|
||||
auto * dev = model.dev_layer.at(i).dev;
|
||||
auto * dev = model.dev_layer(i);
|
||||
buft = ggml_backend_dev_buffer_type(dev);
|
||||
} else {
|
||||
buft = ggml_backend_cpu_buffer_type();
|
||||
|
@ -35,7 +35,7 @@
|
||||
|
||||
// TODO: consider moving to llama-impl.h if needed in more places
|
||||
#if defined(_WIN32)
|
||||
std::string llama_format_win_err(DWORD err) {
|
||||
static std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
|
@ -7,6 +7,10 @@
|
||||
#include <cstring>
|
||||
#include <future>
|
||||
|
||||
static const size_t kiB = 1024;
|
||||
static const size_t MiB = 1024*kiB;
|
||||
static const size_t GiB = 1024*MiB;
|
||||
|
||||
const char * llama_file_version_name(llama_fver version) {
|
||||
switch (version) {
|
||||
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
|
||||
@ -17,6 +21,49 @@ const char * llama_file_version_name(llama_fver version) {
|
||||
return "unknown";
|
||||
}
|
||||
|
||||
static std::string llama_model_ftype_name(llama_ftype ftype) {
|
||||
if (ftype & LLAMA_FTYPE_GUESSED) {
|
||||
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
|
||||
}
|
||||
|
||||
switch (ftype) {
|
||||
case LLAMA_FTYPE_ALL_F32: return "all F32";
|
||||
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
|
||||
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
|
||||
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
|
||||
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
|
||||
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
|
||||
|
||||
default: return "unknown, may not work";
|
||||
}
|
||||
}
|
||||
|
||||
namespace GGUFMeta {
|
||||
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
|
||||
struct GKV_Base_Type {
|
||||
@ -1009,3 +1056,17 @@ bool llama_model_loader::load_all_data(
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string llama_model_loader::ftype_name() const {
|
||||
return llama_model_ftype_name(ftype);
|
||||
}
|
||||
|
||||
void llama_model_loader::print_info() const {
|
||||
LLAMA_LOG_INFO("%s: file format = %s\n", __func__, llama_file_version_name(fver));
|
||||
LLAMA_LOG_INFO("%s: file type = %s\n", __func__, llama_model_ftype_name(ftype).c_str());
|
||||
if (n_bytes < GiB) {
|
||||
LLAMA_LOG_INFO("%s: file size = %.2f MiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0, n_bytes*8.0/n_elements);
|
||||
} else {
|
||||
LLAMA_LOG_INFO("%s: file size = %.2f GiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0/1024.0, n_bytes*8.0/n_elements);
|
||||
}
|
||||
}
|
||||
|
@ -155,4 +155,8 @@ struct llama_model_loader {
|
||||
llama_mlocks * lmlocks,
|
||||
llama_progress_callback progress_callback,
|
||||
void * progress_callback_user_data);
|
||||
|
||||
std::string ftype_name() const;
|
||||
|
||||
void print_info() const;
|
||||
};
|
||||
|
4057
src/llama-model.cpp
4057
src/llama-model.cpp
File diff suppressed because it is too large
Load Diff
@ -4,79 +4,80 @@
|
||||
#include "llama-arch.h"
|
||||
#include "llama-hparams.h"
|
||||
#include "llama-vocab.h"
|
||||
#include "llama-mmap.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
struct llama_model_loader;
|
||||
|
||||
// available models
|
||||
// TODO: this enum does not follow the enum naming convention
|
||||
enum llm_type {
|
||||
MODEL_UNKNOWN,
|
||||
MODEL_14M,
|
||||
MODEL_17M,
|
||||
MODEL_22M,
|
||||
MODEL_33M,
|
||||
MODEL_60M,
|
||||
MODEL_70M,
|
||||
MODEL_80M,
|
||||
MODEL_109M,
|
||||
MODEL_137M,
|
||||
MODEL_160M,
|
||||
MODEL_220M,
|
||||
MODEL_250M,
|
||||
MODEL_270M,
|
||||
MODEL_335M,
|
||||
MODEL_410M,
|
||||
MODEL_450M,
|
||||
MODEL_770M,
|
||||
MODEL_780M,
|
||||
MODEL_0_5B,
|
||||
MODEL_1B,
|
||||
MODEL_1_3B,
|
||||
MODEL_1_4B,
|
||||
MODEL_1_5B,
|
||||
MODEL_1_6B,
|
||||
MODEL_2B,
|
||||
MODEL_2_8B,
|
||||
MODEL_3B,
|
||||
MODEL_4B,
|
||||
MODEL_6B,
|
||||
MODEL_6_9B,
|
||||
MODEL_7B,
|
||||
MODEL_8B,
|
||||
MODEL_9B,
|
||||
MODEL_11B,
|
||||
MODEL_12B,
|
||||
MODEL_13B,
|
||||
MODEL_14B,
|
||||
MODEL_15B,
|
||||
MODEL_16B,
|
||||
MODEL_20B,
|
||||
MODEL_30B,
|
||||
MODEL_32B,
|
||||
MODEL_34B,
|
||||
MODEL_35B,
|
||||
MODEL_40B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
MODEL_236B,
|
||||
MODEL_314B,
|
||||
MODEL_671B,
|
||||
MODEL_SMALL,
|
||||
MODEL_MEDIUM,
|
||||
MODEL_LARGE,
|
||||
MODEL_XL,
|
||||
MODEL_A1_7B,
|
||||
MODEL_A2_7B,
|
||||
MODEL_8x7B,
|
||||
MODEL_8x22B,
|
||||
MODEL_16x12B,
|
||||
MODEL_16x3_8B,
|
||||
MODEL_10B_128x3_66B,
|
||||
MODEL_57B_A14B,
|
||||
MODEL_27B,
|
||||
LLM_TYPE_UNKNOWN,
|
||||
LLM_TYPE_14M,
|
||||
LLM_TYPE_17M,
|
||||
LLM_TYPE_22M,
|
||||
LLM_TYPE_33M,
|
||||
LLM_TYPE_60M,
|
||||
LLM_TYPE_70M,
|
||||
LLM_TYPE_80M,
|
||||
LLM_TYPE_109M,
|
||||
LLM_TYPE_137M,
|
||||
LLM_TYPE_160M,
|
||||
LLM_TYPE_220M,
|
||||
LLM_TYPE_250M,
|
||||
LLM_TYPE_270M,
|
||||
LLM_TYPE_335M,
|
||||
LLM_TYPE_410M,
|
||||
LLM_TYPE_450M,
|
||||
LLM_TYPE_770M,
|
||||
LLM_TYPE_780M,
|
||||
LLM_TYPE_0_5B,
|
||||
LLM_TYPE_1B,
|
||||
LLM_TYPE_1_3B,
|
||||
LLM_TYPE_1_4B,
|
||||
LLM_TYPE_1_5B,
|
||||
LLM_TYPE_1_6B,
|
||||
LLM_TYPE_2B,
|
||||
LLM_TYPE_2_8B,
|
||||
LLM_TYPE_3B,
|
||||
LLM_TYPE_4B,
|
||||
LLM_TYPE_6B,
|
||||
LLM_TYPE_6_9B,
|
||||
LLM_TYPE_7B,
|
||||
LLM_TYPE_8B,
|
||||
LLM_TYPE_9B,
|
||||
LLM_TYPE_11B,
|
||||
LLM_TYPE_12B,
|
||||
LLM_TYPE_13B,
|
||||
LLM_TYPE_14B,
|
||||
LLM_TYPE_15B,
|
||||
LLM_TYPE_16B,
|
||||
LLM_TYPE_20B,
|
||||
LLM_TYPE_30B,
|
||||
LLM_TYPE_32B,
|
||||
LLM_TYPE_34B,
|
||||
LLM_TYPE_35B,
|
||||
LLM_TYPE_40B,
|
||||
LLM_TYPE_65B,
|
||||
LLM_TYPE_70B,
|
||||
LLM_TYPE_236B,
|
||||
LLM_TYPE_314B,
|
||||
LLM_TYPE_671B,
|
||||
LLM_TYPE_SMALL,
|
||||
LLM_TYPE_MEDIUM,
|
||||
LLM_TYPE_LARGE,
|
||||
LLM_TYPE_XL,
|
||||
LLM_TYPE_A1_7B,
|
||||
LLM_TYPE_A2_7B,
|
||||
LLM_TYPE_8x7B,
|
||||
LLM_TYPE_8x22B,
|
||||
LLM_TYPE_16x12B,
|
||||
LLM_TYPE_16x3_8B,
|
||||
LLM_TYPE_10B_128x3_66B,
|
||||
LLM_TYPE_57B_A14B,
|
||||
LLM_TYPE_27B,
|
||||
};
|
||||
|
||||
struct llama_layer_posnet {
|
||||
@ -286,11 +287,9 @@ struct llama_layer {
|
||||
};
|
||||
|
||||
struct llama_model {
|
||||
llm_type type = MODEL_UNKNOWN;
|
||||
llm_type type = LLM_TYPE_UNKNOWN;
|
||||
llm_arch arch = LLM_ARCH_UNKNOWN;
|
||||
|
||||
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
||||
|
||||
std::string name = "n/a";
|
||||
|
||||
llama_hparams hparams = {};
|
||||
@ -319,78 +318,55 @@ struct llama_model {
|
||||
|
||||
std::vector<llama_layer> layers;
|
||||
|
||||
llama_model_params params;
|
||||
|
||||
// gguf metadata
|
||||
std::unordered_map<std::string, std::string> gguf_kv;
|
||||
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
int n_gpu_layers;
|
||||
|
||||
std::vector<std::string> rpc_servers;
|
||||
|
||||
// list of devices used in this model
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
|
||||
|
||||
// lists of buffer types used for each layer
|
||||
using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
|
||||
buft_list_t cpu_buft_list;
|
||||
std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
|
||||
|
||||
struct layer_dev {
|
||||
ggml_backend_dev_t dev;
|
||||
buft_list_t * buft_list;
|
||||
};
|
||||
|
||||
layer_dev dev_input = {};
|
||||
layer_dev dev_output = {};
|
||||
std::vector<layer_dev> dev_layer;
|
||||
|
||||
// contexts where the model tensors metadata is stored
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
|
||||
// the model memory buffers for the tensor data
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
// model memory mapped files
|
||||
llama_mmaps mappings;
|
||||
|
||||
// objects representing data potentially being locked in memory
|
||||
llama_mlocks mlock_bufs;
|
||||
llama_mlocks mlock_mmaps;
|
||||
|
||||
// for quantize-stats only
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
|
||||
// total number of parameters in the model
|
||||
uint64_t n_elements = 0;
|
||||
explicit llama_model(const struct llama_model_params & params);
|
||||
~llama_model();
|
||||
|
||||
// total size of all the tensors in the model in bytes
|
||||
size_t n_bytes = 0;
|
||||
void load_stats (llama_model_loader & ml);
|
||||
void load_arch (llama_model_loader & ml);
|
||||
void load_hparams(llama_model_loader & ml);
|
||||
void load_vocab (llama_model_loader & ml);
|
||||
bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
|
||||
|
||||
std::string arch_name() const;
|
||||
std::string type_name() const;
|
||||
|
||||
std::string desc() const;
|
||||
|
||||
size_t size() const;
|
||||
size_t max_nodes() const;
|
||||
size_t n_devices() const;
|
||||
|
||||
// total number of parameters in the model
|
||||
uint64_t n_elements() const;
|
||||
|
||||
void print_info() const;
|
||||
|
||||
ggml_backend_dev_t dev_layer(int il) const;
|
||||
ggml_backend_dev_t dev_output() const;
|
||||
|
||||
ggml_backend_buffer_type_t select_buft(int il) const;
|
||||
|
||||
const struct ggml_tensor * get_tensor(const char * name) const;
|
||||
|
||||
private:
|
||||
struct impl;
|
||||
std::unique_ptr<impl> pimpl;
|
||||
};
|
||||
|
||||
const char * llm_type_name(llm_type type);
|
||||
|
||||
std::string llama_model_arch_name (const llama_model & model);
|
||||
std::string llama_model_type_name (const llama_model & model);
|
||||
std::string llama_model_ftype_name(const llama_model & model);
|
||||
|
||||
// used by llama_adapter_cvec
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
|
||||
|
||||
// used by llama_adapter_lora
|
||||
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
|
||||
|
||||
size_t llama_model_max_nodes(const llama_model & model);
|
||||
|
||||
struct llama_model_loader;
|
||||
|
||||
// TODO: become llama_model methods
|
||||
void llm_load_stats (llama_model_loader & ml, llama_model & model);
|
||||
void llm_load_arch (llama_model_loader & ml, llama_model & model);
|
||||
void llm_load_hparams (llama_model_loader & ml, llama_model & model);
|
||||
void llm_load_vocab (llama_model_loader & ml, llama_model & model);
|
||||
void llm_load_print_meta(llama_model_loader & ml, llama_model & model);
|
||||
|
@ -235,7 +235,7 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||
if (qs.model.type == MODEL_70B) {
|
||||
if (qs.model.type == LLM_TYPE_70B) {
|
||||
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||||
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
@ -525,18 +525,20 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
|
||||
kv_overrides = v->data();
|
||||
}
|
||||
|
||||
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
|
||||
ml.init_mappings(false); // no prefetching
|
||||
|
||||
llama_model model;
|
||||
llm_load_arch (ml, model);
|
||||
llm_load_hparams(ml, model);
|
||||
llm_load_stats (ml, model);
|
||||
llama_model model(llama_model_default_params());
|
||||
|
||||
model.load_arch (ml);
|
||||
model.load_hparams(ml);
|
||||
model.load_stats (ml);
|
||||
|
||||
struct quantize_state_impl qs(model, params);
|
||||
|
||||
if (params->only_copy) {
|
||||
ftype = model.ftype;
|
||||
ftype = ml.ftype;
|
||||
}
|
||||
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
|
||||
if (params->imatrix) {
|
||||
|
@ -371,7 +371,10 @@ void llama_sampler_free(struct llama_sampler * smpl) {
|
||||
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
// TODO: do not allocate each time
|
||||
std::vector<llama_token_data> cur;
|
||||
@ -1445,7 +1448,7 @@ static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
|
||||
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
|
||||
|
||||
auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr);
|
||||
auto * result = llama_sampler_init_grammar(ctx->vocab, nullptr, nullptr);
|
||||
|
||||
// copy the state
|
||||
{
|
||||
@ -1481,19 +1484,19 @@ static struct llama_sampler_i llama_sampler_grammar_i = {
|
||||
/* .free = */ llama_sampler_grammar_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) {
|
||||
struct llama_sampler * llama_sampler_init_grammar(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) {
|
||||
auto * ctx = new llama_sampler_grammar;
|
||||
|
||||
if (grammar_str != nullptr && grammar_str[0] != '\0') {
|
||||
*ctx = {
|
||||
/* .vocab = */ &vocab,
|
||||
/* .vocab = */ vocab,
|
||||
/* .grammar_str = */ grammar_str,
|
||||
/* .grammar_root = */ grammar_root,
|
||||
/* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root),
|
||||
/* .grammar = */ llama_grammar_init_impl(vocab, grammar_str, grammar_root),
|
||||
};
|
||||
} else {
|
||||
*ctx = {
|
||||
/* .vocab = */ &vocab,
|
||||
/* .vocab = */ vocab,
|
||||
/* .grammar_str = */ {},
|
||||
/* .grammar_root = */ {},
|
||||
/* .grammar = */ nullptr,
|
||||
@ -1663,8 +1666,8 @@ struct llama_sampler_dry {
|
||||
|
||||
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
|
||||
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
|
||||
for (llama_token token_id = 0; token_id < (llama_token)vocab.n_vocab; token_id++) {
|
||||
std::string word = llama_detokenize(vocab, {token_id}, true);
|
||||
for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) {
|
||||
std::string word = vocab.detokenize({token_id}, true);
|
||||
if (word.find(str) != std::string::npos) {
|
||||
token_sequences.emplace(token_id, std::vector<llama_token>());
|
||||
} else {
|
||||
@ -1681,7 +1684,7 @@ static void get_overlapping_token_sequences(const llama_vocab & vocab, const std
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
std::vector<llama_token> tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false);
|
||||
std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false);
|
||||
if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
|
||||
tokenization.resize(max_tail_len);
|
||||
}
|
||||
@ -1937,7 +1940,7 @@ static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler
|
||||
llama_vocab dummy_vocab;
|
||||
|
||||
// dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
|
||||
auto * result = llama_sampler_init_dry_impl(dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
|
||||
auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
|
||||
|
||||
// Copy the state, including the processed breakers
|
||||
{
|
||||
@ -1964,7 +1967,7 @@ static struct llama_sampler_i llama_sampler_dry_i = {
|
||||
/* .free = */ llama_sampler_dry_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
|
||||
struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
|
||||
int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
|
||||
std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
|
||||
const int MAX_CHAR_LEN = 40;
|
||||
@ -1991,7 +1994,7 @@ struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vo
|
||||
sequence_break.resize(MAX_CHAR_LEN);
|
||||
}
|
||||
|
||||
get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
|
||||
get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2014,7 +2017,7 @@ struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vo
|
||||
// wrapper for test-sampling.cpp
|
||||
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
|
||||
llama_vocab dummy_vocab;
|
||||
auto * result = llama_sampler_init_dry_impl(dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
|
||||
auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
|
||||
auto * ctx = (llama_sampler_dry *) result->ctx;
|
||||
|
||||
// Process the token-based sequence breakers
|
||||
@ -2153,7 +2156,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
float p_eog_sum = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
|
||||
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
|
||||
p_eog_sum += cur_p->data[i].p;
|
||||
} else {
|
||||
p_txt_sum += cur_p->data[i].p;
|
||||
@ -2175,7 +2178,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
float p_sum = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
|
||||
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
|
||||
p_sum += cur_p->data[i].p;
|
||||
|
||||
cur_p->data[cur_p->size++] = cur_p->data[i];
|
||||
@ -2203,17 +2206,17 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
continue;
|
||||
}
|
||||
|
||||
int len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
|
||||
int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
|
||||
if (len0 < 0) {
|
||||
ctx->buf0.resize(len0);
|
||||
len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
|
||||
len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
|
||||
assert(len0 > 0);
|
||||
}
|
||||
|
||||
int len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
|
||||
int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
|
||||
if (len1 < 0) {
|
||||
ctx->buf1.resize(len1);
|
||||
len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
|
||||
len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
|
||||
assert(len1 > 0);
|
||||
}
|
||||
|
||||
@ -2248,7 +2251,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
|
||||
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
|
||||
|
||||
if (cur_p->data[i].p < thold && !is_eog) {
|
||||
continue;
|
||||
@ -2269,7 +2272,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
// if no non-EOG tokens are left -> reduce cur_p to single EOT token
|
||||
if (n_non_eog == 0) {
|
||||
cur_p->size = 1;
|
||||
cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab);
|
||||
cur_p->data[0].id = ctx->vocab->token_eot();
|
||||
cur_p->data[0].logit = 1.0f;
|
||||
|
||||
return;
|
||||
@ -2291,7 +2294,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
|
||||
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
|
||||
|
||||
if (cur_p->data[i].p < thold && !is_eog) {
|
||||
continue;
|
||||
@ -2314,7 +2317,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
|
||||
static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
|
||||
return llama_sampler_init_infill_impl(*ctx->vocab);
|
||||
return llama_sampler_init_infill(ctx->vocab);
|
||||
}
|
||||
|
||||
static void llama_sampler_infill_free(struct llama_sampler * smpl) {
|
||||
@ -2330,12 +2333,11 @@ static struct llama_sampler_i llama_sampler_infill_i = {
|
||||
/* .free = */ llama_sampler_infill_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_infill_impl(
|
||||
const struct llama_vocab & vocab) {
|
||||
struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) {
|
||||
return new llama_sampler {
|
||||
/* .iface = */ &llama_sampler_infill_i,
|
||||
/* .ctx = */ new llama_sampler_infill {
|
||||
/* .vocab = */ &vocab,
|
||||
/* .vocab = */ vocab,
|
||||
/* .buf0 = */ std::vector<char>(512),
|
||||
/* .buf1 = */ std::vector<char>(512),
|
||||
},
|
||||
|
@ -2,7 +2,9 @@
|
||||
|
||||
// TODO: rename llama-sampling.h/.cpp to llama-sampler.h/.cpp ?
|
||||
|
||||
#include "llama-grammar.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct llama_vocab;
|
||||
struct llama_grammar;
|
||||
@ -21,24 +23,6 @@ struct llama_sampler_chain {
|
||||
mutable int32_t n_sample;
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_grammar_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root);
|
||||
|
||||
struct llama_sampler * llama_sampler_init_infill_impl(
|
||||
const struct llama_vocab & vocab);
|
||||
|
||||
struct llama_sampler * llama_sampler_init_dry_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
int32_t context_size,
|
||||
float dry_multiplier,
|
||||
float dry_base,
|
||||
int32_t dry_allowed_length,
|
||||
int32_t dry_penalty_last_n,
|
||||
const char ** seq_breakers,
|
||||
size_t num_breakers);
|
||||
|
||||
struct llama_sampler * llama_sampler_init_dry_testing(
|
||||
int32_t context_size,
|
||||
float dry_multiplier,
|
||||
|
2365
src/llama-vocab.cpp
2365
src/llama-vocab.cpp
File diff suppressed because it is too large
Load Diff
@ -4,179 +4,123 @@
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <memory>
|
||||
|
||||
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
|
||||
switch (type) {
|
||||
case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
|
||||
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
|
||||
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
|
||||
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
|
||||
case LLAMA_VOCAB_TYPE_UGM: return "UGM";
|
||||
case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
|
||||
default: return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
struct llm_tokenizer;
|
||||
struct LLM_KV;
|
||||
struct llama_model_loader;
|
||||
|
||||
struct llama_vocab {
|
||||
using id = llama_token;
|
||||
using token = std::string;
|
||||
using tattr = llama_token_attr;
|
||||
|
||||
struct token_data {
|
||||
token text;
|
||||
std::string text;
|
||||
float score;
|
||||
tattr attr;
|
||||
llama_token_attr attr;
|
||||
};
|
||||
|
||||
uint32_t n_vocab = 0; // TODO: not great because has to keep in sync with hparams.n_vocab
|
||||
|
||||
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
|
||||
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
|
||||
int max_token_len = 0; // used for optimizing longest token search
|
||||
|
||||
std::unordered_map<token, id> token_to_id;
|
||||
std::vector<token_data> id_to_token;
|
||||
|
||||
std::vector<id> cache_special_tokens;
|
||||
std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
|
||||
|
||||
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
||||
|
||||
// default LLaMA special tokens
|
||||
// TODO: should we set all of these to LLAMA_TOKEN_NULL?
|
||||
id special_bos_id = 1;
|
||||
id special_eos_id = 2;
|
||||
id special_eot_id = LLAMA_TOKEN_NULL;
|
||||
id special_eom_id = LLAMA_TOKEN_NULL;
|
||||
id special_unk_id = 0;
|
||||
id special_sep_id = LLAMA_TOKEN_NULL;
|
||||
id special_pad_id = LLAMA_TOKEN_NULL;
|
||||
id special_cls_id = LLAMA_TOKEN_NULL; // TODO: revisit if this is really needed https://github.com/ggerganov/llama.cpp/pull/10930
|
||||
id special_mask_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
id linefeed_id = 13;
|
||||
|
||||
// fim tokens
|
||||
id special_fim_pre_id = LLAMA_TOKEN_NULL;
|
||||
id special_fim_suf_id = LLAMA_TOKEN_NULL;
|
||||
id special_fim_mid_id = LLAMA_TOKEN_NULL;
|
||||
id special_fim_pad_id = LLAMA_TOKEN_NULL;
|
||||
id special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
|
||||
id special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator
|
||||
|
||||
// set of all tokens that cause "end of generation"
|
||||
std::set<id> special_eog_ids;
|
||||
|
||||
// tokenizer flags
|
||||
bool tokenizer_add_space_prefix = false;
|
||||
bool tokenizer_add_bos = false;
|
||||
bool tokenizer_add_eos = false;
|
||||
bool tokenizer_ignore_merges = false;
|
||||
bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
|
||||
bool tokenizer_remove_extra_whitespaces = false;
|
||||
bool tokenizer_escape_whitespaces = true;
|
||||
bool tokenizer_treat_whitespace_as_suffix = false;
|
||||
|
||||
std::vector<char> precompiled_charsmap;
|
||||
|
||||
llm_tokenizer * tokenizer = nullptr;
|
||||
|
||||
llama_vocab() = default;
|
||||
llama_vocab();
|
||||
~llama_vocab();
|
||||
|
||||
void load(llama_model_loader & ml, const LLM_KV & kv);
|
||||
|
||||
enum llama_vocab_type get_type() const;
|
||||
enum llama_vocab_pre_type get_pre_type() const;
|
||||
|
||||
uint32_t n_tokens() const;
|
||||
uint32_t n_token_types() const;
|
||||
|
||||
std::string type_name() const;
|
||||
|
||||
bool is_normal (llama_token id) const;
|
||||
bool is_unknown (llama_token id) const;
|
||||
bool is_control (llama_token id) const;
|
||||
bool is_byte (llama_token id) const;
|
||||
bool is_user_defined(llama_token id) const;
|
||||
bool is_unused (llama_token id) const;
|
||||
bool is_eog (llama_token id) const;
|
||||
|
||||
uint8_t token_to_byte(llama_token id) const;
|
||||
llama_token byte_to_token(uint8_t ch) const;
|
||||
|
||||
llama_token text_to_token(const std::string & text) const;
|
||||
|
||||
const token_data & get_token_data(llama_token id) const;
|
||||
|
||||
const char * token_get_text (llama_token id) const;
|
||||
float token_get_score(llama_token id) const;
|
||||
llama_token_attr token_get_attr (llama_token id) const;
|
||||
|
||||
llama_token token_bos() const;
|
||||
llama_token token_eos() const;
|
||||
llama_token token_eot() const;
|
||||
llama_token token_eom() const;
|
||||
llama_token token_unk() const;
|
||||
llama_token token_cls() const;
|
||||
llama_token token_sep() const;
|
||||
llama_token token_nl () const;
|
||||
llama_token token_pad() const;
|
||||
|
||||
llama_token token_prefix() const;
|
||||
llama_token token_middle() const;
|
||||
llama_token token_suffix() const;
|
||||
|
||||
llama_token token_fim_pre() const;
|
||||
llama_token token_fim_suf() const;
|
||||
llama_token token_fim_mid() const;
|
||||
llama_token token_fim_pad() const;
|
||||
llama_token token_fim_rep() const;
|
||||
llama_token token_fim_sep() const;
|
||||
|
||||
bool get_add_space_prefix () const;
|
||||
bool get_add_bos () const;
|
||||
bool get_add_eos () const;
|
||||
bool get_ignore_merges () const;
|
||||
bool get_clean_spaces () const;
|
||||
bool get_remove_extra_whitespaces () const;
|
||||
bool get_escape_whitespaces () const;
|
||||
bool get_treat_whitespace_as_suffix() const;
|
||||
|
||||
int max_token_len() const;
|
||||
|
||||
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
|
||||
|
||||
void init_tokenizer();
|
||||
};
|
||||
|
||||
//
|
||||
// internal API
|
||||
//
|
||||
|
||||
// TODO: rename to llama_tokenize_impl
|
||||
// TODO: This should probably be in llama.h
|
||||
std::vector<llama_vocab::id> llama_tokenize_internal(
|
||||
const llama_vocab & vocab,
|
||||
std::string raw_text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
// TODO: move the API below as member functions of llama_vocab
|
||||
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch);
|
||||
|
||||
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
llama_token llama_token_bos_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_eos_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_eot_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_eom_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_cls_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_sep_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_nl_impl (const struct llama_vocab & vocab);
|
||||
llama_token llama_token_pad_impl(const struct llama_vocab & vocab);
|
||||
|
||||
llama_token llama_token_prefix_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_middle_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_suffix_impl(const struct llama_vocab & vocab);
|
||||
|
||||
llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab);
|
||||
|
||||
bool llama_add_bos_token_impl(const struct llama_vocab & vocab);
|
||||
bool llama_add_eos_token_impl(const struct llama_vocab & vocab);
|
||||
|
||||
int32_t llama_tokenize_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
int32_t tokenize(
|
||||
const char * text,
|
||||
int32_t text_len,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens_max,
|
||||
bool add_special,
|
||||
bool parse_special);
|
||||
bool parse_special) const;
|
||||
|
||||
std::vector<llama_token> tokenize(
|
||||
const std::string & raw_text,
|
||||
bool add_special,
|
||||
bool parse_special = false) const;
|
||||
|
||||
// does not write null-terminator to buf
|
||||
int32_t llama_token_to_piece_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
int32_t token_to_piece(
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length,
|
||||
int32_t lstrip,
|
||||
bool special);
|
||||
bool special) const;
|
||||
|
||||
// check if token0 is contained as a prefix in token1
|
||||
bool llama_token_is_prefix_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
llama_token token0,
|
||||
llama_token token1);
|
||||
// use cached data
|
||||
const std::string & token_to_piece(llama_token token) const;
|
||||
|
||||
int32_t llama_detokenize_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
int32_t detokenize(
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
char * text,
|
||||
int32_t text_len_max,
|
||||
bool remove_special,
|
||||
bool unparse_special);
|
||||
bool unparse_special) const;
|
||||
|
||||
std::string llama_detokenize(
|
||||
const struct llama_vocab & vocab,
|
||||
std::string detokenize(
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special);
|
||||
bool special) const;
|
||||
|
||||
void print_info() const;
|
||||
|
||||
private:
|
||||
struct impl;
|
||||
std::unique_ptr<impl> pimpl;
|
||||
};
|
||||
|
2932
src/llama.cpp
2932
src/llama.cpp
File diff suppressed because it is too large
Load Diff
@ -14,7 +14,7 @@ int main(int argc, char ** argv) {
|
||||
std::thread([&model_path]() {
|
||||
llama_backend_init();
|
||||
auto * model = llama_model_load_from_file(model_path, llama_model_default_params());
|
||||
auto * ctx = llama_new_context_with_model(model, llama_context_default_params());
|
||||
auto * ctx = llama_init_from_model(model, llama_context_default_params());
|
||||
llama_free(ctx);
|
||||
llama_model_free(model);
|
||||
llama_backend_free();
|
||||
|
@ -157,7 +157,7 @@ int main(void) {
|
||||
}
|
||||
|
||||
// test invalid chat template
|
||||
res = llama_chat_apply_template(nullptr, "INVALID TEMPLATE", conversation, message_count, true, formatted_chat.data(), formatted_chat.size());
|
||||
res = llama_chat_apply_template("INVALID TEMPLATE", conversation, message_count, true, formatted_chat.data(), formatted_chat.size());
|
||||
assert(res < 0);
|
||||
|
||||
for (size_t i = 0; i < templates.size(); i++) {
|
||||
@ -165,7 +165,6 @@ int main(void) {
|
||||
std::string expected = expected_output[i];
|
||||
formatted_chat.resize(1024);
|
||||
res = llama_chat_apply_template(
|
||||
nullptr,
|
||||
custom_template.c_str(),
|
||||
conversation,
|
||||
message_count,
|
||||
|
@ -161,7 +161,7 @@ int main(int argc, char **argv) {
|
||||
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
ctx = llama_init_from_model(model, cparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
|
@ -55,7 +55,7 @@ int main(int argc, char **argv) {
|
||||
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
ctx = llama_init_from_model(model, cparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
@ -64,8 +64,10 @@ int main(int argc, char **argv) {
|
||||
}
|
||||
}
|
||||
|
||||
//GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE);
|
||||
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
//GGML_ASSERT(llama_vocab_type(vocab) == LLAMA_VOCAB_TYPE_BPE);
|
||||
if (llama_vocab_type(vocab) != LLAMA_VOCAB_TYPE_BPE) {
|
||||
return 99;
|
||||
}
|
||||
|
||||
@ -75,7 +77,7 @@ int main(int argc, char **argv) {
|
||||
atexit([]() { console::cleanup(); });
|
||||
#endif
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
for (int i = 0; i < n_vocab; ++i) {
|
||||
std::string str = common_detokenize(ctx, std::vector<int>(1, i));
|
||||
|
@ -43,7 +43,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
ctx = llama_init_from_model(model, cparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
@ -52,8 +52,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
//GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
|
||||
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_SPM) {
|
||||
if (llama_vocab_type(vocab) != LLAMA_VOCAB_TYPE_SPM) {
|
||||
return 99;
|
||||
}
|
||||
|
||||
@ -63,7 +65,7 @@ int main(int argc, char ** argv) {
|
||||
atexit([]() { console::cleanup(); });
|
||||
#endif
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
for (int i = 0; i < n_vocab; ++i) {
|
||||
std::string str = common_detokenize(ctx, std::vector<int>(1, i), true);
|
||||
|
@ -76,7 +76,7 @@ class LibLlamaModel:
|
||||
self.ffi = libllama.ffi
|
||||
if isinstance(mparams, dict):
|
||||
mparams = libllama.model_default_params(**mparams)
|
||||
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
|
||||
self.model = self.lib.llama_model_load_from_file(path_model.encode(), mparams)
|
||||
if not self.model:
|
||||
raise RuntimeError("error: failed to load model '%s'" % path_model)
|
||||
if isinstance(cparams, dict):
|
||||
@ -92,7 +92,7 @@ class LibLlamaModel:
|
||||
if self.ctx:
|
||||
self.lib.llama_free(self.ctx)
|
||||
if self.model:
|
||||
self.lib.llama_free_model(self.model)
|
||||
self.lib.llama_model_free(self.model)
|
||||
self.ctx = None
|
||||
self.model = None
|
||||
self.lib = None
|
||||
|
Loading…
Reference in New Issue
Block a user