From afc4ca288989afea3903c962e1006695d50db8b2 Mon Sep 17 00:00:00 2001 From: goerch Date: Mon, 14 Aug 2023 19:20:04 +0200 Subject: [PATCH] convert : update convert-new.py with tokenizer fixes (#2614) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) --- convert-new.py | 104 ++++++++++++++++++++++++----------------- examples/main/main.cpp | 2 +- 2 files changed, 61 insertions(+), 45 deletions(-) diff --git a/convert-new.py b/convert-new.py index bf85cb551..75b07ebdd 100755 --- a/convert-new.py +++ b/convert-new.py @@ -205,25 +205,58 @@ class Params: return params -class SentencePieceVocab: - def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None: - self.vocabtype = vocabtype - if self.vocabtype == "bpe": - self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read()) - else: - self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) - +class BpeVocab: + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: + self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read()) added_tokens: Dict[str, int] if fname_added_tokens is not None: - added_tokens = json.load(open(fname_added_tokens)) + added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) else: added_tokens = {} + vocab_size: int = len(self.bpe_tokenizer) + expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) + actual_ids = sorted(added_tokens.values()) + if expected_ids != actual_ids: + raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}") + items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) + self.added_tokens_list = [text for (text, idx) in items] + self.vocab_size_base: int = vocab_size + self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + self.fname_added_tokens = fname_added_tokens - if self.vocabtype == "bpe": - vocab_size: int = len(self.sentencepiece_tokenizer) + def bpe_tokens(self) -> Iterable[Tuple[bytes, float]]: + tokenizer = self.bpe_tokenizer + from transformers.models.gpt2 import tokenization_gpt2 + byte_encoder = tokenization_gpt2.bytes_to_unicode() + byte_decoder = {v: k for k, v in byte_encoder.items()} + for i, item in enumerate(tokenizer): + text: bytes = item.encode("utf-8") + score: float = -i + yield text, score + + def added_tokens(self) -> Iterable[Tuple[bytes, float]]: + for text in self.added_tokens_list: + score = -1000.0 + yield text.encode("utf-8"), score + + def all_tokens(self) -> Iterable[Tuple[bytes, float]]: + yield from self.bpe_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" + + +class SentencePieceVocab: + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: + self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) + added_tokens: Dict[str, int] + if fname_added_tokens is not None: + added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) else: - vocab_size: int = self.sentencepiece_tokenizer.vocab_size() - + added_tokens = {} + vocab_size: int = self.sentencepiece_tokenizer.vocab_size() expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) actual_ids = sorted(added_tokens.values()) if expected_ids != actual_ids: @@ -238,32 +271,11 @@ class SentencePieceVocab: def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]: tokenizer = self.sentencepiece_tokenizer - if self.vocabtype == "bpe": - from transformers.models.gpt2 import tokenization_gpt2 - byte_encoder = tokenization_gpt2.bytes_to_unicode() - byte_decoder = {v: k for k, v in byte_encoder.items()} - for i, item in enumerate(tokenizer): - text: bytes - text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]]) - score: float = -i - yield text, score - else: - for i in range(tokenizer.vocab_size()): - text: bytes - if tokenizer.is_unknown(i): - text = " \u2047 ".encode("utf-8") - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - raise Exception(f"Invalid token: {piece}") - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") - score: float = tokenizer.get_score(i) - yield text, score + for i in range(tokenizer.vocab_size()): + piece = tokenizer.id_to_piece(i) + text: bytes = piece.encode("utf-8") + score: float = tokenizer.get_score(i) + yield text, score def added_tokens(self) -> Iterable[Tuple[bytes, float]]: for text in self.added_tokens_list: @@ -278,7 +290,7 @@ class SentencePieceVocab: return f"" -Vocab = Union[SentencePieceVocab] +Vocab = Union[BpeVocab, SentencePieceVocab] def permute(weights: NDArray, n_head: int) -> NDArray: @@ -679,7 +691,7 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc def check_vocab_size(params: Params, vocab: Vocab) -> None: if params.n_vocab != vocab.vocab_size: - assert isinstance(vocab, SentencePieceVocab) + assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab) if params.n_vocab == vocab.vocab_size_base: print("Ignoring added_tokens.json since model matches vocab size without it.") vocab.added_tokens_list = [] @@ -853,7 +865,7 @@ def filter_and_sort_tensors(model: LazyModel) -> LazyModel: return {name: model[name] for name in TENSORS_LIST if name in model} -def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab: +def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, SentencePieceVocab]: print(f"vocabtype: {vocabtype}") # Be extra-friendly and accept either a file or a directory. Also, if it's # a directory, it might be the model directory, and tokenizer.model might @@ -875,8 +887,12 @@ def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab: "if it's in another directory, pass the directory as --vocab-dir") added_tokens_path = path.parent / "added_tokens.json" print(f"Loading vocab file {path}") - return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None, - vocabtype) + if vocabtype == "bpe": + return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None) + elif vocabtype == "spm": + return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) + else: + raise ValueError(f"Unsupported vocabulary type {vocabtype}") def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path: diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 242443560..9c15febb5 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -307,7 +307,7 @@ int main(int argc, char ** argv) { auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; }; - SetConsoleCtrlHandler(static_cast(console_ctrl_handler), true); + SetConsoleCtrlHandler(reinterpret_cast(console_ctrl_handler), true); #endif fprintf(stderr, "%s: interactive mode on.\n", __func__);