mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
ggml : change ggml_scale to take a float instead of tensor (#4573)
* ggml : change ggml_scale to take a float instead of tensor * ggml : fix CPU implementation * tests : fix test-grad0 ggml-ci
This commit is contained in:
parent
769a7bc85e
commit
afefa319f1
@ -575,10 +575,7 @@ static struct ggml_tensor * forward(
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
// KQ_masked shape [n_past + N, N, n_head, 1]
|
||||
@ -844,10 +841,7 @@ static struct ggml_tensor * forward_batch(
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// KQ_scaled shape [n_past + N, N, n_head, n_batch]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
@ -1131,10 +1125,7 @@ static struct ggml_tensor * forward_lora(
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
// KQ_masked shape [n_past + N, N, n_head, 1]
|
||||
|
@ -309,7 +309,7 @@ static struct ggml_cgraph * build_graph_lora(
|
||||
) {
|
||||
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
|
||||
if (scaling != 1.0f) {
|
||||
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
|
||||
ab = ggml_scale(ctx, ab, scaling);
|
||||
}
|
||||
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
|
||||
|
||||
|
@ -269,7 +269,7 @@ static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_h
|
||||
float rope_freq_scale = 1.0f;
|
||||
GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
|
||||
GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
|
||||
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
|
||||
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
|
||||
if (rope_freq_scale != 1.0f) {
|
||||
hparams->rope_freq_scale = 1.0f / rope_freq_scale;
|
||||
}
|
||||
@ -612,6 +612,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
const int n_rot = hparams.n_embd_head();
|
||||
const int n_embd_head = hparams.n_embd_head();
|
||||
const int n_embd_gqa = hparams.n_embd_gqa();
|
||||
|
||||
const float rms_norm_eps = hparams.f_norm_rms_eps;
|
||||
const float rope_freq_base = hparams.rope_freq_base;
|
||||
const float rope_freq_scale = hparams.rope_freq_scale;
|
||||
@ -680,10 +681,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
checkpoints.push_back(t01);
|
||||
}
|
||||
|
||||
struct ggml_tensor * kv_scale = NULL;
|
||||
if (!enable_flash_attn) {
|
||||
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
}
|
||||
const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct my_llama_layer & layer = model->layers[il];
|
||||
@ -781,32 +779,32 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them
|
||||
int n_leafs_before = gb->n_leafs;
|
||||
int n_nodes_before = gb->n_nodes;
|
||||
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
|
||||
|
||||
// output tensors
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
|
||||
// input gradient
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
|
||||
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
|
||||
ggml_allocr_alloc(alloc, t36->grad);
|
||||
// KQ_pos
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
|
||||
|
||||
// make sure base model tensors data cannot be used in viewable operations
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, 1.0f));
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct my_llama_layer & layer = model->layers[il];
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, 1.0f));
|
||||
}
|
||||
|
||||
// allocating checkpoints in one block to reduce memory fragmentation
|
||||
|
@ -330,12 +330,6 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
|
||||
ggml_repeat(ctx0, model.pre_ln_b, embeddings));
|
||||
}
|
||||
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
ggml_allocr_alloc(ctx->alloc, KQ_scale);
|
||||
if (!ggml_allocr_is_measure(ctx->alloc)) {
|
||||
ggml_set_f32(KQ_scale, 1.0f / sqrt((float)d_head));
|
||||
}
|
||||
|
||||
// loop over layers
|
||||
for (int il = 0; il < n_layer - 1; il++) {
|
||||
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
|
||||
@ -356,7 +350,7 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
|
||||
struct ggml_tensor * Q =
|
||||
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, cur), ggml_mul_mat(ctx0, model.layers[il].q_w, cur));
|
||||
|
||||
Q = ggml_scale_inplace(ctx0, Q, KQ_scale);
|
||||
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
|
||||
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
|
||||
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
||||
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
|
||||
|
@ -369,10 +369,7 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
checkpoints.push_back(t00);
|
||||
checkpoints.push_back(t01);
|
||||
|
||||
struct ggml_tensor * kv_scale = NULL;
|
||||
if (!enable_flash_attn) {
|
||||
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
}
|
||||
const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct my_llama_layer & layer = model->layers[il];
|
||||
@ -444,14 +441,13 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them
|
||||
int n_leafs_before = gb->n_leafs;
|
||||
int n_nodes_before = gb->n_nodes;
|
||||
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
|
||||
// output tensors
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
|
||||
// input gradient
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
|
||||
// KQ_pos
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
|
||||
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
|
||||
|
||||
ggml_allocr_alloc(alloc, t36->grad);
|
||||
|
14
ggml-cuda.cu
14
ggml-cuda.cu
@ -7700,17 +7700,9 @@ inline void ggml_cuda_op_scale(
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
float scale;
|
||||
// HACK: support for ggml backend interface
|
||||
if (src1->backend == GGML_BACKEND_CPU) {
|
||||
scale = ((float *) src1->data)[0];
|
||||
} else {
|
||||
// TODO: pass pointer to kernel instead of copying to host
|
||||
CUDA_CHECK(cudaMemcpy(&scale, src1->data, sizeof(float), cudaMemcpyDeviceToHost));
|
||||
}
|
||||
const float scale = ((float *) dst->op_params)[0];
|
||||
|
||||
scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
@ -7757,8 +7749,6 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
|
||||
|
||||
const bool src1_stays_on_host = use_src1 && dst->op == GGML_OP_SCALE;
|
||||
|
||||
// dd = data device
|
||||
float * src0_ddf = nullptr;
|
||||
float * src1_ddf = nullptr;
|
||||
@ -7779,7 +7769,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
|
||||
}
|
||||
|
||||
if (use_src1 && !src1_stays_on_host) {
|
||||
if (use_src1) {
|
||||
if (src1_on_device) {
|
||||
src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
||||
} else {
|
||||
|
@ -1293,7 +1293,7 @@ void ggml_metal_graph_compute(
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const float scale = *(const float *) src1->data;
|
||||
const float scale = *(const float *) dst->op_params;
|
||||
|
||||
int64_t n = ggml_nelements(dst);
|
||||
|
||||
@ -1304,8 +1304,8 @@ void ggml_metal_graph_compute(
|
||||
[encoder setComputePipelineState:ctx->pipeline_scale];
|
||||
}
|
||||
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
|
42
ggml.c
42
ggml.c
@ -4171,23 +4171,23 @@ struct ggml_tensor * ggml_out_prod(
|
||||
static struct ggml_tensor * ggml_scale_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
float s,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(ggml_is_scalar(b));
|
||||
GGML_ASSERT(ggml_is_padded_1d(a));
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (a->grad || b->grad) {
|
||||
if (a->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
ggml_set_op_params(result, &s, sizeof(s));
|
||||
|
||||
result->op = GGML_OP_SCALE;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -4195,15 +4195,15 @@ static struct ggml_tensor * ggml_scale_impl(
|
||||
struct ggml_tensor * ggml_scale(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
return ggml_scale_impl(ctx, a, b, false);
|
||||
float s) {
|
||||
return ggml_scale_impl(ctx, a, s, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_scale_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
return ggml_scale_impl(ctx, a, b, true);
|
||||
float s) {
|
||||
return ggml_scale_impl(ctx, a, s, true);
|
||||
}
|
||||
|
||||
// ggml_set
|
||||
@ -10325,19 +10325,17 @@ static void ggml_compute_forward_out_prod(
|
||||
static void ggml_compute_forward_scale_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_is_scalar(src1));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
// scale factor
|
||||
const float v = *(float *) src1->data;
|
||||
const float v = *(float *) dst->op_params;
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
@ -10368,12 +10366,11 @@ static void ggml_compute_forward_scale_f32(
|
||||
static void ggml_compute_forward_scale(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_scale_f32(params, src0, src1, dst);
|
||||
ggml_compute_forward_scale_f32(params, src0, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
@ -14383,7 +14380,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
{
|
||||
ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
|
||||
ggml_compute_forward_scale(params, tensor->src[0], tensor);
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
{
|
||||
@ -14839,7 +14836,7 @@ static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct gg
|
||||
|
||||
static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
|
||||
if (ggml_hash_contains(zero_table, a)) {
|
||||
struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
|
||||
struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
|
||||
return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
|
||||
} else {
|
||||
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
|
||||
@ -14975,7 +14972,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
||||
src0->grad,
|
||||
ggml_scale(ctx,
|
||||
ggml_mul(ctx, src0, tensor->grad),
|
||||
ggml_new_f32(ctx, 2.0f)),
|
||||
2.0f),
|
||||
zero_table);
|
||||
}
|
||||
} break;
|
||||
@ -14989,7 +14986,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
||||
ggml_div(ctx,
|
||||
tensor->grad,
|
||||
tensor),
|
||||
ggml_new_f32(ctx, 0.5f)),
|
||||
0.5f),
|
||||
zero_table);
|
||||
}
|
||||
} break;
|
||||
@ -15155,17 +15152,12 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
||||
{
|
||||
// necessary for llama
|
||||
if (src0->grad) {
|
||||
const float s = ((float *) tensor->op_params)[0];
|
||||
|
||||
src0->grad =
|
||||
ggml_add_or_set(ctx,
|
||||
src0->grad,
|
||||
ggml_scale_impl(ctx, tensor->grad, src1, false),
|
||||
zero_table);
|
||||
}
|
||||
if (src1->grad) {
|
||||
src1->grad =
|
||||
ggml_add_or_set(ctx,
|
||||
src1->grad,
|
||||
ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
|
||||
ggml_scale_impl(ctx, tensor->grad, s, false),
|
||||
zero_table);
|
||||
}
|
||||
} break;
|
||||
|
4
ggml.h
4
ggml.h
@ -1094,13 +1094,13 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_scale(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
float s);
|
||||
|
||||
// in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_scale_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
float s);
|
||||
|
||||
// b -> view(a,offset,nb1,nb2,3), return modified a
|
||||
GGML_API struct ggml_tensor * ggml_set(
|
||||
|
119
llama.cpp
119
llama.cpp
@ -4032,13 +4032,12 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
struct ggml_tensor * wo,
|
||||
struct ggml_tensor * wo_b,
|
||||
struct ggml_tensor * q_cur,
|
||||
struct ggml_tensor * kq_scale,
|
||||
struct ggml_tensor * kq_mask,
|
||||
int64_t n_ctx,
|
||||
int32_t n_tokens,
|
||||
int32_t n_kv,
|
||||
float max_alibi_bias,
|
||||
float scale,
|
||||
float kq_scale,
|
||||
const llm_build_cb & cb,
|
||||
int il) {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
@ -4086,7 +4085,7 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
kq = ggml_soft_max(ctx, kq);
|
||||
cb(kq, "kq_soft_max", il);
|
||||
} else {
|
||||
kq = ggml_soft_max_ext(ctx, kq, kq_mask, scale);
|
||||
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale);
|
||||
cb(kq, "kq_soft_max_ext", il);
|
||||
}
|
||||
|
||||
@ -4231,10 +4230,6 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -4295,7 +4290,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -4416,10 +4411,6 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -4478,7 +4469,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -4536,10 +4527,6 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -4602,7 +4589,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -4659,10 +4646,6 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -4702,7 +4685,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -4759,10 +4742,6 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -4911,7 +4890,7 @@ struct llm_build_context {
|
||||
// TODO: not tested, could be broken
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Q, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Q, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -4965,10 +4944,6 @@ struct llm_build_context {
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -5002,7 +4977,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -5056,10 +5031,6 @@ struct llm_build_context {
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -5099,7 +5070,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -5150,10 +5121,6 @@ struct llm_build_context {
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -5193,7 +5160,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -5253,10 +5220,6 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -5306,7 +5269,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -5366,10 +5329,6 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -5423,7 +5382,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -5482,14 +5441,6 @@ struct llm_build_context {
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// Q_scale
|
||||
struct ggml_tensor * Q_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(Q_scale, "Q_scale", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
@ -5531,7 +5482,9 @@ struct llm_build_context {
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_scale(ctx0, Qcur, Q_scale);
|
||||
// with phi2, we scale the Q to avoid precision issues
|
||||
// ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
|
||||
Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
@ -5544,7 +5497,7 @@ struct llm_build_context {
|
||||
|
||||
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f, cb, il);
|
||||
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f, cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
@ -5681,8 +5634,6 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
|
||||
{ "pos_embd", OFFLOAD_FUNC_NR },
|
||||
|
||||
{ "inp_pos", OFFLOAD_FUNC_FRC }, // this is often used for KQ ops (e.g. rope)
|
||||
{ "Q_scale", OFFLOAD_FUNC_NOP },
|
||||
{ "KQ_scale", OFFLOAD_FUNC_NOP },
|
||||
{ "KQ_mask", OFFLOAD_FUNC_FRC },
|
||||
{ "K_shift", OFFLOAD_FUNC_FRC },
|
||||
|
||||
@ -5784,8 +5735,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
bool alloc_inp_tokens = false;
|
||||
bool alloc_inp_embd = false;
|
||||
bool alloc_inp_pos = false;
|
||||
bool alloc_inp_Q_scale = false;
|
||||
bool alloc_inp_KQ_scale = false;
|
||||
bool alloc_inp_KQ_mask = false;
|
||||
bool alloc_inp_K_shift = false;
|
||||
|
||||
@ -5849,37 +5798,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
alloc_inp_pos = true;
|
||||
}
|
||||
|
||||
if (!alloc_inp_Q_scale && strcmp(name, "Q_scale") == 0) {
|
||||
ggml_allocr_alloc(lctx.alloc, cur);
|
||||
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
const int64_t n_embd_head = model.hparams.n_embd_head();
|
||||
float f = 1.0f/sqrtf(float(n_embd_head));
|
||||
ggml_backend_tensor_set(cur, &f, 0, sizeof(f));
|
||||
}
|
||||
|
||||
alloc_inp_Q_scale = true;
|
||||
}
|
||||
|
||||
if (!alloc_inp_KQ_scale && strcmp(name, "KQ_scale") == 0) {
|
||||
ggml_allocr_alloc(lctx.alloc, cur);
|
||||
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
const int64_t n_embd_head = model.hparams.n_embd_head();
|
||||
float f;
|
||||
if (model.arch == LLM_ARCH_PHI2) {
|
||||
// with phi2, we scale the Q to avoid precision issues
|
||||
// ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
|
||||
f = 1.0f;
|
||||
} else {
|
||||
f = 1.0f/sqrtf(float(n_embd_head));
|
||||
}
|
||||
ggml_backend_tensor_set(cur, &f, 0, sizeof(f));
|
||||
}
|
||||
|
||||
alloc_inp_KQ_scale = true;
|
||||
}
|
||||
|
||||
if (!alloc_inp_KQ_mask && strcmp(name, "KQ_mask") == 0) {
|
||||
ggml_allocr_alloc(lctx.alloc, cur);
|
||||
|
||||
@ -9054,10 +8972,7 @@ static int llama_apply_lora_from_file_internal(
|
||||
ggml_set_name(BA, "BA");
|
||||
|
||||
if (scaling != 1.0f) {
|
||||
ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx.get(), scaling);
|
||||
ggml_set_name(scale_tensor, "scale_tensor");
|
||||
|
||||
BA = ggml_scale_inplace(lora_ctx.get(), BA, scale_tensor);
|
||||
BA = ggml_scale_inplace(lora_ctx.get(), BA, scaling);
|
||||
offload_func(BA);
|
||||
ggml_set_name(BA, "BA_scaled");
|
||||
}
|
||||
|
@ -766,18 +766,19 @@ struct test_bin_bcast : public test_case {
|
||||
struct test_scale : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
float scale;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR2(type, ne);
|
||||
return VARS_TO_STR3(type, ne, scale);
|
||||
}
|
||||
|
||||
test_scale(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 10})
|
||||
: type(type), ne(ne) {}
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 10},
|
||||
float scale = 2.0f)
|
||||
: type(type), ne(ne), scale(scale) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_tensor * scale = ggml_new_tensor_1d(ctx, type, 1);
|
||||
ggml_tensor * out = ggml_scale(ctx, a, scale);
|
||||
return out;
|
||||
}
|
||||
|
@ -881,19 +881,19 @@ int main(int argc, const char ** argv) {
|
||||
// scale
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
const int nargs = 1;
|
||||
|
||||
int64_t ne2[4];
|
||||
ne2[0] = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
|
||||
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
const float s = -1.0f + 2.0f*frand();
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_scale(ctx0, x[0], x[1]));
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_scale(ctx0, x[0], s));
|
||||
|
||||
check_gradient("scale", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
@ -1395,7 +1395,7 @@ int main(int argc, const char ** argv) {
|
||||
ggml_add1(ctx0,
|
||||
ggml_scale(ctx0,
|
||||
ggml_soft_max(ctx0, x[0]),
|
||||
ggml_new_f32(ctx0, 1.0f - eps)),
|
||||
1.0f - eps),
|
||||
ggml_new_f32(ctx0, eps))));
|
||||
|
||||
check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY);
|
||||
|
Loading…
Reference in New Issue
Block a user