build(python): Package scripts with pip-0517 compliance

This commit is contained in:
ditsuke 2024-02-27 12:01:02 +05:30 committed by Someone
parent 807b0c49ff
commit b0a46993df
9 changed files with 1546 additions and 12 deletions

11
.gitignore vendored
View File

@ -98,13 +98,14 @@ examples/server/*.mjs.hpp
# Python # Python
__pycache__ /.venv
.venv /__pycache__/
/Pipfile */poetry.lock
dist
poetry.lock
poetry.toml poetry.toml
# Nix
/result
# Test binaries # Test binaries
/tests/test-backend-ops /tests/test-backend-ops
/tests/test-double-float /tests/test-double-float

0
__init__.py Normal file
View File

View File

@ -50,7 +50,7 @@ class TOKENIZER_TYPE(IntEnum):
# TODO: this string has to exercise as much pre-tokenizer functionality as possible # TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome # will be updated with time - contributions welcome
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' chktxt = "\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български ''''''```````\"\"\"\"......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL"
if len(sys.argv) == 2: if len(sys.argv) == 2:
token = sys.argv[1] token = sys.argv[1]
@ -99,7 +99,7 @@ def download_file_with_auth(url, token, save_path):
response = sess.get(url, headers=headers) response = sess.get(url, headers=headers)
response.raise_for_status() response.raise_for_status()
os.makedirs(os.path.dirname(save_path), exist_ok=True) os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, 'wb') as f: with open(save_path, "wb") as f:
f.write(response.content) f.write(response.content)
logger.info(f"File {save_path} downloaded successfully") logger.info(f"File {save_path} downloaded successfully")
@ -156,7 +156,9 @@ for model in models:
else: else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e: except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}") logger.error(
f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}"
)
continue # Skip to the next model if the tokenizer can't be loaded continue # Skip to the next model if the tokenizer can't be loaded
chktok = tokenizer.encode(chktxt) chktok = tokenizer.encode(chktxt)
@ -176,13 +178,15 @@ for model in models:
pre_tokenizer = cfg["pre_tokenizer"] pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]: if "ignore_merges" in cfg["model"]:
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)) logger.info(
"ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)
)
logger.info("") logger.info("")
src_ifs += f" if chkhsh == \"{chkhsh}\":\n" src_ifs += f' if chkhsh == "{chkhsh}":\n'
src_ifs += f" # ref: {model['repo']}\n" src_ifs += f" # ref: {model['repo']}\n"
src_ifs += f" res = \"{name}\"\n" src_ifs += f' res = "{name}"\n'
src_func = f""" src_func = f"""
def get_vocab_base_pre(self, tokenizer) -> str: def get_vocab_base_pre(self, tokenizer) -> str:
@ -343,6 +347,8 @@ logger.info("\nRun the following commands to generate the vocab files for testin
for model in models: for model in models:
name = model["name"] name = model["name"]
print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100 print(
f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only"
) # noqa: NP100
logger.info("\n") logger.info("\n")

149
convert_lora_to_ggml.py Executable file
View File

@ -0,0 +1,149 @@
#!/usr/bin/env python3
from __future__ import annotations
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any, BinaryIO, Sequence
import numpy as np
import torch
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
fout.write(struct.pack("i", params["r"]))
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
# but some models ship a float value instead
# let's convert to int, but fail if lossless conversion is not possible
assert (
int(params["lora_alpha"]) == params["lora_alpha"]
), "cannot convert float to int losslessly"
fout.write(struct.pack("i", int(params["lora_alpha"])))
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
sname = name.encode("utf-8")
fout.write(
struct.pack(
"iii",
len(shape),
len(sname),
NUMPY_TYPE_TO_FTYPE[data_type.name],
)
)
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
fout.seek((fout.tell() + 31) & -32)
if __name__ == '__main__':
if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
if os.path.exists(input_model):
model = torch.load(input_model, map_location="cpu")
else:
input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
# lazy import load_file only if lora is in safetensors format.
from safetensors.torch import load_file
model = load_file(input_model, device="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
with open(input_json, "r") as f:
params = json.load(f)
if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)
if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)
with open(output_path, "wb") as fout:
fout.truncate()
write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
v = v.float()
v = v.T
else:
v = v.float()
t = v.detach().numpy()
prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)
tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)
if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
print(f"Converted {input_json} and {input_model} to {output_path}")

137
convert_persimmon_to_gguf.py Executable file
View File

@ -0,0 +1,137 @@
#!/usr/bin/env python3
import argparse
import os
import sys
from pathlib import Path
from pprint import pprint
import torch
from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
def _flatten_dict(dct, tensors, prefix=None):
assert isinstance(dct, dict)
for key in dct.keys():
new_prefix = prefix + '.' + key if prefix is not None else key
if isinstance(dct[key], torch.Tensor):
tensors[new_prefix] = dct[key]
elif isinstance(dct[key], dict):
_flatten_dict(dct[key], tensors, new_prefix)
else:
raise ValueError(type(dct[key]))
return None
def _get_sentencepiece_tokenizer_info(dir_model: Path):
tokenizer_path = dir_model / 'adept_vocab.model'
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
tokenizer = SentencePieceProcessor(str(tokenizer_path))
print('gguf: adding tokens')
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
for i in range(tokenizer.vocab_size()):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
pass
return tokens, scores, toktypes
def main():
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
args = parser.parse_args()
sys.path.append(str(args.adept_inference_dir))
persimmon_model = torch.load(args.ckpt_path)
hparams = persimmon_model['args']
pprint(hparams)
tensors: dict[str, torch.Tensor] = {}
_flatten_dict(persimmon_model['model'], tensors, None)
arch = gguf.MODEL_ARCH.PERSIMMON
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
block_count = hparams.num_layers
head_count = hparams.num_attention_heads
head_count_kv = head_count
ctx_length = hparams.seq_length
hidden_size = hparams.hidden_size
gguf_writer.add_name('persimmon-8b-chat')
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hidden_size)
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
# ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
gguf_writer.add_tokenizer_model('llama')
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
gguf_writer.add_bos_token_id(71013)
gguf_writer.add_eos_token_id(71013)
tensor_map = gguf.get_tensor_name_map(arch, block_count)
print(tensor_map)
for name in tensors.keys():
data = tensors[name]
if name.endswith(".self_attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
data = data.to(torch.float32).squeeze().numpy()
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{args.outfile}'")
print("")
if __name__ == '__main__':
main()

1197
poetry.lock generated Normal file

File diff suppressed because it is too large Load Diff

44
pyproject.toml Normal file
View File

@ -0,0 +1,44 @@
[tool.poetry]
name = "llama-cpp-scripts"
version = "0.0.0"
description = "Scripts that ship with llama.cpp"
authors = ["GGML <ggml@ggml.ai>"]
readme = "README.md"
homepage = "https://ggml.ai"
repository = "https://github.com/ggerganov/llama.cpp"
keywords = ["ggml", "gguf", "llama.cpp"]
packages = [{ include = "__init__.py", from = "." }]
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
]
[tool.poetry.dependencies]
python = ">=3.9"
numpy = "^1.25.0"
sentencepiece = ">=0.1.98,<0.2.0"
transformers = ">=4.35.2,<5.0.0"
protobuf = ">=4.21.0,<5.0.0"
gguf = { path = "./gguf-py" }
torch = {version = "^2.2.0", source = "pytorch"}
[tool.poetry.dev-dependencies]
pytest = "^5.2"
[[tool.poetry.source]]
name = "pytorch"
url = "https://download.pytorch.org/whl/cpu"
priority = "explicit"
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry.scripts]
llama-convert-hf-to-gguf = "convert_hf_to_gguf:main"
llama-convert-llama-ggml-to-gguf = "convert_llama_ggml_to_gguf:main"
llama-convert-lora-to-ggml = "convert_lora_to_ggml:main"
llama-convert-persimmon-to-gguf = "convert_persimmon_to_gguf:main"
llama-convert = "convert:main"
llama-ggml_vk_generate_shaders = "ggml_vk_generate_shaders:main"