metal : support MTLGPUFamily < Apple7, formatting, style (#3524)

* metal : improve decoding speed for batches of 2-16

* metal : rename kernels mul_mat_ to mul_mv_

* metal : indentations

* minor

* metal : print more GPU info + disable mul_mm for MTLGPUFamiliy < Apple7
This commit is contained in:
Georgi Gerganov 2023-10-08 10:01:53 +03:00 committed by GitHub
parent 63d3b06a43
commit b0ec5218c3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 176 additions and 118 deletions

View File

@ -81,18 +81,18 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_q6_K); GGML_METAL_DECL_KERNEL(get_rows_q6_K);
GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mat_f32_f32); GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32); GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32); GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32); GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
@ -262,18 +262,19 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(get_rows_q6_K); GGML_METAL_ADD_KERNEL(get_rows_q6_K);
GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mat_f32_f32); GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32); GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32);
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32); GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32); GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
@ -284,6 +285,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
}
GGML_METAL_ADD_KERNEL(rope_f32); GGML_METAL_ADD_KERNEL(rope_f32);
GGML_METAL_ADD_KERNEL(rope_f16); GGML_METAL_ADD_KERNEL(rope_f16);
GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(alibi_f32);
@ -296,8 +298,22 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#undef GGML_METAL_ADD_KERNEL #undef GGML_METAL_ADD_KERNEL
} }
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
#if TARGET_OS_OSX #if TARGET_OS_OSX
// print MTL GPU family:
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
GGML_METAL_LOG_INFO("%s: GPU arch: %s\n", __func__, [[ctx->device architecture].name UTF8String]);
// determine max supported GPU family
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
for (int i = MTLGPUFamilyApple9 + 10; i >= MTLGPUFamilyApple1; --i) {
if ([ctx->device supportsFamily:i]) {
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i);
break;
}
}
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) { if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
@ -339,18 +355,19 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(get_rows_q6_K); GGML_METAL_DEL_KERNEL(get_rows_q6_K);
GGML_METAL_DEL_KERNEL(rms_norm); GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(norm); GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mat_f32_f32); GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32); GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q2_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q3_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32);
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32); GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32); GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
@ -361,6 +378,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
}
GGML_METAL_DEL_KERNEL(rope_f32); GGML_METAL_DEL_KERNEL(rope_f32);
GGML_METAL_DEL_KERNEL(rope_f16); GGML_METAL_DEL_KERNEL(rope_f16);
GGML_METAL_DEL_KERNEL(alibi_f32); GGML_METAL_DEL_KERNEL(alibi_f32);
@ -986,21 +1004,46 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
{ {
// TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
GGML_ASSERT(ne00 == ne10); GGML_ASSERT(ne00 == ne10);
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
uint gqa = ne12/ne02;
GGML_ASSERT(ne03 == ne13); GGML_ASSERT(ne03 == ne13);
const uint gqa = ne12/ne02;
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel
int ne11_mm_min = 1;
#if 0
// the numbers below are measured on M2 Ultra for 7B and 13B models
// these numbers do not translate to other devices or model sizes
// TODO: need to find a better approach
if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
switch (src0t) {
case GGML_TYPE_F16: ne11_mm_min = 2; break;
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
case GGML_TYPE_Q5_0: // not tested yet
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
default: ne11_mm_min = 1; break;
}
}
#endif
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if (!ggml_is_transposed(src0) && if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
!ggml_is_transposed(src0) &&
!ggml_is_transposed(src1) && !ggml_is_transposed(src1) &&
src1t == GGML_TYPE_F32 && src1t == GGML_TYPE_F32 &&
[ctx->device supportsFamily:MTLGPUFamilyApple7] && ne00 % 32 == 0 &&
ne00%32 == 0 && ne11 > ne11_mm_min) {
ne11 > 2) { //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break; case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
@ -1029,17 +1072,18 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:13]; [encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
[encoder setThreadgroupMemoryLength:8192 atIndex:0]; [encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else { } else {
int nth0 = 32; int nth0 = 32;
int nth1 = 1; int nth1 = 1;
int nrows = 1; int nrows = 1;
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
// use custom matrix x vector kernel // use custom matrix x vector kernel
switch (src0t) { switch (src0t) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f32_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
nrows = 4; nrows = 4;
} break; } break;
case GGML_TYPE_F16: case GGML_TYPE_F16:
@ -1047,12 +1091,12 @@ void ggml_metal_graph_compute(
nth0 = 32; nth0 = 32;
nth1 = 1; nth1 = 1;
if (ne11 * ne12 < 4) { if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
nrows = ne11; nrows = ne11;
} else { } else {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
nrows = 4; nrows = 4;
} }
} break; } break;
@ -1063,7 +1107,7 @@ void ggml_metal_graph_compute(
nth0 = 8; nth0 = 8;
nth1 = 8; nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32];
} break; } break;
case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_1:
{ {
@ -1072,7 +1116,7 @@ void ggml_metal_graph_compute(
nth0 = 8; nth0 = 8;
nth1 = 8; nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
} break; } break;
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
{ {
@ -1081,7 +1125,7 @@ void ggml_metal_graph_compute(
nth0 = 8; nth0 = 8;
nth1 = 8; nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32];
} break; } break;
case GGML_TYPE_Q2_K: case GGML_TYPE_Q2_K:
{ {
@ -1090,7 +1134,7 @@ void ggml_metal_graph_compute(
nth0 = 2; nth0 = 2;
nth1 = 32; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32];
} break; } break;
case GGML_TYPE_Q3_K: case GGML_TYPE_Q3_K:
{ {
@ -1099,7 +1143,7 @@ void ggml_metal_graph_compute(
nth0 = 2; nth0 = 2;
nth1 = 32; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32];
} break; } break;
case GGML_TYPE_Q4_K: case GGML_TYPE_Q4_K:
{ {
@ -1108,7 +1152,7 @@ void ggml_metal_graph_compute(
nth0 = 4; //1; nth0 = 4; //1;
nth1 = 8; //32; nth1 = 8; //32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32];
} break; } break;
case GGML_TYPE_Q5_K: case GGML_TYPE_Q5_K:
{ {
@ -1117,7 +1161,7 @@ void ggml_metal_graph_compute(
nth0 = 2; nth0 = 2;
nth1 = 32; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32];
} break; } break;
case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K:
{ {
@ -1126,7 +1170,7 @@ void ggml_metal_graph_compute(
nth0 = 2; nth0 = 2;
nth1 = 32; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32];
} break; } break;
default: default:
{ {
@ -1155,7 +1199,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17]; [encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 || if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) { src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q4_K) { else if (src0t == GGML_TYPE_Q4_K) {

View File

@ -435,18 +435,23 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device
int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne10, int64_t ne12, int64_t ne0, int64_t ne1, uint gqa, int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne10, int64_t ne12, int64_t ne0, int64_t ne1, uint gqa,
uint3 tgpig, uint tiisg, uint sgitg) { uint3 tgpig, uint tiisg, uint sgitg) {
const int nb = ne00/QK4_0; const int nb = ne00/QK4_0;
const int r0 = tgpig.x; const int r0 = tgpig.x;
const int r1 = tgpig.y; const int r1 = tgpig.y;
const int im = tgpig.z; const int im = tgpig.z;
const int first_row = (r0 * nsg + sgitg) * nr; const int first_row = (r0 * nsg + sgitg) * nr;
const uint offset0 = first_row * nb + im/gqa*(nb*ne0); const uint offset0 = first_row * nb + im/gqa*(nb*ne0);
device const block_q_type * x = (device const block_q_type *) src0 + offset0; device const block_q_type * x = (device const block_q_type *) src0 + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[16]; // src1 vector cache
float sumf[nr]={0.f};
const int ix = tiisg/2; float yl[16]; // src1 vector cache
const int il = 8*(tiisg%2); float sumf[nr] = {0.f};
const int ix = (tiisg/2);
const int il = (tiisg%2)*8;
device const float * yb = y + ix * QK4_0 + il; device const float * yb = y + ix * QK4_0 + il;
@ -457,6 +462,7 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device
sumy += yb[i] + yb[i+1]; sumy += yb[i] + yb[i+1];
yl[i+0] = yb[i+ 0]; yl[i+0] = yb[i+ 0];
yl[i+1] = yb[i+ 1]/256.f; yl[i+1] = yb[i+ 1]/256.f;
sumy += yb[i+16] + yb[i+17]; sumy += yb[i+16] + yb[i+17];
yl[i+8] = yb[i+16]/16.f; yl[i+8] = yb[i+16]/16.f;
yl[i+9] = yb[i+17]/4096.f; yl[i+9] = yb[i+17]/4096.f;
@ -472,12 +478,12 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device
for (int row = 0; row < nr; ++row) { for (int row = 0; row < nr; ++row) {
const float tot = simd_sum(sumf[row]); const float tot = simd_sum(sumf[row]);
if (tiisg == 0 && first_row + row < ne01) { if (tiisg == 0 && first_row + row < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot; dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
} }
} }
} }
kernel void kernel_mul_mat_q4_0_f32( kernel void kernel_mul_mv_q4_0_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -495,7 +501,7 @@ kernel void kernel_mul_mat_q4_0_f32(
mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg); mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
} }
kernel void kernel_mul_mat_q4_1_f32( kernel void kernel_mul_mv_q4_1_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -515,7 +521,7 @@ kernel void kernel_mul_mat_q4_1_f32(
#define NB_Q8_0 8 #define NB_Q8_0 8
kernel void kernel_mul_mat_q8_0_f32( kernel void kernel_mul_mv_q8_0_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -579,7 +585,7 @@ kernel void kernel_mul_mat_q8_0_f32(
#define N_F32_F32 4 #define N_F32_F32 4
kernel void kernel_mul_mat_f32_f32( kernel void kernel_mul_mv_f32_f32(
device const char * src0, device const char * src0,
device const char * src1, device const char * src1,
device float * dst, device float * dst,
@ -650,7 +656,7 @@ kernel void kernel_mul_mat_f32_f32(
} }
} }
kernel void kernel_mul_mat_f16_f32_1row( kernel void kernel_mul_mv_f16_f32_1row(
device const char * src0, device const char * src0,
device const char * src1, device const char * src1,
device float * dst, device float * dst,
@ -704,7 +710,7 @@ kernel void kernel_mul_mat_f16_f32_1row(
#define N_F16_F32 4 #define N_F16_F32 4
kernel void kernel_mul_mat_f16_f32( kernel void kernel_mul_mv_f16_f32(
device const char * src0, device const char * src0,
device const char * src1, device const char * src1,
device float * dst, device float * dst,
@ -776,7 +782,7 @@ kernel void kernel_mul_mat_f16_f32(
} }
// Assumes row size (ne00) is a multiple of 4 // Assumes row size (ne00) is a multiple of 4
kernel void kernel_mul_mat_f16_f32_l4( kernel void kernel_mul_mv_f16_f32_l4(
device const char * src0, device const char * src0,
device const char * src1, device const char * src1,
device float * dst, device float * dst,
@ -1253,7 +1259,7 @@ static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
//====================================== dot products ========================= //====================================== dot products =========================
kernel void kernel_mul_mat_q2_K_f32( kernel void kernel_mul_mv_q2_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -1397,7 +1403,7 @@ kernel void kernel_mul_mat_q2_K_f32(
} }
#if QK_K == 256 #if QK_K == 256
kernel void kernel_mul_mat_q3_K_f32( kernel void kernel_mul_mv_q3_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -1549,7 +1555,7 @@ kernel void kernel_mul_mat_q3_K_f32(
} }
} }
#else #else
kernel void kernel_mul_mat_q3_K_f32( kernel void kernel_mul_mv_q3_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -1620,7 +1626,7 @@ kernel void kernel_mul_mat_q3_K_f32(
#endif #endif
#if QK_K == 256 #if QK_K == 256
kernel void kernel_mul_mat_q4_K_f32( kernel void kernel_mul_mv_q4_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -1726,7 +1732,7 @@ kernel void kernel_mul_mat_q4_K_f32(
} }
} }
#else #else
kernel void kernel_mul_mat_q4_K_f32( kernel void kernel_mul_mv_q4_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -1815,7 +1821,7 @@ kernel void kernel_mul_mat_q4_K_f32(
} }
#endif #endif
kernel void kernel_mul_mat_q5_K_f32( kernel void kernel_mul_mv_q5_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -1988,7 +1994,7 @@ kernel void kernel_mul_mat_q5_K_f32(
} }
kernel void kernel_mul_mat_q6_K_f32( kernel void kernel_mul_mv_q6_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
device float * dst, device float * dst,
@ -2326,7 +2332,7 @@ kernel void kernel_get_rows(
} }
#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix A #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
#define BLOCK_SIZE_K 32 #define BLOCK_SIZE_K 32
#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
@ -2363,9 +2369,11 @@ kernel void kernel_mul_mm(device const uchar * src0,
const uint r0 = tgpig.y; const uint r0 = tgpig.y;
const uint r1 = tgpig.x; const uint r1 = tgpig.x;
const uint im = tgpig.z; const uint im = tgpig.z;
// if this block is of 64x32 shape or smaller // if this block is of 64x32 shape or smaller
short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
// a thread shouldn't load data outside of the matrix // a thread shouldn't load data outside of the matrix
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
@ -2389,26 +2397,30 @@ kernel void kernel_mul_mm(device const uchar * src0,
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
//load data and store to threadgroup memory // load data and store to threadgroup memory
half4x4 temp_a; half4x4 temp_a;
dequantize_func(x, il, temp_a); dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
#pragma unroll(16) #pragma unroll(16)
for (int i = 0; i < 16; i++) { for (int i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
+ 16 * (tiitg % THREAD_PER_ROW) + 8 * (i / 8)) \ + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
+ (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
} }
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) \
= *((device float2x4 *)y); *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
il = (il + 2 < nl) ? il + 2 : il % 2; il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2+nl-1)/nl : x; x = (il < 2) ? x + (2+nl-1)/nl : x;
y += BLOCK_SIZE_K; y += BLOCK_SIZE_K;
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
//load matrices from threadgroup memory and conduct outer products
// load matrices from threadgroup memory and conduct outer products
threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
#pragma unroll(4) #pragma unroll(4)
for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
#pragma unroll(4) #pragma unroll(4)
@ -2423,6 +2435,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE; lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE; lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
#pragma unroll(8) #pragma unroll(8)
for (int i = 0; i < 8; i++){ for (int i = 0; i < 8; i++){
simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]); simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
@ -2431,25 +2444,26 @@ kernel void kernel_mul_mm(device const uchar * src0,
} }
if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) { if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
device float *C = dst + BLOCK_SIZE_M * r0 + 32 * (sgitg&1) \ device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
+ (BLOCK_SIZE_N * r1 + 16 * (sgitg>>1)) * ne0 + im*ne1*ne0; + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
for (int i = 0; i < 8; i++) { for (int i = 0; i < 8; i++) {
simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0); simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
} }
} else { } else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix // block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float *temp_str = ((threadgroup float *)shared_memory) \ threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) { for (int i = 0; i < 8; i++) {
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
} }
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
if (sgitg==0) { device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
if (sgitg == 0) {
for (int i = 0; i < n_rows; i++) { for (int i = 0; i < n_rows; i++) {
for (int j = tiitg; j< n_cols; j += BLOCK_SIZE_N) { for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
*(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M); *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
} }
} }