From b1f8af1886e8187db6bb2a9b87cfc1c0f175f629 Mon Sep 17 00:00:00 2001 From: Brian Date: Mon, 13 May 2024 12:56:47 +1000 Subject: [PATCH] convert.py: Outfile default name change and additional metadata support (#4858) * convert.py: Outfile default name change and additional metadata support * convert.py: don't stringify Metadata load method output * convert.py: typo fix * convert.py: fix metadata format to sync with LLM_KV_NAMES in llama.cpp --- convert.py | 178 +++++++++++++++++++++++++++++++++++++++++++++-------- 1 file changed, 154 insertions(+), 24 deletions(-) diff --git a/convert.py b/convert.py index 148bfd66a..e2e642351 100755 --- a/convert.py +++ b/convert.py @@ -24,7 +24,7 @@ from abc import ABC, abstractmethod from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from dataclasses import dataclass from pathlib import Path -from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable +from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional import numpy as np from sentencepiece import SentencePieceProcessor @@ -344,10 +344,47 @@ class Params: return params +@dataclass +class Metadata: + name: Optional[str] = None + author: Optional[str] = None + version: Optional[str] = None + url: Optional[str] = None + description: Optional[str] = None + licence: Optional[str] = None + source_url: Optional[str] = None + source_hf_repo: Optional[str] = None + + @staticmethod + def load(metadata_path: Path) -> Metadata: + if metadata_path is None or not metadata_path.exists(): + return Metadata() + + with open(metadata_path, 'r') as file: + data = json.load(file) + + # Create a new Metadata instance + metadata = Metadata() + + # Assigning values to Metadata attributes if they exist in the JSON file + # This is based on LLM_KV_NAMES mapping in llama.cpp + metadata.name = data.get("general.name") + metadata.author = data.get("general.author") + metadata.version = data.get("general.version") + metadata.url = data.get("general.url") + metadata.description = data.get("general.description") + metadata.license = data.get("general.license") + metadata.source_url = data.get("general.source.url") + metadata.source_hf_repo = data.get("general.source.huggingface.repository") + + return metadata + + # # vocab # + @runtime_checkable class BaseVocab(Protocol): tokenizer_model: ClassVar[str] @@ -1066,21 +1103,42 @@ class OutputFile: def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE): self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) - def add_meta_arch(self, params: Params) -> None: + def add_meta_model(self, params: Params, metadata: Metadata) -> None: + # Metadata About The Model And Its Provenence name = "LLaMA" - - # TODO: better logic to determine model name - if params.n_ctx == 4096: - name = "LLaMA v2" + if metadata is not None and metadata.name is not None: + name = metadata.name elif params.path_model is not None: - name = str(params.path_model.parent).split('/')[-1] + name = str(params.path_model.parent).split("/")[-1] + elif params.n_ctx == 4096: + # Heuristic detection of LLaMA v2 model + name = "LLaMA v2" - self.gguf.add_name (name) - self.gguf.add_vocab_size (params.n_vocab) - self.gguf.add_context_length (params.n_ctx) - self.gguf.add_embedding_length (params.n_embd) - self.gguf.add_block_count (params.n_layer) - self.gguf.add_feed_forward_length (params.n_ff) + self.gguf.add_name(name) + + if metadata is not None: + if metadata.author is not None: + self.gguf.add_author(metadata.author) + if metadata.version is not None: + self.gguf.add_version(metadata.version) + if metadata.url is not None: + self.gguf.add_url(metadata.url) + if metadata.description is not None: + self.gguf.add_description(metadata.description) + if metadata.licence is not None: + self.gguf.add_licence(metadata.licence) + if metadata.source_url is not None: + self.gguf.add_source_url(metadata.source_url) + if metadata.source_hf_repo is not None: + self.gguf.add_source_hf_repo(metadata.source_hf_repo) + + def add_meta_arch(self, params: Params) -> None: + # Metadata About The Neural Architecture Itself + self.gguf.add_vocab_size(params.n_vocab) + self.gguf.add_context_length(params.n_ctx) + self.gguf.add_embedding_length(params.n_embd) + self.gguf.add_block_count(params.n_layer) + self.gguf.add_feed_forward_length(params.n_ff) self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) self.gguf.add_head_count (params.n_head) self.gguf.add_head_count_kv (params.n_head_kv) @@ -1183,13 +1241,14 @@ class OutputFile: @staticmethod def write_vocab_only( fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, - endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, + endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) # meta data + of.add_meta_model(params, metadata) of.add_meta_arch(params) of.add_meta_vocab(vocab) of.add_meta_special_vocab(svocab) @@ -1216,12 +1275,14 @@ class OutputFile: fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, + metadata: Metadata = None, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) # meta data + of.add_meta_model(params, metadata) of.add_meta_arch(params) if isinstance(vocab, Vocab): of.add_meta_vocab(vocab) @@ -1257,6 +1318,37 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT raise ValueError(f"Unexpected combination of types: {name_to_type}") +def model_parameter_count(model: LazyModel) -> int: + total_model_parameters = 0 + for i, (name, lazy_tensor) in enumerate(model.items()): + sum_weights_in_tensor = 1 + for dim in lazy_tensor.shape: + sum_weights_in_tensor *= dim + total_model_parameters += sum_weights_in_tensor + return total_model_parameters + + +def model_parameter_count_rounded_notation(model_params_count: int) -> str: + if model_params_count > 1e12 : + # Trillions Of Parameters + scaled_model_params = model_params_count * 1e-12 + scale_suffix = "T" + elif model_params_count > 1e9 : + # Billions Of Parameters + scaled_model_params = model_params_count * 1e-9 + scale_suffix = "B" + elif model_params_count > 1e6 : + # Millions Of Parameters + scaled_model_params = model_params_count * 1e-6 + scale_suffix = "M" + else: + # Thousands Of Parameters + scaled_model_params = model_params_count * 1e-3 + scale_suffix = "K" + + return f"{round(scaled_model_params)}{scale_suffix}" + + def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) for (name, tensor) in model.items()} @@ -1436,13 +1528,35 @@ class VocabFactory: return vocab, special_vocab -def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path: - namestr = { - GGMLFileType.AllF32: "f32", - GGMLFileType.MostlyF16: "f16", - GGMLFileType.MostlyQ8_0:"q8_0", +def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str: + quantization = { + GGMLFileType.AllF32: "F32", + GGMLFileType.MostlyF16: "F16", + GGMLFileType.MostlyQ8_0: "Q8_0", }[file_type] - ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf" + + parameters = model_parameter_count_rounded_notation(model_params_count) + + expert_count = "" + if params.n_experts is not None: + expert_count = f"{params.n_experts}x" + + version = "" + if metadata is not None and metadata.version is not None: + version = f"-{metadata.version}" + + name = "ggml-model" + if metadata is not None and metadata.name is not None: + name = metadata.name + elif params.path_model is not None: + name = params.path_model.name + + return f"{name}{version}-{expert_count}{parameters}-{quantization}" + + +def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path: + default_filename = default_convention_outfile(file_type, params, model_params_count, metadata) + ret = model_paths[0].parent / f"{default_filename}.gguf" if ret in model_paths: logger.error( f"Error: Default output path ({ret}) would overwrite the input. " @@ -1480,17 +1594,30 @@ def main(args_in: list[str] | None = None) -> None: parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") + parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file") + parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name") args = parser.parse_args(args_in) if args.verbose: logging.basicConfig(level=logging.DEBUG) - elif args.dump_single or args.dump: + elif args.dump_single or args.dump or args.get_outfile: # Avoid printing anything besides the dump output logging.basicConfig(level=logging.WARNING) else: logging.basicConfig(level=logging.INFO) + metadata = Metadata.load(args.metadata) + + if args.get_outfile: + model_plus = load_some_model(args.model) + params = Params.load(model_plus) + model = convert_model_names(model_plus.model, params, args.skip_unknown) + model_params_count = model_parameter_count(model_plus.model) + ftype = pick_output_type(model, args.outtype) + print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100 + return + if args.no_vocab and args.vocab_only: raise ValueError("--vocab-only does not make sense with --no-vocab") @@ -1504,6 +1631,9 @@ def main(args_in: list[str] | None = None) -> None: else: model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None) + model_params_count = model_parameter_count(model_plus.model) + logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})") + if args.dump: do_dump_model(model_plus) return @@ -1557,7 +1687,7 @@ def main(args_in: list[str] | None = None) -> None: f_norm_eps = 1e-5, ) OutputFile.write_vocab_only(outfile, params, vocab, special_vocab, - endianess=endianess, pad_vocab=args.pad_vocab) + endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata) logger.info(f"Wrote {outfile}") return @@ -1570,13 +1700,13 @@ def main(args_in: list[str] | None = None) -> None: model = convert_model_names(model, params, args.skip_unknown) ftype = pick_output_type(model, args.outtype) model = convert_to_output_type(model, ftype) - outfile = args.outfile or default_outfile(model_plus.paths, ftype) + outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata) params.ftype = ftype logger.info(f"Writing {outfile}, format {ftype}") OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, - concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab) + concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata) logger.info(f"Wrote {outfile}")