mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 13:27:21 +01:00
Tests for min_p, sampling queue (#5147)
This commit is contained in:
parent
af4980bfed
commit
b2b2bf988c
@ -8133,6 +8133,11 @@ void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * c
|
||||
}
|
||||
|
||||
void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
|
||||
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
|
||||
// if (k >= (int32_t)candidates->size) {
|
||||
// return;
|
||||
// }
|
||||
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
k = std::max(k, (int) min_keep);
|
||||
|
@ -5,11 +5,10 @@
|
||||
#undef NDEBUG
|
||||
#endif
|
||||
|
||||
#include <cmath>
|
||||
#include <numeric>
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void dump(const llama_token_data_array * candidates) {
|
||||
for (size_t i = 0; i < candidates->size; i++) {
|
||||
@ -20,11 +19,11 @@ static void dump(const llama_token_data_array * candidates) {
|
||||
#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
|
||||
|
||||
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
|
||||
size_t n_vocab = probs.size();
|
||||
const size_t n_vocab = probs.size();
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
float logit = log(probs[token_id]);
|
||||
const float logit = logf(probs[token_id]);
|
||||
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
@ -41,11 +40,11 @@ static void test_top_k(const std::vector<float> & probs, const std::vector<float
|
||||
}
|
||||
|
||||
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||
size_t n_vocab = probs.size();
|
||||
const size_t n_vocab = probs.size();
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
float logit = log(probs[token_id]);
|
||||
const float logit = logf(probs[token_id]);
|
||||
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
@ -62,11 +61,11 @@ static void test_top_p(const std::vector<float> & probs, const std::vector<float
|
||||
}
|
||||
|
||||
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
|
||||
size_t n_vocab = probs.size();
|
||||
const size_t n_vocab = probs.size();
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
float logit = log(probs[token_id]);
|
||||
const float logit = logf(probs[token_id]);
|
||||
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
@ -81,12 +80,33 @@ static void test_tfs(const std::vector<float> & probs, const std::vector<float>
|
||||
}
|
||||
}
|
||||
|
||||
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||
size_t n_vocab = probs.size();
|
||||
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||
const size_t n_vocab = probs.size();
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
float logit = log(probs[token_id]);
|
||||
const float logit = logf(probs[token_id]);
|
||||
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
DUMP(&candidates_p);
|
||||
llama_sample_min_p(nullptr, &candidates_p, p, 1);
|
||||
DUMP(&candidates_p);
|
||||
llama_sample_softmax(nullptr, &candidates_p);
|
||||
|
||||
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < candidates_p.size; i++) {
|
||||
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||
}
|
||||
}
|
||||
|
||||
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||
const size_t n_vocab = probs.size();
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
@ -107,11 +127,11 @@ static void test_repetition_penalties(
|
||||
) {
|
||||
GGML_ASSERT(probs.size() == expected_probs.size());
|
||||
|
||||
size_t n_vocab = probs.size();
|
||||
const size_t n_vocab = probs.size();
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
float logit = log(probs[token_id]);
|
||||
const float logit = logf(probs[token_id]);
|
||||
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
@ -128,6 +148,88 @@ static void test_repetition_penalties(
|
||||
}
|
||||
}
|
||||
|
||||
static void test_sampler_queue(
|
||||
const size_t n_vocab, const std::string samplers_sequence, const int top_k, const float top_p, const float min_p
|
||||
) {
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(token_id);
|
||||
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
llama_token min_token_id = 0;
|
||||
const llama_token max_token_id = n_vocab-1;
|
||||
|
||||
for (auto s : samplers_sequence) {
|
||||
switch (s){
|
||||
case 'k': llama_sample_top_k (nullptr, &candidates_p, top_k, 1); break;
|
||||
case 'f': GGML_ASSERT(false && "tail_free test not implemented"); break;
|
||||
case 'y': GGML_ASSERT(false && "typical test not implemented"); break;
|
||||
case 'p': llama_sample_top_p (nullptr, &candidates_p, top_p, 1); break;
|
||||
case 'm': llama_sample_min_p (nullptr, &candidates_p, min_p, 1); break;
|
||||
case 't': GGML_ASSERT(false && "temperature test not implemented"); break;
|
||||
default : GGML_ASSERT(false && "Unknown sampler"); break;
|
||||
}
|
||||
|
||||
llama_sample_softmax(nullptr, &candidates_p); // make sure tokens are sorted for tests
|
||||
|
||||
const int size = candidates_p.size;
|
||||
|
||||
if (s == 'k') {
|
||||
const int expected_size = std::min(size, top_k);
|
||||
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k));
|
||||
|
||||
GGML_ASSERT(size == expected_size);
|
||||
GGML_ASSERT(candidates_p.data[0].id == max_token_id);
|
||||
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
|
||||
} else if (s == 'p') {
|
||||
const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2;
|
||||
const int softmax_numerator_target = ceilf(top_p * softmax_divisor);
|
||||
|
||||
min_token_id = n_vocab;
|
||||
int expected_size = 0;
|
||||
int cumsum = 0;
|
||||
do { // do-while because always at least one token is sampled
|
||||
min_token_id--;
|
||||
expected_size++;
|
||||
|
||||
cumsum += min_token_id;
|
||||
} while (cumsum < softmax_numerator_target);
|
||||
|
||||
// token 0 has p == 0, need special consideration for cumsum because top_p immediately returns
|
||||
if (min_token_id == 1) {
|
||||
min_token_id--;
|
||||
expected_size += 1;
|
||||
}
|
||||
|
||||
GGML_ASSERT(size == expected_size);
|
||||
GGML_ASSERT(candidates_p.data[0].id == max_token_id);
|
||||
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
|
||||
} else if (s == 'm') {
|
||||
int expected_size = ceilf((1.0f-min_p) * n_vocab);
|
||||
expected_size = std::max(expected_size, 1);
|
||||
expected_size = std::min(expected_size, size);
|
||||
|
||||
min_token_id = floorf(min_p * n_vocab);
|
||||
min_token_id = std::max(min_token_id, 1);
|
||||
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size));
|
||||
min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1));
|
||||
|
||||
GGML_ASSERT(size == expected_size);
|
||||
GGML_ASSERT(candidates_p.data[0].id == max_token_id);
|
||||
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
printf("Sampler queue %3s OK with n_vocab=%05ld top_k=%05d top_p=%f min_p=%f\n",
|
||||
samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
|
||||
}
|
||||
|
||||
int main(void) {
|
||||
ggml_time_init();
|
||||
|
||||
@ -139,6 +241,15 @@ int main(void) {
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
|
||||
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f);
|
||||
|
||||
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
|
||||
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
|
||||
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
|
||||
@ -154,6 +265,34 @@ int main(void) {
|
||||
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
|
||||
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
|
||||
|
||||
test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
|
||||
test_sampler_queue(10000, "k", 1, 1.0f, 1.0f);
|
||||
test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f);
|
||||
test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f);
|
||||
test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f);
|
||||
test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12);
|
||||
|
||||
test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f);
|
||||
test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f);
|
||||
test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f);
|
||||
test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f);
|
||||
test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f);
|
||||
|
||||
test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "km", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f);
|
||||
test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f);
|
||||
|
||||
test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f);
|
||||
test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f);
|
||||
|
||||
printf("OK\n");
|
||||
|
||||
return 0;
|
||||
|
Loading…
x
Reference in New Issue
Block a user