mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 22:08:55 +01:00
vulkan: Optimize soft_max (#10301)
* vulkan: Optimize soft_max Large soft_max could already saturate memory, but small/medium sizes were pretty slow. The bulk of the gains for them comes from using a smaller workgroup size, and making the workgroup size match the subgroup size also makes the barriers much cheaper. Cache some values in locals to avoid refetching/recomputing. And stamp out a few "template instantiations" so smaller cases will fully unroll. Add a missing early return for OOB rows. This happens when there are more than 512 rows and the dispatch is 512 x H. * vulkan: Further soft_max optimizations Restore the workgroup size of 512 case, use it for >1024. Use unrollable loops for more iteration counts.
This commit is contained in:
parent
557924f222
commit
b3e585988f
@ -218,6 +218,7 @@ struct vk_device_struct {
|
|||||||
vk_pipeline pipeline_tanh_f32;
|
vk_pipeline pipeline_tanh_f32;
|
||||||
vk_pipeline pipeline_diag_mask_inf_f32;
|
vk_pipeline pipeline_diag_mask_inf_f32;
|
||||||
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
|
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
|
||||||
|
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
|
||||||
vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16;
|
vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16;
|
||||||
vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16;
|
vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16;
|
||||||
vk_pipeline pipeline_argsort_f32;
|
vk_pipeline pipeline_argsort_f32;
|
||||||
@ -388,6 +389,7 @@ struct vk_op_soft_max_push_constants {
|
|||||||
float m0;
|
float m0;
|
||||||
float m1;
|
float m1;
|
||||||
uint32_t n_head_log2;
|
uint32_t n_head_log2;
|
||||||
|
uint32_t nrows_x;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct vk_op_argsort_push_constants {
|
struct vk_op_argsort_push_constants {
|
||||||
@ -1497,8 +1499,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||||||
|
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
|
||||||
|
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
|
||||||
|
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||||
@ -3932,10 +3936,10 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||||||
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
|
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
|
||||||
|
|
||||||
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
|
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
|
||||||
return ctx->device->pipeline_soft_max_f32;
|
return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32;
|
||||||
}
|
}
|
||||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||||
return ctx->device->pipeline_soft_max_f32_f16;
|
return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_f16_wg512 : ctx->device->pipeline_soft_max_f32_f16;
|
||||||
}
|
}
|
||||||
return nullptr;
|
return nullptr;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
@ -4581,6 +4585,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||||||
scale, max_bias,
|
scale, max_bias,
|
||||||
m0, m1,
|
m0, m1,
|
||||||
n_head_log2,
|
n_head_log2,
|
||||||
|
nrows_x,
|
||||||
}, dryrun);
|
}, dryrun);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
#version 450
|
#version 450
|
||||||
|
|
||||||
#extension GL_EXT_shader_16bit_storage : require
|
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
|
||||||
|
#extension GL_EXT_control_flow_attributes : enable
|
||||||
|
|
||||||
layout (push_constant) uniform parameter
|
layout (push_constant) uniform parameter
|
||||||
{
|
{
|
||||||
@ -11,14 +12,13 @@ layout (push_constant) uniform parameter
|
|||||||
float m0;
|
float m0;
|
||||||
float m1;
|
float m1;
|
||||||
uint n_head_log2;
|
uint n_head_log2;
|
||||||
|
uint nrows_x;
|
||||||
} p;
|
} p;
|
||||||
|
|
||||||
#include "types.comp"
|
#include "types.comp"
|
||||||
|
|
||||||
#extension GL_EXT_control_flow_attributes : enable
|
layout(constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||||
#define BLOCK_SIZE 512
|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||||
|
|
||||||
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
|
||||||
|
|
||||||
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
||||||
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
|
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
|
||||||
@ -26,11 +26,18 @@ layout (binding = 2) buffer D {D_TYPE data_d[];};
|
|||||||
|
|
||||||
shared FLOAT_TYPE vals[BLOCK_SIZE];
|
shared FLOAT_TYPE vals[BLOCK_SIZE];
|
||||||
|
|
||||||
void main() {
|
// num_iters is the number of BLOCK_SIZE loop iterations we need to iterate
|
||||||
|
// over all the columns. The main function tries to pass a constant here,
|
||||||
|
// as if it were a template function, to allow unrolling.
|
||||||
|
void soft_max(uint num_iters) {
|
||||||
const uint tid = gl_LocalInvocationID.x;
|
const uint tid = gl_LocalInvocationID.x;
|
||||||
const uint rowx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
|
const uint rowx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
|
||||||
const uint rowy = rowx % p.KY;
|
const uint rowy = rowx % p.KY;
|
||||||
|
|
||||||
|
if (rowx >= p.nrows_x) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
float slope = 1.0f;
|
float slope = 1.0f;
|
||||||
|
|
||||||
// ALiBi
|
// ALiBi
|
||||||
@ -46,19 +53,37 @@ void main() {
|
|||||||
// Find max
|
// Find max
|
||||||
FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);
|
FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);
|
||||||
|
|
||||||
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
// Cache values while we compute the max, so we don't need to read them
|
||||||
|
// again when we're ready to compute exp(x-max).
|
||||||
|
const uint DATA_CACHE_SIZE = 16;
|
||||||
|
FLOAT_TYPE data_cache[DATA_CACHE_SIZE];
|
||||||
|
|
||||||
|
[[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
|
||||||
const uint col = col0 + tid;
|
const uint col = col0 + tid;
|
||||||
|
|
||||||
if (col >= p.KX) {
|
FLOAT_TYPE a = FLOAT_TYPE(0);
|
||||||
break;
|
if (col < p.KX) {
|
||||||
|
a = data_a[rowx * p.KX + col];
|
||||||
}
|
}
|
||||||
|
|
||||||
max_val = max(max_val, FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)));
|
FLOAT_TYPE b = FLOAT_TYPE(0);
|
||||||
}
|
if (p.KY > 0 && col < p.KX) {
|
||||||
vals[tid] = max_val;
|
b = data_b[rowy * p.KX + col];
|
||||||
|
}
|
||||||
|
|
||||||
|
FLOAT_TYPE v = a * p.scale + slope * b;
|
||||||
|
|
||||||
|
max_val = max(max_val, v);
|
||||||
|
|
||||||
|
if (idx < DATA_CACHE_SIZE) {
|
||||||
|
data_cache[idx] = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// reduce across the workgroup
|
||||||
|
vals[tid] = max_val;
|
||||||
barrier();
|
barrier();
|
||||||
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
[[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
||||||
if (tid < s) {
|
if (tid < s) {
|
||||||
vals[tid] = max(vals[tid], vals[tid + s]);
|
vals[tid] = max(vals[tid], vals[tid + s]);
|
||||||
}
|
}
|
||||||
@ -68,39 +93,80 @@ void main() {
|
|||||||
max_val = vals[0];
|
max_val = vals[0];
|
||||||
barrier();
|
barrier();
|
||||||
|
|
||||||
// Sum up values
|
FLOAT_TYPE sum = FLOAT_TYPE(0.0f);
|
||||||
vals[tid] = FLOAT_TYPE(0.0f);
|
|
||||||
|
|
||||||
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
// Compute sum{exp(x - max)}
|
||||||
|
[[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
|
||||||
const uint col = col0 + tid;
|
const uint col = col0 + tid;
|
||||||
|
|
||||||
if (col >= p.KX) {
|
if (col >= p.KX) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// compute exp(a*scale+b*slope), add it to sum, and cache the new value
|
||||||
|
// in data_cache if possible.
|
||||||
const uint i = rowx * p.KX + col;
|
const uint i = rowx * p.KX + col;
|
||||||
const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
|
FLOAT_TYPE val;
|
||||||
vals[tid] += val;
|
if (idx < DATA_CACHE_SIZE) {
|
||||||
data_d[i] = D_TYPE(val);
|
val = exp(data_cache[idx] - max_val);
|
||||||
|
} else {
|
||||||
|
val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
|
||||||
|
}
|
||||||
|
sum += val;
|
||||||
|
if (idx < DATA_CACHE_SIZE) {
|
||||||
|
data_cache[idx] = val;
|
||||||
|
} else {
|
||||||
|
data_d[i] = D_TYPE(val);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// reduce across the workgroup
|
||||||
|
vals[tid] = sum;
|
||||||
barrier();
|
barrier();
|
||||||
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
[[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
||||||
if (tid < s) {
|
if (tid < s) {
|
||||||
vals[tid] += vals[tid + s];
|
vals[tid] += vals[tid + s];
|
||||||
}
|
}
|
||||||
barrier();
|
barrier();
|
||||||
}
|
}
|
||||||
|
sum = vals[0];
|
||||||
|
|
||||||
const D_TYPE divisor = D_TYPE(vals[0]);
|
FLOAT_TYPE rcpdivisor = 1.0/sum;
|
||||||
|
|
||||||
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
[[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
|
||||||
const uint col = col0 + tid;
|
const uint col = col0 + tid;
|
||||||
|
|
||||||
if (col >= p.KX) {
|
if (col >= p.KX) {
|
||||||
break;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
data_d[rowx*p.KX + col] /= divisor;
|
if (idx < DATA_CACHE_SIZE) {
|
||||||
|
data_d[rowx*p.KX + col] = D_TYPE(data_cache[idx] * rcpdivisor);
|
||||||
|
} else {
|
||||||
|
data_d[rowx*p.KX + col] *= D_TYPE(rcpdivisor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
// instantiate the soft_max function for several different
|
||||||
|
// dimensions, to allow loop unrolling
|
||||||
|
uint num_blocks = (p.KX + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||||
|
if (num_blocks > 32) {
|
||||||
|
soft_max(num_blocks);
|
||||||
|
} else if (num_blocks > 16) {
|
||||||
|
soft_max(32);
|
||||||
|
} else if (num_blocks > 8) {
|
||||||
|
soft_max(16);
|
||||||
|
} else if (num_blocks > 4) {
|
||||||
|
soft_max(8);
|
||||||
|
} else if (num_blocks == 4) {
|
||||||
|
soft_max(4);
|
||||||
|
} else if (num_blocks == 3) {
|
||||||
|
soft_max(3);
|
||||||
|
} else if (num_blocks == 2) {
|
||||||
|
soft_max(2);
|
||||||
|
} else if (num_blocks == 1) {
|
||||||
|
soft_max(1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -3823,6 +3823,14 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|||||||
|
|
||||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
|
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
|
||||||
|
|
||||||
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, 1.0f, 0.0f));
|
||||||
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, 1.0f, 0.0f));
|
||||||
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, 1.0f, 0.0f));
|
||||||
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, 1.0f, 0.0f));
|
||||||
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, 1.0f, 0.0f));
|
||||||
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
|
||||||
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));
|
||||||
|
|
||||||
for (int bs : {1, 512}) {
|
for (int bs : {1, 512}) {
|
||||||
for (ggml_type type_a : all_types) {
|
for (ggml_type type_a : all_types) {
|
||||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||||
|
Loading…
Reference in New Issue
Block a user