mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 05:48:47 +01:00
benchmark-matmul: fix clang-tidy issues, report results in GFLOPS (#1458)
* benchmark-matmul: fix command line parsing, replace macros with functions, report results in GFLOPS
This commit is contained in:
parent
eb363627fd
commit
b5c9295eef
@ -15,7 +15,7 @@
|
|||||||
#include <iterator>
|
#include <iterator>
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
|
|
||||||
float tensor_sum_elements(struct ggml_tensor * tensor) {
|
float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||||
float sum = 0;
|
float sum = 0;
|
||||||
if (tensor->type==GGML_TYPE_F32) {
|
if (tensor->type==GGML_TYPE_F32) {
|
||||||
for (int j = 0; j < tensor->ne[1]; j++) {
|
for (int j = 0; j < tensor->ne[1]; j++) {
|
||||||
@ -27,21 +27,15 @@ float tensor_sum_elements(struct ggml_tensor * tensor) {
|
|||||||
return sum;
|
return sum;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||||
|
printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", name,
|
||||||
|
tensor->type, ggml_type_name(tensor->type),
|
||||||
|
(int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||||
|
float sum = tensor_sum_elements(tensor);
|
||||||
|
printf("Sum of tensor %s is %6.2f\n", name, sum);
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
#define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
|
||||||
These are mapping to unknown
|
|
||||||
GGML_TYPE_I8,
|
|
||||||
GGML_TYPE_I16,
|
|
||||||
GGML_TYPE_I32,
|
|
||||||
GGML_TYPE_COUNT,
|
|
||||||
*/
|
|
||||||
|
|
||||||
#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"
|
|
||||||
|
|
||||||
#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \
|
|
||||||
TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
|
|
||||||
(int) TENSOR->ne[0], (int) TENSOR->ne[1], (int) TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
|
|
||||||
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }
|
|
||||||
|
|
||||||
struct benchmark_params_struct {
|
struct benchmark_params_struct {
|
||||||
int32_t n_threads = 1;
|
int32_t n_threads = 1;
|
||||||
@ -59,8 +53,6 @@ void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct para
|
|||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
|
|
||||||
|
|
||||||
struct benchmark_params_struct benchmark_params;
|
struct benchmark_params_struct benchmark_params;
|
||||||
|
|
||||||
bool invalid_param = false;
|
bool invalid_param = false;
|
||||||
@ -84,11 +76,11 @@ int main(int argc, char ** argv) {
|
|||||||
print_usage(argc, argv, benchmark_params);
|
print_usage(argc, argv, benchmark_params);
|
||||||
exit(0);
|
exit(0);
|
||||||
}
|
}
|
||||||
if (invalid_param) {
|
}
|
||||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
if (invalid_param) {
|
||||||
print_usage(argc, argv, benchmark_params);
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||||
exit(1);
|
print_usage(argc, argv, benchmark_params);
|
||||||
}
|
exit(1);
|
||||||
}
|
}
|
||||||
|
|
||||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
@ -216,9 +208,8 @@ int main(int argc, char ** argv) {
|
|||||||
// Let's use the F32 result from above as a reference for the q4_0 multiplication
|
// Let's use the F32 result from above as a reference for the q4_0 multiplication
|
||||||
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
|
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
|
||||||
|
|
||||||
|
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
||||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
|
printf("=====================================================================================\n");
|
||||||
printf("==============================================================================================\n");
|
|
||||||
|
|
||||||
for (int i=0;i<benchmark_params.n_iterations ;i++) {
|
for (int i=0;i<benchmark_params.n_iterations ;i++) {
|
||||||
|
|
||||||
@ -227,12 +218,12 @@ int main(int argc, char ** argv) {
|
|||||||
ggml_graph_compute(ctx, &gf31);
|
ggml_graph_compute(ctx, &gf31);
|
||||||
long long int stop = ggml_time_us();
|
long long int stop = ggml_time_us();
|
||||||
long long int usec = stop-start;
|
long long int usec = stop-start;
|
||||||
float flops_per_usec = (1.0f*flops_per_matrix)/usec;
|
double gflops = (double)(flops_per_matrix)/usec/1000.0;
|
||||||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
|
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
|
||||||
i,
|
i,
|
||||||
gf31.n_threads,
|
gf31.n_threads,
|
||||||
sizex, sizey, sizez, flops_per_matrix,
|
sizex, sizey, sizez, flops_per_matrix,
|
||||||
usec,flops_per_usec);
|
usec,gflops);
|
||||||
|
|
||||||
#ifdef VERBOSE_DEBUGGING
|
#ifdef VERBOSE_DEBUGGING
|
||||||
TENSOR_DUMP("res",gf31.nodes[0])
|
TENSOR_DUMP("res",gf31.nodes[0])
|
||||||
@ -256,7 +247,5 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// Running a different graph computation to make sure we override the CPU cache lines
|
// Running a different graph computation to make sure we override the CPU cache lines
|
||||||
ggml_graph_compute(ctx, &gf32);
|
ggml_graph_compute(ctx, &gf32);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user