diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 8ba3c5844..8b33c30d9 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -316,7 +316,7 @@ class Model: if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32: if self.ftype == gguf.LlamaFileType.MOSTLY_BF16: data = gguf.quantize_bf16(data) - assert data.dtype == np.int16 + assert data.dtype == np.uint16 data_qtype = gguf.GGMLQuantizationType.BF16 elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data): diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 464d765da..d8d3dceef 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -349,6 +349,7 @@ extern "C" { GGML_API ggml_bf16_t ggml_fp32_to_bf16(float); GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16 GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t); + GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t); GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t); struct ggml_object; diff --git a/ggml/src/ggml-impl.h b/ggml/src/ggml-impl.h index 7f7afdbfc..3daee4926 100644 --- a/ggml/src/ggml-impl.h +++ b/ggml/src/ggml-impl.h @@ -80,8 +80,9 @@ static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) { /** * Converts float32 to brain16. * - * This function is binary identical to AMD Zen4 VCVTNEPS2BF16. - * Subnormals shall be flushed to zero, and NANs will be quiet. + * This is binary identical with Google Brain float conversion. + * Floats shall round to nearest even, and NANs shall be quiet. + * Subnormals aren't flushed to zero, except perhaps when used. * This code should vectorize nicely if using modern compilers. */ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { @@ -95,10 +96,6 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { h.bits = (u.i >> 16) | 64; /* force to quiet */ return h; } - if (!(u.i & 0x7f800000)) { /* subnormal */ - h.bits = (u.i & 0x80000000) >> 16; /* flush to zero */ - return h; - } h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16; return h; } diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index a4e89cf32..be672f6ef 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -480,9 +480,16 @@ void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) { } } +void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) { + for (int i = 0; i < n; i++) { + y[i] = ggml_compute_fp32_to_bf16(x[i]); + } +} + void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) { int i = 0; #if defined(__AVX512BF16__) + // subnormals are flushed to zero on this platform for (; i + 32 <= n; i += 32) { _mm512_storeu_si512( (__m512i *)(y + i), @@ -962,7 +969,7 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .is_quantized = false, .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row, .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row, - .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row, + .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref, .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16, .vec_dot_type = GGML_TYPE_BF16, .nrows = 1, @@ -20650,7 +20657,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_BF16: { size_t elemsize = sizeof(ggml_bf16_t); - ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n); + ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n); result = n * elemsize; } break; case GGML_TYPE_F32: diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py index 16e0a9aaa..f4361d751 100644 --- a/gguf-py/gguf/quants.py +++ b/gguf-py/gguf/quants.py @@ -25,14 +25,12 @@ def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizati # same as ggml_compute_fp32_to_bf16 in ggml-impl.h def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray: - n = n.astype(np.float32, copy=False).view(np.int32) + n = n.astype(np.float32, copy=False).view(np.uint32) # force nan to quiet - n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n) - # flush subnormals to zero - n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n) + n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n) # round to nearest even - n = (n + (0x7fff + ((n >> 16) & 1))) >> 16 - return n.astype(np.int16) + n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16 + return n.astype(np.uint16) # This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time @@ -49,10 +47,10 @@ def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np. def __quantize_bf16_array(n: np.ndarray) -> np.ndarray: - return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape) + return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.uint16, oshape=n.shape) -__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16) +__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.uint16) def quantize_bf16(n: np.ndarray):