llama : add Jina Embeddings architecture (#6826)

* feat: first things to do

* feat: create tensors for Jina architecture

* fix: use other tensors

* feat: embedding gets results

* fix: fix usage of ALIBI

* fix: clean prints

* fix: do some cleanup unused vars

* fix: revert changes to Makefile and CMakeLists

* fix: revert some changes

* fix: fix small detail

* fix: fix convert formatting

* fix: fix linting and editor

* feat: set proper vocab settings

* fix: JinaBertForMaskedLM registration

* feat: support q_normalization and k_normalization in Jina arch

* feat: handle gpt2 tokenizer with Jina architecture

* feat: example comments in embedding

* feat: rename Jina Bert to Jina Bert V2

* fix: add some changes as per review

* feat: proper KQ_pos for Jina embeddings

* feat: add capacity to load models ES and DE for Spanish

* llama : fix pre-tokenizers

* ggml : full ALiBi support

* ggml : update ggml_soft_max_ext() CUDA, SYCL

* ggml : ggml_flash_attn_ext() support ALiBi (CPU)

* ggml : ggml_flash_attn_ext() support ALiBi (Metal)

* ggml : fix warning

* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)

ggml-ci

* minor : clean-up

* embedding : add warning about missing SEP

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Joan Fontanals 2024-05-11 09:46:09 +02:00 committed by GitHub
parent 9cb317f77e
commit b83cc3f5b3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 236 additions and 41 deletions

View File

@ -74,6 +74,9 @@ models = [
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
]
# make directory "models/tokenizers" if it doesn't exist

View File

@ -404,8 +404,17 @@ class Model:
# ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
res = "olmo"
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
# ref: https://huggingface.co/databricks/dbrx-instruct
# ref: https://huggingface.co/databricks/dbrx-base
res = "dbrx"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
res = "jina-en"
if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
res = "jina-es"
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
res = "jina-de"
if res is None:
logger.warning("\n")
@ -2289,6 +2298,43 @@ class OlmoModel(Model):
return [(self.map_tensor_name(name), data_torch)]
@Model.register("JinaBertModel", "JinaBertForMaskedLM")
class JinaBertV2Model(BertModel):
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.intermediate_size = self.hparams["intermediate_size"]
def get_tensors(self):
for name, data in super().get_tensors():
if 'gated_layers' in name:
d1 = data[:self.intermediate_size, :]
name1 = name.replace('gated_layers', 'gated_layers_w')
d2 = data[self.intermediate_size:, :]
name2 = name.replace('gated_layers', 'gated_layers_v')
yield name1, d1
yield name2, d2
continue
yield name, data
def set_vocab(self, *args, **kwargs):
tokenizer_class = 'BertTokenizer'
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_class = json.load(f)['tokenizer_class']
if tokenizer_class == 'BertTokenizer':
super().set_vocab()
elif tokenizer_class == 'RobertaTokenizer':
self._set_vocab_gpt2()
self.gguf_writer.add_token_type_count(2)
else:
raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True)
###### CONVERSION LOGIC ######

View File

@ -49,6 +49,12 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
}
float * out = output + batch.seq_id[i][0] * n_embd;
//TODO: I would also add a parameter here to enable normalization or not.
/*fprintf(stdout, "unnormalized_embedding:");
for (int hh = 0; hh < n_embd; hh++) {
fprintf(stdout, "%9.6f ", embd[hh]);
}
fprintf(stdout, "\n");*/
llama_embd_normalize(embd, out, n_embd);
}
}
@ -123,10 +129,12 @@ int main(int argc, char ** argv) {
inputs.push_back(inp);
}
// add SEP if not present
// check if the last token is SEP
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
for (auto & inp : inputs) {
if (inp.empty() || inp.back() != llama_token_sep(model)) {
inp.push_back(llama_token_sep(model));
fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
fprintf(stderr, "%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
}
}

View File

@ -118,6 +118,7 @@ class MODEL_ARCH(IntEnum):
REFACT = auto()
BERT = auto()
NOMIC_BERT = auto()
JINA_BERT_V2 = auto()
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
@ -195,6 +196,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.REFACT: "refact",
MODEL_ARCH.BERT: "bert",
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
@ -380,6 +382,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.JINA_BERT_V2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.TOKEN_TYPES,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.MPT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,

View File

@ -243,6 +243,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.w3", # internlm2
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
"model.layers.{bid}.mlp.c_fc", # starcoder2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
),
MODEL_TENSOR.FFN_UP_EXP: (
@ -269,6 +270,7 @@ class TensorNameMap:
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
"model.layers.{bid}.feed_forward.w1", # internlm2
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
"transformer.h.{bid}.mlp.linear_1", # refact
),
@ -303,6 +305,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.w2", # internlm2
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
"model.layers.{bid}.mlp.c_proj", # starcoder2
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
),
MODEL_TENSOR.FFN_DOWN_EXP: (
@ -321,6 +324,7 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
"model.layers.{bid}.self_attn.q_norm", # cohere
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2
),
MODEL_TENSOR.ATTN_K_NORM: (
@ -328,6 +332,7 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
"model.layers.{bid}.self_attn.k_norm", # cohere
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2
),
MODEL_TENSOR.ROPE_FREQS: (
@ -338,6 +343,7 @@ class TensorNameMap:
"encoder.layer.{bid}.output.LayerNorm", # bert
"encoder.layers.{bid}.norm2", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok
"encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
),
MODEL_TENSOR.SSM_IN: (

190
llama.cpp
View File

@ -205,6 +205,7 @@ enum llm_arch {
LLM_ARCH_REFACT,
LLM_ARCH_BERT,
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
@ -228,39 +229,40 @@ enum llm_arch {
};
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GROK, "grok" },
{ LLM_ARCH_GPT2, "gpt2" },
{ LLM_ARCH_GPTJ, "gptj" },
{ LLM_ARCH_GPTNEOX, "gptneox" },
{ LLM_ARCH_MPT, "mpt" },
{ LLM_ARCH_BAICHUAN, "baichuan" },
{ LLM_ARCH_STARCODER, "starcoder" },
{ LLM_ARCH_PERSIMMON, "persimmon" },
{ LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BERT, "bert" },
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
{ LLM_ARCH_BLOOM, "bloom" },
{ LLM_ARCH_STABLELM, "stablelm" },
{ LLM_ARCH_QWEN, "qwen" },
{ LLM_ARCH_QWEN2, "qwen2" },
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
{ LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
{ LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_DBRX, "dbrx" },
{ LLM_ARCH_OLMO, "olmo" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GROK, "grok" },
{ LLM_ARCH_GPT2, "gpt2" },
{ LLM_ARCH_GPTJ, "gptj" },
{ LLM_ARCH_GPTNEOX, "gptneox" },
{ LLM_ARCH_MPT, "mpt" },
{ LLM_ARCH_BAICHUAN, "baichuan" },
{ LLM_ARCH_STARCODER, "starcoder" },
{ LLM_ARCH_PERSIMMON, "persimmon" },
{ LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BERT, "bert" },
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
{ LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
{ LLM_ARCH_BLOOM, "bloom" },
{ LLM_ARCH_STABLELM, "stablelm" },
{ LLM_ARCH_QWEN, "qwen" },
{ LLM_ARCH_QWEN2, "qwen2" },
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
{ LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
{ LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_DBRX, "dbrx" },
{ LLM_ARCH_OLMO, "olmo" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
enum llm_kv {
@ -691,6 +693,25 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_JINA_BERT_V2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_BLOOM,
{
@ -3778,6 +3799,12 @@ static void llm_load_hparams(
// get hparams kv
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
// everything past this point is not vocab-related
if (hparams.vocab_only) {
return;
}
ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
@ -3961,6 +3988,19 @@ static void llm_load_hparams(
model.type = e_model::MODEL_335M; break; // bge-large
}
} break;
case LLM_ARCH_JINA_BERT_V2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
hparams.f_max_alibi_bias = 8.0f;
switch (hparams.n_layer) {
case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
}
} break;
case LLM_ARCH_NOMIC_BERT:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@ -4382,7 +4422,9 @@ static void llm_load_vocab(
tokenizer_pre == "starcoder") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
} else if (
tokenizer_pre == "gpt-2") {
tokenizer_pre == "gpt-2" ||
tokenizer_pre == "jina-es" ||
tokenizer_pre == "jina-de") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
} else if (
tokenizer_pre == "refact") {
@ -5241,6 +5283,50 @@ static bool llm_load_tensors(
layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
}
} break;
case LLM_ARCH_JINA_BERT_V2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i]; // JinaBertLayer
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
}
} break;
case LLM_ARCH_BLOOM:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@ -6317,7 +6403,7 @@ static struct ggml_tensor * llm_build_ffn(
llm_ffn_gate_type type_gate,
const llm_build_cb & cb,
int il) {
struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
cb(tmp, "ffn_up", il);
if (up_b) {
@ -8118,8 +8204,11 @@ struct llm_build_context {
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
struct ggml_tensor * inp_pos = nullptr;
struct ggml_tensor * inp_pos = build_inp_pos();
if (model.arch != LLM_ARCH_JINA_BERT_V2) {
inp_pos = build_inp_pos();
}
struct ggml_tensor * inp_mean = build_inp_mean();
struct ggml_tensor * inp_cls = build_inp_cls();
@ -8150,13 +8239,26 @@ struct llm_build_context {
struct ggml_tensor * Vcur;
// self-attention
if (model.arch == LLM_ARCH_BERT) {
if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
cb(Qcur, "Qcur", il);
if (model.layers[il].attn_q_norm) {
Qcur = llm_build_norm(ctx0, Qcur, hparams,
model.layers[il].attn_q_norm,
model.layers[il].attn_q_norm_b,
LLM_NORM, cb, il);
}
Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
cb(Kcur, "Kcur", il);
if (model.layers[il].attn_k_norm) {
Kcur = llm_build_norm(ctx0, Kcur, hparams,
model.layers[il].attn_k_norm,
model.layers[il].attn_k_norm_b,
LLM_NORM, cb, il);
}
Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
cb(Vcur, "Vcur", il);
@ -8247,6 +8349,13 @@ struct llm_build_context {
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
} else {
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL,
@ -10769,6 +10878,7 @@ static struct ggml_cgraph * llama_build_graph(
result = llm.build_refact();
} break;
case LLM_ARCH_BERT:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_NOMIC_BERT:
{
result = llm.build_bert();
@ -12695,7 +12805,10 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
}
}
GGML_ASSERT(vocab.special_add_eos != 1);
if (add_special && vocab.special_add_eos == 1) {
GGML_ASSERT(vocab.special_add_eos != -1);
output.push_back(vocab.special_eos_id);
}
} break;
case LLAMA_VOCAB_TYPE_WPM:
{
@ -15746,6 +15859,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_REFACT:
case LLM_ARCH_BLOOM:
case LLM_ARCH_MAMBA:
case LLM_ARCH_JINA_BERT_V2:
return LLAMA_ROPE_TYPE_NONE;
// use what we call a normal RoPE, operating on pairs of consecutive head values