mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
wip : implement GGUF (#2397)
* Add LLAMA_DEFAULT_RMS_EPS so we can change the default (#2384) Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> * WIP: python class to write GGUF, incomplete C apı for reading --------- Co-authored-by: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
4d698495ea
commit
bae6b125f6
32
constants.py
Normal file
32
constants.py
Normal file
@ -0,0 +1,32 @@
|
||||
GGUF_MAGIC = 0x47475546
|
||||
GGUF_VERSION = 1
|
||||
|
||||
# general
|
||||
KEY_GENERAL_ARCHITECTURE = "general.architecture"
|
||||
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
|
||||
KEY_GENERAL_NAME = "general.name"
|
||||
KEY_GENERAL_AUTHOR = "general.author"
|
||||
KEY_GENERAL_URL = "general.url"
|
||||
KEY_GENERAL_DESCRIPTION = "general.description"
|
||||
KEY_GENERAL_FILE_TYPE = "general.file_type"
|
||||
KEY_GENERAL_LICENSE = "general.license"
|
||||
KEY_GENERAL_SOURCE_URL = "general.source.url"
|
||||
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
|
||||
|
||||
# LLM
|
||||
KEY_LLM_CONTEXT_LENGTH = "{llm}.context_length"
|
||||
KEY_LLM_EMBEDDING_LENGTH = "{llm}.embedding_length"
|
||||
KEY_LLM_LAYER_COUNT = "{llm}.layer_count"
|
||||
KEY_LLM_FEED_FORWARD_LENGTH = "{llm}.feed_forward_length"
|
||||
KEY_LLM_USE_PARALLEL_RESIDUAL = "{llm}.use_parallel_residual"
|
||||
KEY_LLM_TENSOR_DATA_LAYOUT = "{llm}.tensor_data_layout"
|
||||
|
||||
# attention
|
||||
KEY_ATTENTION_HEAD_COUNT = "{llm}.attention.head_count"
|
||||
KEY_ATTENTION_HEAD_COUNT_KV = "{llm}.attention.head_count_kv"
|
||||
KEY_ATTENTION_MAX_ALIBI_BIAS = "{llm}.attention.max_alibi_bias"
|
||||
KEY_ATTENTION_CLAMP_KQV = "{llm}.attention.clamp_kqv"
|
||||
|
||||
# RoPE
|
||||
KEY_ROPE_DIMENSION_COUNT = "{llm}.rope.dimension_count"
|
||||
KEY_ROPE_SCALE = "{llm}.rope.scale"
|
192
gguf.c
Normal file
192
gguf.c
Normal file
@ -0,0 +1,192 @@
|
||||
// TODO: convert to proper gguf.h gguf.c structure, now I'm trying to be fast as much as possible,
|
||||
// and everything is in this file for quick debugging.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
|
||||
enum ggml_type {
|
||||
GGML_TYPE_F32 = 0,
|
||||
GGML_TYPE_F16 = 1,
|
||||
GGML_TYPE_Q4_0 = 2,
|
||||
GGML_TYPE_Q4_1 = 3,
|
||||
// GGML_TYPE_Q4_2 = 4, support has been removed
|
||||
// GGML_TYPE_Q4_3 (5) support has been removed
|
||||
GGML_TYPE_Q5_0 = 6,
|
||||
GGML_TYPE_Q5_1 = 7,
|
||||
GGML_TYPE_Q8_0 = 8,
|
||||
GGML_TYPE_Q8_1 = 9,
|
||||
// k-quantizations
|
||||
GGML_TYPE_Q2_K = 10,
|
||||
GGML_TYPE_Q3_K = 11,
|
||||
GGML_TYPE_Q4_K = 12,
|
||||
GGML_TYPE_Q5_K = 13,
|
||||
GGML_TYPE_Q6_K = 14,
|
||||
GGML_TYPE_Q8_K = 15,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
enum gguf_metadata_value_type {
|
||||
GGUF_METADATA_VALUE_TYPE_UINT8 = 0,
|
||||
GGUF_METADATA_VALUE_TYPE_INT8 = 1,
|
||||
GGUF_METADATA_VALUE_TYPE_UINT16 = 2,
|
||||
GGUF_METADATA_VALUE_TYPE_INT16 = 3,
|
||||
GGUF_METADATA_VALUE_TYPE_UINT32 = 4,
|
||||
GGUF_METADATA_VALUE_TYPE_INT32 = 5,
|
||||
GGUF_METADATA_VALUE_TYPE_FLOAT32 = 6,
|
||||
GGUF_METADATA_VALUE_TYPE_BOOL = 7,
|
||||
GGUF_METADATA_VALUE_TYPE_STRING = 8,
|
||||
GGUF_METADATA_VALUE_TYPE_ARRAY = 9,
|
||||
};
|
||||
|
||||
struct gguf_string_t {
|
||||
uint32_t len;
|
||||
char * string;
|
||||
};
|
||||
|
||||
union gguf_metadata_value_t;
|
||||
|
||||
// Union definition for gguf_metadata_value_t
|
||||
union gguf_metadata_value_t {
|
||||
uint8_t uint8;
|
||||
int8_t int8;
|
||||
uint16_t uint16;
|
||||
int16_t int16;
|
||||
uint32_t uint32;
|
||||
int32_t int32;
|
||||
float float32;
|
||||
bool bool_;
|
||||
struct gguf_string_t string;
|
||||
struct {
|
||||
uint32_t len;
|
||||
enum gguf_metadata_value_type type;
|
||||
union gguf_metadata_value_t * array;
|
||||
} array;
|
||||
};
|
||||
|
||||
|
||||
struct gguf_metadata_kv_t {
|
||||
struct gguf_string_t key;
|
||||
uint32_t value_len;
|
||||
enum gguf_metadata_value_type value_type;
|
||||
union gguf_metadata_value_t* value;
|
||||
};
|
||||
|
||||
struct gguf_header_t {
|
||||
uint32_t magic;
|
||||
uint32_t version;
|
||||
uint32_t tensor_count;
|
||||
uint32_t metadata_kv_count;
|
||||
struct gguf_metadata_kv_t * metadata_kv;
|
||||
};
|
||||
|
||||
struct gguf_tensor_info_t {
|
||||
struct gguf_string_t name;
|
||||
uint32_t n_dimensions;
|
||||
uint32_t dimensions[];
|
||||
};
|
||||
|
||||
struct gguf_file_t {
|
||||
struct gguf_header_t header;
|
||||
uint8_t tensor_data[];
|
||||
};
|
||||
|
||||
void read_gguf_file(const char * file_path, struct gguf_file_t * gguf_file) {
|
||||
FILE* file = fopen(file_path, "rb");
|
||||
if (file == NULL) {
|
||||
printf("Error opening the file.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
fread(&gguf_file->header.magic, sizeof(uint32_t), 1, file);
|
||||
|
||||
// Verify magic and version
|
||||
if (gguf_file->header.magic != 0x47475546) {
|
||||
printf("Invalid magic number. Not a valid GGUF file.\n");
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
|
||||
fread(&gguf_file->header.version, sizeof(uint32_t), 1, file);
|
||||
|
||||
if (gguf_file->header.version != 1) {
|
||||
printf("Unsupported version. Expected version 1.\n");
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
|
||||
fread(&gguf_file->header.tensor_count, sizeof(uint32_t), 1, file);
|
||||
fread(&gguf_file->header.metadata_kv_count, sizeof(uint32_t), 1, file);
|
||||
|
||||
printf("Magic: %x\n", gguf_file->header.magic);
|
||||
printf("Version: %d\n", gguf_file->header.version);
|
||||
printf("Tensor Count: %d\n", gguf_file->header.tensor_count);
|
||||
printf("Metadata Key-Value Count: %d\n", gguf_file->header.metadata_kv_count);
|
||||
|
||||
gguf_file->header.metadata_kv = (struct gguf_metadata_kv_t*)malloc(gguf_file->header.metadata_kv_count * sizeof(struct gguf_metadata_kv_t));
|
||||
|
||||
for (int i = 0; i < gguf_file->header.metadata_kv_count; i++) {
|
||||
struct gguf_metadata_kv_t* kv = &gguf_file->header.metadata_kv[i];
|
||||
fread(&kv->key.len, sizeof(uint32_t), 1, file);
|
||||
kv->key.string = (char*)malloc(kv->key.len ); // Allocate memory for the key string
|
||||
fread(kv->key.string, sizeof(char), kv->key.len, file);
|
||||
//kv->key.string[kv->key.len] = '\0'; // Null-terminate the key string
|
||||
|
||||
fread(&kv->value_type, sizeof(uint32_t), 1, file);
|
||||
|
||||
printf("Metadata Value Type: %d\n", kv->value_type);
|
||||
printf("Metadata Key: %s\n", kv->key.string);
|
||||
|
||||
// Read metadata value according to its type using reinterpret_cast
|
||||
switch (kv->value_type) {
|
||||
case GGUF_METADATA_VALUE_TYPE_UINT32:
|
||||
kv->value = (uint32_t *) malloc(sizeof(uint32_t));
|
||||
fread(kv->value, sizeof(uint32_t), 1, file);
|
||||
printf("value: %d\n", kv->value->uint32);
|
||||
break;
|
||||
case GGUF_METADATA_VALUE_TYPE_FLOAT32:
|
||||
kv->value = (float *)malloc(sizeof(float));
|
||||
fread(kv->value, sizeof(float), 1, file);
|
||||
printf("value: %f\n", (float)kv->value->float32);
|
||||
break;
|
||||
case GGUF_METADATA_VALUE_TYPE_STRING:
|
||||
fread(&kv->value_len, sizeof(uint32_t), 1, file);
|
||||
printf("value len: %d\n", kv->value_len);
|
||||
kv->value = (char *)malloc(sizeof(char) * kv->value_len); // Allocate memory for the value string
|
||||
fread(kv->value, sizeof(char), kv->value_len, file);
|
||||
printf("value: %s\n", (char *)kv->value);
|
||||
break;
|
||||
// ... (handle other types in a similar manner)
|
||||
default:
|
||||
printf("Unsupported metadata value type.\n");
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: handle reading tensor data
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
void gguf_free(struct gguf_file_t * gguf_file) {
|
||||
// Free allocated memory for key strings avd values
|
||||
for (int i = 0; i < gguf_file->header.metadata_kv_count; i++) {
|
||||
free(gguf_file->header.metadata_kv[i].key.string);
|
||||
free(gguf_file->header.metadata_kv[i].value);
|
||||
}
|
||||
free(gguf_file->header.metadata_kv);
|
||||
}
|
||||
|
||||
int main() {
|
||||
const char* file_path = "example.gguf";
|
||||
struct gguf_file_t gguf_file;
|
||||
read_gguf_file(file_path, &gguf_file);
|
||||
gguf_free(&gguf_file);
|
||||
return 0;
|
||||
}
|
257
gguf.py
Normal file
257
gguf.py
Normal file
@ -0,0 +1,257 @@
|
||||
"""TODOs
|
||||
1. Implement writing tensor data with alignment.
|
||||
2. Implement writers for known architectures, LLaMA in particular.
|
||||
3. Add docstrings from the format specs.
|
||||
4. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
|
||||
"""
|
||||
|
||||
import struct
|
||||
from enum import IntEnum
|
||||
from typing import List, Any
|
||||
import constants
|
||||
|
||||
|
||||
class GGMLQuantizationType(IntEnum):
|
||||
F32 = 0
|
||||
F16 = 1
|
||||
QR_0 = 2
|
||||
Q4_1 = 3
|
||||
# Q4_2 = 4 # support has been removed
|
||||
# Q4_3 = 5 # support has been removed
|
||||
Q5_0 = 6
|
||||
Q5_1 = 7
|
||||
Q8_0 = 8
|
||||
Q8_1 = 9
|
||||
Q2_K = 10
|
||||
Q3_K = 11
|
||||
Q4_K = 12
|
||||
Q5_K = 13
|
||||
Q6_K = 14
|
||||
Q8_K = 15
|
||||
|
||||
|
||||
class GGUFValueType(IntEnum):
|
||||
UINT8 = 0
|
||||
INT8 = 1
|
||||
UINT16 = 2
|
||||
INT16 = 3
|
||||
UINT32 = 4
|
||||
INT32 = 5
|
||||
FLOAT32 = 6
|
||||
BOOL = 7
|
||||
STRING = 8
|
||||
ARRAY = 9
|
||||
|
||||
@staticmethod
|
||||
def get_type(value):
|
||||
if isinstance(value, str):
|
||||
return GGUFValueType.STRING
|
||||
elif isinstance(value, list):
|
||||
return GGUFValueType.ARRAY
|
||||
elif isinstance(value, float):
|
||||
return GGUFValueType.FLOAT32
|
||||
elif isinstance(value, bool):
|
||||
return GGUFValueType.BOOL
|
||||
else:
|
||||
return GGUFValueType.INT32
|
||||
|
||||
|
||||
class GGUFWriter:
|
||||
def __init__(self, buffered_writer):
|
||||
self.buffered_writer = buffered_writer
|
||||
|
||||
def write_header(self, tensor_count: int, metadata_kv_count: int):
|
||||
self.buffered_writer.write(struct.pack("<I", constants.GGUF_MAGIC))
|
||||
self.buffered_writer.write(struct.pack("<I", constants.GGUF_VERSION))
|
||||
self.buffered_writer.write(struct.pack("<I", tensor_count))
|
||||
self.buffered_writer.write(struct.pack("<I", metadata_kv_count))
|
||||
|
||||
@classmethod
|
||||
def open(cls, path: str) -> "GGUFWriter":
|
||||
f = open(path, "wb")
|
||||
return cls(f)
|
||||
|
||||
def write_key(self, key: str, value_type: GGUFValueType):
|
||||
encoded_key = key.encode("utf8")
|
||||
self.buffered_writer.write(struct.pack("<I", len(encoded_key)))
|
||||
self.buffered_writer.write(encoded_key)
|
||||
self.buffered_writer.write(struct.pack("<I", value_type))
|
||||
|
||||
def write_uint8(self, key: str, value: int):
|
||||
self.write_key(key, GGUFValueType.UINT8)
|
||||
self.buffered_writer.write(struct.pack("<B", value))
|
||||
|
||||
def write_int8(self, key: str, value: int):
|
||||
self.write_key(key, GGUFValueType.INT8)
|
||||
self.buffered_writer.write(struct.pack("<b", value))
|
||||
|
||||
def write_uint16(self, key: str, value: int):
|
||||
self.write_key(key, GGUFValueType.UINT16)
|
||||
self.buffered_writer.write(struct.pack("<H", value))
|
||||
|
||||
def write_int16(self, key: str, value: int):
|
||||
self.write_key(key, GGUFValueType.INT16)
|
||||
self.buffered_writer.write(struct.pack("<h", value))
|
||||
|
||||
def write_uint32(self, key: str, value: int):
|
||||
self.write_key(key, GGUFValueType.UINT32)
|
||||
self.buffered_writer.write(struct.pack("<I", value))
|
||||
|
||||
def write_int32(self, key: str, value: int):
|
||||
self.write_key(key, GGUFValueType.INT32)
|
||||
self.buffered_writer.write(struct.pack("<i", value))
|
||||
|
||||
def write_float32(self, key: str, value: float):
|
||||
self.write_key(key, GGUFValueType.FLOAT32)
|
||||
self.buffered_writer.write(struct.pack("<f", value))
|
||||
|
||||
def write_bool(self, key: str, value: bool):
|
||||
self.write_key(key, GGUFValueType.BOOL)
|
||||
self.buffered_writer.write(struct.pack("<?", value))
|
||||
|
||||
def write_string(self, key: str, value: str):
|
||||
self.write_key(key, GGUFValueType.STRING)
|
||||
encoded_string = value.encode('utf-8')
|
||||
self.buffered_writer.write(struct.pack("<I", len(encoded_string)))
|
||||
self.buffered_writer.write(encoded_string)
|
||||
|
||||
def write_array(self, key: str, value: list):
|
||||
if not isinstance(value, list):
|
||||
raise ValueError("Value must be a list for array type")
|
||||
|
||||
self.write_key(key, GGUFValueType.ARRAY)
|
||||
|
||||
self.buffered_writer.write(struct.pack("<I", len(value)))
|
||||
|
||||
for item in value:
|
||||
self.write_value(item)
|
||||
|
||||
def write_value(self: str, value: Any):
|
||||
value_type = GGUFValueType.get_type(value)
|
||||
self.buffered_writer.write(struct.pack("<I", value_type))
|
||||
|
||||
if value_type == GGUFValueType.UINT8:
|
||||
self.buffered_writer.write(struct.pack("<B", value))
|
||||
elif value_type == GGUFValueType.INT8:
|
||||
self.buffered_writer.write(struct.pack("<b", value))
|
||||
elif value_type == GGUFValueType.UINT16:
|
||||
self.buffered_writer.write(struct.pack("<H", value))
|
||||
elif value_type == GGUFValueType.INT16:
|
||||
self.buffered_writer.write(struct.pack("<h", value))
|
||||
elif value_type == GGUFValueType.UINT32:
|
||||
self.buffered_writer.write(struct.pack("<I", value))
|
||||
elif value_type == GGUFValueType.INT32:
|
||||
self.buffered_writer.write(struct.pack("<i", value))
|
||||
elif value_type == GGUFValueType.FLOAT32:
|
||||
self.buffered_writer.write(struct.pack("<f", value))
|
||||
elif value_type == GGUFValueType.BOOL:
|
||||
self.buffered_writer.write(struct.pack("?", value))
|
||||
elif value_type == GGUFValueType.STRING:
|
||||
encoded_value = value.encode("utf8")
|
||||
self.buffered_writer.write(struct.pack("<I", len(encoded_value)))
|
||||
self.buffered_writer.write(encoded_value)
|
||||
elif value_type == GGUFValueType.ARRAY:
|
||||
self.buffered_writer.write(struct.pack("<I", len(value)))
|
||||
for item in value:
|
||||
self.write_value(item)
|
||||
else:
|
||||
raise ValueError("Invalid GGUF metadata value type")
|
||||
|
||||
def flush(self):
|
||||
self.buffered_writer.flush()
|
||||
|
||||
def close(self):
|
||||
self.buffered_writer.close()
|
||||
|
||||
def write_architecture(self, architecture: str):
|
||||
self.write_string(constants.KEY_GENERAL_ARCHITECTURE,
|
||||
architecture)
|
||||
|
||||
def write_author(self, author: str):
|
||||
self.write_string(constants.KEY_GENERAL_AUTHOR, author)
|
||||
|
||||
def write_url(self, url: str):
|
||||
self.write_string(constants.KEY_GENERAL_URL, url)
|
||||
|
||||
def write_description(self, description: str):
|
||||
self.write_string(constants.KEY_GENERAL_DESCRIPTION, description)
|
||||
|
||||
def write_file_type(self, file_type: str):
|
||||
self.write_string(constants.KEY_GENERAL_FILE_TYPE, file_type)
|
||||
|
||||
def write_source_url(self, url: str):
|
||||
self.write_string(constants.KEY_GENERAL_SOURCE_URL, url)
|
||||
|
||||
def write_source_hf_repo(self, repo: str):
|
||||
self.write_string(constants.KEY_GENERAL_SOURCE_HF_REPO, repo)
|
||||
|
||||
def write_name(self, name: str):
|
||||
self.write_string(constants.KEY_GENERAL_NAME, name)
|
||||
|
||||
def write_quantization_version(self, quantization_version: GGMLQuantizationType):
|
||||
self.write_uint32(
|
||||
constants.KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
|
||||
|
||||
def write_context_length(self, llm: str, length: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_LLM_CONTEXT_LENGTH.format(llm=llm), length)
|
||||
|
||||
def write_embedding_length(self, llm: str, length: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_LLM_EMBEDDING_LENGTH.format(llm=llm), length)
|
||||
|
||||
def write_layer_count(self, llm: str, length: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_LLM_LAYER_COUNT.format(llm=llm), length)
|
||||
|
||||
def write_feed_forward_length(self, llm: str, length: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_LLM_FEED_FORWARD_LENGTH.format(llm=llm), length)
|
||||
|
||||
def write_parallel_residual(self, llm: str, use: bool):
|
||||
self.write_bool(
|
||||
constants.KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=llm), use)
|
||||
|
||||
def write_tensor_data_layout(self, llm: str, layout: str):
|
||||
self.write_string(
|
||||
constants.KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=llm), layout)
|
||||
|
||||
def write_head_count(self, llm: str, count: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_ATTENTION_HEAD_COUNT.format(llm=llm), count)
|
||||
|
||||
def write_head_count_kv(self, llm: str, count: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_ATTENTION_HEAD_COUNT_KV.format(llm=llm), count)
|
||||
|
||||
def write_max_alibi_bias(self, llm: str, bias: float):
|
||||
self.write_float32(
|
||||
constants.KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=llm), bias)
|
||||
|
||||
def write_clamp_kqv(self, llm: str, value: float):
|
||||
self.write_float32(
|
||||
constants.KEY_ATTENTION_CLAMP_KQV.format(llm=llm), value)
|
||||
|
||||
def write_rope_dimension_count(self, llm: str, count: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_ROPE_DIMENSION_COUNT.format(llm=llm), count)
|
||||
|
||||
def write_rope_scale(self, llm: str, value: float):
|
||||
self.write_float32(constants.KEY_ROPE_SCALE.format(llm=llm), value)
|
||||
|
||||
|
||||
# Example usage:
|
||||
if __name__ == "__main__":
|
||||
# Example usage with a file
|
||||
gguf_writer = GGUFWriter.open("example.gguf")
|
||||
gguf_writer.write_header(0, 3)
|
||||
|
||||
gguf_writer.write_architecture("llama")
|
||||
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
||||
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
||||
# Write an array of integers
|
||||
#gguf_writer.write_array("simple_array", [1, 2, 3, 4])
|
||||
# Write a nested array
|
||||
#gguf_writer.write_array("nested", [1, "nested", [2, 3]])
|
||||
|
||||
gguf_writer.close()
|
Loading…
Reference in New Issue
Block a user