mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
llama : add SEA-LION support (#6448)
* initial commit for sealion support * add sealion support * minor fix * q/k ln and pos_embd only if required * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * minor : clear whitespaces --------- Co-authored-by: bryan <bryansiow@aisingapore.org> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
9f62c0173d
commit
bb43cf7e9d
@ -118,6 +118,7 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] [Mamba](https://github.com/state-spaces/mamba)
|
- [x] [Mamba](https://github.com/state-spaces/mamba)
|
||||||
- [x] [Xverse](https://huggingface.co/models?search=xverse)
|
- [x] [Xverse](https://huggingface.co/models?search=xverse)
|
||||||
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
|
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
|
||||||
|
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||||
|
|
||||||
**Multimodal models:**
|
**Multimodal models:**
|
||||||
|
|
||||||
|
@ -510,6 +510,16 @@ class BloomModel(Model):
|
|||||||
class MPTModel(Model):
|
class MPTModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.MPT
|
model_arch = gguf.MODEL_ARCH.MPT
|
||||||
|
|
||||||
|
def set_vocab(self):
|
||||||
|
try:
|
||||||
|
self._set_vocab_gpt2()
|
||||||
|
except:
|
||||||
|
self._set_vocab_sentencepiece()
|
||||||
|
self.gguf_writer.add_add_bos_token(False)
|
||||||
|
self.gguf_writer.add_pad_token_id(3)
|
||||||
|
self.gguf_writer.add_eos_token_id(1)
|
||||||
|
self.gguf_writer.add_unk_token_id(0)
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
block_count = self.hparams["n_layers"]
|
block_count = self.hparams["n_layers"]
|
||||||
self.gguf_writer.add_name(self.dir_model.name)
|
self.gguf_writer.add_name(self.dir_model.name)
|
||||||
@ -523,7 +533,10 @@ class MPTModel(Model):
|
|||||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||||
if self.hparams["attn_config"]["clip_qkv"] is not None:
|
if self.hparams["attn_config"]["clip_qkv"] is not None:
|
||||||
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
|
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
|
||||||
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
if self.hparams["attn_config"]["alibi"]:
|
||||||
|
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
||||||
|
else:
|
||||||
|
self.gguf_writer.add_max_alibi_bias(0.0)
|
||||||
|
|
||||||
def write_tensors(self):
|
def write_tensors(self):
|
||||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
|
||||||
|
@ -367,6 +367,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
MODEL_TENSOR.FFN_ACT,
|
MODEL_TENSOR.FFN_ACT,
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM,
|
||||||
|
MODEL_TENSOR.POS_EMBD,
|
||||||
],
|
],
|
||||||
MODEL_ARCH.GPTJ: [
|
MODEL_ARCH.GPTJ: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
@ -285,11 +285,13 @@ class TensorNameMap:
|
|||||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||||
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
||||||
|
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_K_NORM: (
|
MODEL_TENSOR.ATTN_K_NORM: (
|
||||||
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||||
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
||||||
|
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ROPE_FREQS: (
|
MODEL_TENSOR.ROPE_FREQS: (
|
||||||
|
48
llama.cpp
48
llama.cpp
@ -594,6 +594,9 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
|
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
|
||||||
|
{ LLM_TENSOR_POS_EMBD, "position_embd" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
|
||||||
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -4867,6 +4870,7 @@ static bool llm_load_tensors(
|
|||||||
case LLM_ARCH_MPT:
|
case LLM_ARCH_MPT:
|
||||||
{
|
{
|
||||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
|
||||||
|
|
||||||
// output
|
// output
|
||||||
{
|
{
|
||||||
@ -4905,6 +4909,12 @@ static bool llm_load_tensors(
|
|||||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
|
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
|
||||||
|
|
||||||
|
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
|
||||||
|
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
|
||||||
|
|
||||||
|
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
|
||||||
|
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
|
||||||
|
|
||||||
// AWQ ScaleActivation layer
|
// AWQ ScaleActivation layer
|
||||||
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
|
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
|
||||||
}
|
}
|
||||||
@ -7721,6 +7731,7 @@ struct llm_build_context {
|
|||||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
|
||||||
struct ggml_tensor * cur;
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * pos;
|
||||||
struct ggml_tensor * inpL;
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||||
@ -7731,6 +7742,16 @@ struct llm_build_context {
|
|||||||
// positions of the tokens in the KV cache
|
// positions of the tokens in the KV cache
|
||||||
struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
|
struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
|
||||||
|
|
||||||
|
if (model.pos_embd) {
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
|
||||||
|
cb(pos, "pos_embd", -1);
|
||||||
|
|
||||||
|
inpL = ggml_add(ctx0, inpL, pos);
|
||||||
|
cb(inpL, "inpL", -1);
|
||||||
|
}
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
struct ggml_tensor * attn_norm;
|
struct ggml_tensor * attn_norm;
|
||||||
|
|
||||||
@ -7765,11 +7786,32 @@ struct llm_build_context {
|
|||||||
cb(Kcur, "Kcur", il);
|
cb(Kcur, "Kcur", il);
|
||||||
cb(Vcur, "Vcur", il);
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
// Q/K Layernorm
|
||||||
|
if (model.layers[il].attn_q_norm) {
|
||||||
|
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||||||
|
model.layers[il].attn_q_norm,
|
||||||
|
model.layers[il].attn_q_norm_b,
|
||||||
|
LLM_NORM, cb, il);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||||||
|
model.layers[il].attn_k_norm,
|
||||||
|
model.layers[il].attn_k_norm_b,
|
||||||
|
LLM_NORM, cb, il);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||||
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
|
||||||
|
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||||
model.layers[il].wo, model.layers[il].bo,
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
|
} else {
|
||||||
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||||
|
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||||
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
|
Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (il == n_layer - 1) {
|
if (il == n_layer - 1) {
|
||||||
|
Loading…
x
Reference in New Issue
Block a user