mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
llama : per-layer KV cache + quantum K cache (#4309)
* per-layer KV * remove unnecessary copies * less code duplication, offload k and v separately * llama : offload KV cache per-layer * llama : offload K shift tensors * llama : offload for rest of the model arches * llama : enable offload debug temporarily * llama : keep the KV related layers on the device * llama : remove mirrors, perform Device -> Host when partial offload * common : add command-line arg to disable KV cache offloading * llama : update session save/load * llama : support quantum K cache (#4312) * llama : support quantum K cache (wip) * metal : add F32 -> Q8_0 copy kernel * cuda : add F32 -> Q8_0 copy kernel ggml-ci * cuda : use mmv kernel for quantum cache ops * llama : pass KV cache type through API * llama : fix build ggml-ci * metal : add F32 -> Q4_0 copy kernel * metal : add F32 -> Q4_1 copy kernel * cuda : wip * cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels * llama-bench : support type_k/type_v * metal : use mm kernel only for quantum KV cache * cuda : add comment * llama : remove memory_f16 and kv_f16 flags --------- Co-authored-by: slaren <slarengh@gmail.com> * readme : add API change notice --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
81bc9214a3
commit
bcc0eb4591
@ -10,6 +10,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- **llama.h API change for handling KV cache offloading and data type: https://github.com/ggerganov/llama.cpp/pull/4309**
|
||||
- Using `llama.cpp` with AWS instances: https://github.com/ggerganov/llama.cpp/discussions/4225
|
||||
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
|
||||
- Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
|
||||
|
@ -278,8 +278,6 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.yarn_beta_slow = std::stof(argv[i]);
|
||||
} else if (arg == "--memory-f32") {
|
||||
params.memory_f16 = false;
|
||||
} else if (arg == "--samplers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -510,6 +508,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
params.infill = true;
|
||||
} else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
|
||||
params.dump_kv_cache = true;
|
||||
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
|
||||
params.no_kv_offload = true;
|
||||
} else if (arg == "-ctk" || arg == "--cache-type-k") {
|
||||
params.cache_type_k = argv[++i];
|
||||
} else if (arg == "-ctv" || arg == "--cache-type-v") {
|
||||
params.cache_type_v = argv[++i];
|
||||
} else if (arg == "--multiline-input") {
|
||||
params.multiline_input = true;
|
||||
} else if (arg == "--simple-io") {
|
||||
@ -858,8 +862,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
||||
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
printf(" --no-penalize-nl do not penalize newline token\n");
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
|
||||
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
@ -900,6 +902,12 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --verbose-prompt print prompt before generation\n");
|
||||
printf(" -dkvc, --dump-kv-cache\n");
|
||||
printf(" verbose print of the KV cache\n");
|
||||
printf(" -nkvo, --no-kv-offload\n");
|
||||
printf(" disable KV offload\n");
|
||||
printf(" -ctk TYPE, --cache-type-k TYPE\n");
|
||||
printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
|
||||
printf(" -ctv TYPE, --cache-type-v TYPE\n");
|
||||
printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
|
||||
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
|
||||
@ -1015,6 +1023,29 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
return mparams;
|
||||
}
|
||||
|
||||
static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
if (s == "f16") {
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
if (s == "q8_0") {
|
||||
return GGML_TYPE_Q8_0;
|
||||
}
|
||||
if (s == "q4_0") {
|
||||
return GGML_TYPE_Q4_0;
|
||||
}
|
||||
if (s == "q4_1") {
|
||||
return GGML_TYPE_Q4_1;
|
||||
}
|
||||
if (s == "q5_0") {
|
||||
return GGML_TYPE_Q5_0;
|
||||
}
|
||||
if (s == "q5_1") {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
|
||||
throw std::runtime_error("Invalid cache type: " + s);
|
||||
}
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
@ -1024,7 +1055,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
cparams.mul_mat_q = params.mul_mat_q;
|
||||
cparams.seed = params.seed;
|
||||
cparams.f16_kv = params.memory_f16;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embedding = params.embedding;
|
||||
cparams.rope_scaling_type = params.rope_scaling_type;
|
||||
@ -1035,6 +1065,10 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
||||
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
||||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
|
||||
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
|
||||
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
|
||||
|
||||
return cparams;
|
||||
}
|
||||
@ -1447,7 +1481,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
}
|
||||
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
|
||||
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
|
||||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
|
||||
|
@ -100,7 +100,6 @@ struct gpt_params {
|
||||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||
|
||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
@ -125,6 +124,10 @@ struct gpt_params {
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool infill = false; // use infill mode
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
|
||||
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
|
@ -53,6 +53,13 @@ static std::vector<T> split(const std::string & str, char delim) {
|
||||
return values;
|
||||
}
|
||||
|
||||
template<typename T, typename F>
|
||||
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
|
||||
std::vector<std::string> str_values;
|
||||
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
|
||||
return str_values;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static T avg(const std::vector<T> & v) {
|
||||
if (v.empty()) {
|
||||
@ -126,7 +133,8 @@ struct cmd_params {
|
||||
std::vector<int> n_prompt;
|
||||
std::vector<int> n_gen;
|
||||
std::vector<int> n_batch;
|
||||
std::vector<bool> f32_kv;
|
||||
std::vector<ggml_type> type_k;
|
||||
std::vector<ggml_type> type_v;
|
||||
std::vector<int> n_threads;
|
||||
std::vector<int> n_gpu_layers;
|
||||
std::vector<int> main_gpu;
|
||||
@ -142,7 +150,8 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* n_prompt */ {512},
|
||||
/* n_gen */ {128},
|
||||
/* n_batch */ {512},
|
||||
/* f32_kv */ {false},
|
||||
/* type_k */ {GGML_TYPE_F16},
|
||||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {get_num_physical_cores()},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* main_gpu */ {0},
|
||||
@ -162,7 +171,8 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
|
||||
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
@ -173,9 +183,32 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
printf("\n");
|
||||
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
|
||||
|
||||
}
|
||||
|
||||
static ggml_type ggml_type_from_name(const std::string & s) {
|
||||
if (s == "f16") {
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
if (s == "q8_0") {
|
||||
return GGML_TYPE_Q8_0;
|
||||
}
|
||||
if (s == "q4_0") {
|
||||
return GGML_TYPE_Q4_0;
|
||||
}
|
||||
if (s == "q4_1") {
|
||||
return GGML_TYPE_Q4_1;
|
||||
}
|
||||
if (s == "q5_0") {
|
||||
return GGML_TYPE_Q5_0;
|
||||
}
|
||||
if (s == "q5_1") {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
|
||||
static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
cmd_params params;
|
||||
std::string arg;
|
||||
@ -224,13 +257,38 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
|
||||
} else if (arg == "--memory-f32") {
|
||||
} else if (arg == "-ctk" || arg == "--cache-type-k") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
|
||||
auto p = split<std::string>(argv[i], split_delim);
|
||||
std::vector<ggml_type> types;
|
||||
for (const auto & t : p) {
|
||||
ggml_type gt = ggml_type_from_name(t);
|
||||
if (gt == GGML_TYPE_COUNT) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
types.push_back(gt);
|
||||
}
|
||||
params.type_k.insert(params.type_k.end(), types.begin(), types.end());
|
||||
} else if (arg == "-ctv" || arg == "--cache-type-v") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<std::string>(argv[i], split_delim);
|
||||
std::vector<ggml_type> types;
|
||||
for (const auto & t : p) {
|
||||
ggml_type gt = ggml_type_from_name(t);
|
||||
if (gt == GGML_TYPE_COUNT) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
types.push_back(gt);
|
||||
}
|
||||
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -321,7 +379,8 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
||||
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
||||
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
||||
if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
|
||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||
@ -336,7 +395,8 @@ struct cmd_params_instance {
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
int n_batch;
|
||||
bool f32_kv;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
int n_threads;
|
||||
int n_gpu_layers;
|
||||
int main_gpu;
|
||||
@ -365,7 +425,8 @@ struct cmd_params_instance {
|
||||
|
||||
cparams.n_ctx = n_prompt + n_gen;
|
||||
cparams.n_batch = n_batch;
|
||||
cparams.f16_kv = !f32_kv;
|
||||
cparams.type_k = type_k;
|
||||
cparams.type_v = type_v;
|
||||
cparams.mul_mat_q = mul_mat_q;
|
||||
|
||||
return cparams;
|
||||
@ -380,7 +441,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & fk : params.f32_kv)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
cmd_params_instance instance = {
|
||||
@ -388,7 +450,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
||||
/* .n_prompt = */ n_prompt,
|
||||
/* .n_gen = */ n_gen,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
@ -410,7 +473,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & fk : params.f32_kv)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
@ -422,7 +486,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .n_prompt = */ n_prompt,
|
||||
/* .n_gen = */ 0,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
@ -441,7 +506,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .n_prompt = */ 0,
|
||||
/* .n_gen = */ n_gen,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
@ -489,7 +555,8 @@ struct test {
|
||||
uint64_t model_n_params;
|
||||
int n_batch;
|
||||
int n_threads;
|
||||
bool f32_kv;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
int n_gpu_layers;
|
||||
int main_gpu;
|
||||
bool mul_mat_q;
|
||||
@ -508,7 +575,8 @@ struct test {
|
||||
model_n_params = llama_model_n_params(lmodel);
|
||||
n_batch = inst.n_batch;
|
||||
n_threads = inst.n_threads;
|
||||
f32_kv = inst.f32_kv;
|
||||
type_k = inst.type_k;
|
||||
type_v = inst.type_v;
|
||||
n_gpu_layers = inst.n_gpu_layers;
|
||||
main_gpu = inst.main_gpu;
|
||||
mul_mat_q = inst.mul_mat_q;
|
||||
@ -571,7 +639,7 @@ struct test {
|
||||
"cuda", "opencl", "metal", "gpu_blas", "blas",
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_threads", "f16_kv",
|
||||
"n_batch", "n_threads", "type_k", "type_v",
|
||||
"n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
@ -621,7 +689,7 @@ struct test {
|
||||
std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
|
||||
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
@ -805,8 +873,11 @@ struct markdown_printer : public printer {
|
||||
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
|
||||
fields.push_back("n_batch");
|
||||
}
|
||||
if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
|
||||
fields.push_back("f16_kv");
|
||||
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
|
||||
fields.push_back("type_k");
|
||||
}
|
||||
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
|
||||
fields.push_back("type_v");
|
||||
}
|
||||
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
|
||||
fields.push_back("main_gpu");
|
||||
|
@ -321,7 +321,6 @@ int main(int argc, char ** argv) {
|
||||
auto cparams = llama_context_default_params();
|
||||
cparams.n_ctx = 256;
|
||||
cparams.seed = 1;
|
||||
cparams.f16_kv = false;
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
|
||||
|
@ -2108,10 +2108,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
}
|
||||
params.yarn_beta_slow = std::stof(argv[i]);
|
||||
}
|
||||
else if (arg == "--memory-f32" || arg == "--memory_f32")
|
||||
{
|
||||
params.memory_f16 = false;
|
||||
}
|
||||
else if (arg == "--threads" || arg == "-t")
|
||||
{
|
||||
if (++i >= argc)
|
||||
|
186
ggml-cuda.cu
186
ggml-cuda.cu
@ -7,6 +7,7 @@
|
||||
#include <stdio.h>
|
||||
#include <atomic>
|
||||
#include <assert.h>
|
||||
#include <float.h>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#include <hip/hip_runtime.h>
|
||||
@ -4559,6 +4560,116 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
const float v = xi[j];
|
||||
amax = fmaxf(amax, fabsf(v));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const float x0 = xi[j]*id;
|
||||
|
||||
dsti->qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q4_0 * dsti = (block_q4_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_0; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < fabsf(v)) {
|
||||
amax = fabsf(v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = vmax / -8;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
for (int j = 0; j < QK4_0/2; ++j) {
|
||||
const float x0 = xi[0 + j]*id;
|
||||
const float x1 = xi[QK4_0/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
|
||||
const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
|
||||
|
||||
dsti->qs[j] = xi0;
|
||||
dsti->qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q4_1 * dsti = (block_q4_1 *) cdsti;
|
||||
|
||||
float vmin = FLT_MAX;
|
||||
float vmax = -FLT_MAX;
|
||||
|
||||
for (int j = 0; j < QK4_1; ++j) {
|
||||
const float v = xi[j];
|
||||
|
||||
if (v < vmin) vmin = v;
|
||||
if (v > vmax) vmax = v;
|
||||
}
|
||||
|
||||
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dsti->dm.x = d;
|
||||
dsti->dm.y = vmin;
|
||||
|
||||
for (int j = 0; j < QK4_1/2; ++j) {
|
||||
const float x0 = (xi[0 + j] - vmin)*id;
|
||||
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
|
||||
|
||||
const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
|
||||
const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
|
||||
|
||||
dsti->qs[j] = xi0;
|
||||
dsti->qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i02 = i / (ne00*ne01);
|
||||
const int i01 = (i - i02*ne01*ne00) / ne00;
|
||||
const int i00 = (i - i02*ne01*ne00 - i01*ne00);
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
||||
|
||||
const int i12 = i / (ne10*ne11);
|
||||
const int i11 = (i - i12*ne10*ne11) / ne10;
|
||||
const int i10 = (i - i12*ne10*ne11 - i11*ne10)/qk;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||||
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||
return 1.0f - min(1.0f, max(0.0f, y));
|
||||
@ -5737,6 +5848,39 @@ static void ggml_cpy_f32_f16_cuda(
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
const int num_blocks = ne / QK8_0;
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
const int num_blocks = ne / QK4_0;
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
const int num_blocks = ne / QK4_1;
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
@ -6093,20 +6237,21 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
||||
const enum ggml_type type = src->type;
|
||||
const int64_t ts = ggml_type_size(type);
|
||||
const int64_t bs = ggml_blck_size(type);
|
||||
int64_t i1_diff = i1_high - i1_low;
|
||||
const int64_t i1_diff = i1_high - i1_low;
|
||||
|
||||
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
||||
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
||||
if (nb0 == ts && nb1 == ts*(ne0/bs)) {
|
||||
return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
|
||||
}
|
||||
if (nb0 == ts) {
|
||||
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
|
||||
return cudaMemcpy2DAsync(dst_ptr, ts*(ne0/bs), x, nb1, ts*(ne0/bs), i1_diff, kind, stream);
|
||||
}
|
||||
GGML_ASSERT(bs == 1 && "TODO: implement bs != 1");
|
||||
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
||||
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
||||
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
||||
void * rd = (void *) (dst_ptr + i1*ts*ne0);
|
||||
// pretend the row is a matrix with cols=1
|
||||
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
|
||||
cudaError_t r = cudaMemcpy2DAsync(rd, ts, rx, nb0, ts, ne0, kind, stream);
|
||||
if (r != cudaSuccess) { return r; }
|
||||
}
|
||||
return cudaSuccess;
|
||||
@ -6474,6 +6619,8 @@ inline void ggml_cuda_op_mul_mat_vec_q(
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, const cudaStream_t & stream) {
|
||||
|
||||
GGML_ASSERT(ggml_nrows(src1) == 1);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t row_diff = row_high - row_low;
|
||||
|
||||
@ -6533,7 +6680,8 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||
size_t ash;
|
||||
dfloat * src1_dfloat = nullptr; // dfloat == half
|
||||
|
||||
bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
||||
bool src1_convert_f16 =
|
||||
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
||||
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
||||
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
||||
|
||||
@ -7103,10 +7251,9 @@ static void ggml_cuda_op_mul_mat(
|
||||
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
||||
|
||||
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
||||
const int64_t src1_padded_col_size = ne10 % MATRIX_ROW_PADDING == 0 ?
|
||||
ne10 : ne10 - ne10 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
|
||||
|
||||
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
|
||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
GGML_ASSERT(!(split && ne02 > 1));
|
||||
@ -7231,7 +7378,7 @@ static void ggml_cuda_op_mul_mat(
|
||||
const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
|
||||
|
||||
// for split tensors the data begins at i0 == i0_offset_low
|
||||
char * src0_dd_i = src0_dd[id] + (i0/i02_divisor) * ne01*ne00*src0_ts/src0_bs;
|
||||
char * src0_dd_i = src0_dd[id] + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
|
||||
float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10;
|
||||
char * src1_ddq_i = src1_ddq[id] + src1_ddq_i_offset;
|
||||
float * dst_dd_i = dst_dd[id] + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
|
||||
@ -7698,10 +7845,11 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
|
||||
#ifdef GGML_CUDA_FORCE_DMMV
|
||||
const bool use_mul_mat_vec_q = false;
|
||||
#else
|
||||
const bool use_mul_mat_vec_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);
|
||||
const bool use_mul_mat_vec_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type) && ggml_nrows(src1) == 1;
|
||||
#endif // GGML_CUDA_FORCE_DMMV
|
||||
|
||||
if (use_mul_mat_vec_q) {
|
||||
// NOTE: this kernel does not support ggml_nrows(src1) > 1
|
||||
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
|
||||
} else {
|
||||
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
|
||||
@ -7770,14 +7918,17 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f16_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@ -7788,6 +7939,7 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
}
|
||||
|
||||
static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
// TODO: why do we pass dst as src1 here?
|
||||
ggml_cuda_cpy(src0, dst, nullptr);
|
||||
(void) src1;
|
||||
}
|
||||
|
28
ggml-metal.m
28
ggml-metal.m
@ -118,6 +118,11 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(im2col_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_q8_0);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_q4_0);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_q4_1);
|
||||
//GGML_METAL_DECL_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_DECL_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_DECL_KERNEL(concat);
|
||||
GGML_METAL_DECL_KERNEL(sqr);
|
||||
@ -324,6 +329,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(im2col_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_q8_0);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_q4_0);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_q4_1);
|
||||
//GGML_METAL_ADD_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_ADD_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_ADD_KERNEL(concat);
|
||||
GGML_METAL_ADD_KERNEL(sqr);
|
||||
@ -425,6 +435,11 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(im2col_f16);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_q8_0);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_q4_0);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_q4_1);
|
||||
//GGML_METAL_DEL_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_DEL_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_DEL_KERNEL(concat);
|
||||
GGML_METAL_DEL_KERNEL(sqr);
|
||||
@ -1114,7 +1129,7 @@ void ggml_metal_graph_compute(
|
||||
!ggml_is_transposed(src1) &&
|
||||
src1t == GGML_TYPE_F32 &&
|
||||
ne00 % 32 == 0 && ne00 >= 64 &&
|
||||
ne11 > ne11_mm_min) {
|
||||
(ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
|
||||
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
|
||||
@ -1549,14 +1564,23 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
{
|
||||
const int nth = MIN(1024, ne00);
|
||||
GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
|
||||
|
||||
int nth = MIN(1024, ne00/ggml_blck_size(src0->type));
|
||||
|
||||
switch (src0t) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
|
||||
|
||||
switch (dstt) {
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
|
||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
|
||||
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q8_0]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q4_0]; break;
|
||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q4_1]; break;
|
||||
//case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q5_0]; break;
|
||||
//case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q5_1]; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
};
|
||||
} break;
|
||||
|
192
ggml-metal.metal
192
ggml-metal.metal
@ -3,6 +3,7 @@
|
||||
using namespace metal;
|
||||
|
||||
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
||||
#define MIN(x, y) ((x) < (y) ? (x) : (y))
|
||||
|
||||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
@ -1460,6 +1461,197 @@ kernel void kernel_cpy_f32_f32(
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f32_q8_0(
|
||||
device const float * src0,
|
||||
device void * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = tgpig[2];
|
||||
const int64_t i02 = tgpig[1];
|
||||
const int64_t i01 = tgpig[0];
|
||||
|
||||
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
const int64_t i3 = n / (ne2*ne1*ne0);
|
||||
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
|
||||
|
||||
device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
|
||||
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
const float v = src[j];
|
||||
amax = MAX(amax, fabs(v));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst_data[i00/QK8_0].d = d;
|
||||
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const float x0 = src[j]*id;
|
||||
|
||||
dst_data[i00/QK8_0].qs[j] = round(x0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f32_q4_0(
|
||||
device const float * src0,
|
||||
device void * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = tgpig[2];
|
||||
const int64_t i02 = tgpig[1];
|
||||
const int64_t i01 = tgpig[0];
|
||||
|
||||
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
const int64_t i3 = n / (ne2*ne1*ne0);
|
||||
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
|
||||
|
||||
device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
|
||||
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_0; j++) {
|
||||
const float v = src[j];
|
||||
if (amax < fabs(v)) {
|
||||
amax = fabs(v);
|
||||
max = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = max / -8;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst_data[i00/QK4_0].d = d;
|
||||
|
||||
for (int j = 0; j < QK4_0/2; ++j) {
|
||||
const float x0 = src[0 + j]*id;
|
||||
const float x1 = src[QK4_0/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
|
||||
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
|
||||
|
||||
dst_data[i00/QK4_0].qs[j] = xi0;
|
||||
dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f32_q4_1(
|
||||
device const float * src0,
|
||||
device void * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = tgpig[2];
|
||||
const int64_t i02 = tgpig[1];
|
||||
const int64_t i01 = tgpig[0];
|
||||
|
||||
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
const int64_t i3 = n / (ne2*ne1*ne0);
|
||||
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
|
||||
|
||||
device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
|
||||
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
|
||||
float min = FLT_MAX;
|
||||
float max = -FLT_MAX;
|
||||
|
||||
for (int j = 0; j < QK4_1; j++) {
|
||||
const float v = src[j];
|
||||
if (min > v) min = v;
|
||||
if (max < v) max = v;
|
||||
}
|
||||
|
||||
const float d = (max - min) / ((1 << 4) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst_data[i00/QK4_1].d = d;
|
||||
dst_data[i00/QK4_1].m = min;
|
||||
|
||||
for (int j = 0; j < QK4_1/2; ++j) {
|
||||
const float x0 = (src[0 + j] - min)*id;
|
||||
const float x1 = (src[QK4_1/2 + j] - min)*id;
|
||||
|
||||
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
|
||||
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
|
||||
|
||||
dst_data[i00/QK4_1].qs[j] = xi0;
|
||||
dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_concat(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
|
410
llama.cpp
410
llama.cpp
@ -1231,6 +1231,7 @@ struct llama_cparams {
|
||||
float yarn_beta_slow;
|
||||
|
||||
bool mul_mat_q;
|
||||
bool offload_kqv;
|
||||
};
|
||||
|
||||
struct llama_layer {
|
||||
@ -1299,8 +1300,8 @@ struct llama_kv_cache {
|
||||
|
||||
std::vector<llama_kv_cell> cells;
|
||||
|
||||
struct ggml_tensor * k = NULL;
|
||||
struct ggml_tensor * v = NULL;
|
||||
std::vector<struct ggml_tensor *> k_l; // per layer
|
||||
std::vector<struct ggml_tensor *> v_l;
|
||||
|
||||
struct ggml_context * ctx = NULL;
|
||||
|
||||
@ -1313,8 +1314,10 @@ struct llama_kv_cache {
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (ggml_cublas_loaded()) {
|
||||
ggml_cuda_free_data(k);
|
||||
ggml_cuda_free_data(v);
|
||||
for (size_t i = 0; i < k_l.size(); ++i) {
|
||||
ggml_cuda_free_data(k_l[i]);
|
||||
ggml_cuda_free_data(v_l[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -1504,9 +1507,11 @@ struct llama_context {
|
||||
static bool llama_kv_cache_init(
|
||||
const struct llama_hparams & hparams,
|
||||
struct llama_kv_cache & cache,
|
||||
ggml_type wtype,
|
||||
ggml_type ktype,
|
||||
ggml_type vtype,
|
||||
uint32_t n_ctx,
|
||||
int n_gpu_layers) {
|
||||
int n_gpu_layers,
|
||||
bool offload) {
|
||||
const uint32_t n_embd = hparams.n_embd_gqa();
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
@ -1522,7 +1527,7 @@ static bool llama_kv_cache_init(
|
||||
cache.cells.clear();
|
||||
cache.cells.resize(n_ctx);
|
||||
|
||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
|
||||
cache.buf.resize(n_elements*(ggml_type_sizef(ktype) + ggml_type_sizef(vtype)) + 2u*n_layer*ggml_tensor_overhead());
|
||||
memset(cache.buf.data, 0, cache.buf.size);
|
||||
|
||||
struct ggml_init_params params;
|
||||
@ -1532,37 +1537,44 @@ static bool llama_kv_cache_init(
|
||||
|
||||
cache.ctx = ggml_init(params);
|
||||
|
||||
size_t vram_kv_cache = 0;
|
||||
|
||||
if (!cache.ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
||||
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
||||
ggml_set_name(cache.k, "cache_k");
|
||||
ggml_set_name(cache.v, "cache_v");
|
||||
cache.k_l.reserve(n_layer);
|
||||
cache.v_l.reserve(n_layer);
|
||||
|
||||
(void) n_gpu_layers;
|
||||
const int i_gpu_start = (int) n_layer - n_gpu_layers; GGML_UNUSED(i_gpu_start);
|
||||
|
||||
GGML_UNUSED(offload);
|
||||
|
||||
for (int i = 0; i < (int) n_layer; i++) {
|
||||
ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, ktype, n_embd*n_ctx);
|
||||
ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, vtype, n_embd*n_ctx);
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
cache.v_l.push_back(v);
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (ggml_cublas_loaded()) {
|
||||
size_t vram_kv_cache = 0;
|
||||
if (i >= i_gpu_start) {
|
||||
if (offload) {
|
||||
ggml_cuda_assign_buffers_no_scratch(k);
|
||||
vram_kv_cache += ggml_nbytes(k);
|
||||
ggml_cuda_assign_buffers_no_scratch(v);
|
||||
vram_kv_cache += ggml_nbytes(v);
|
||||
}
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
}
|
||||
|
||||
if (n_gpu_layers > (int)n_layer + 1) {
|
||||
ggml_cuda_assign_buffers_no_scratch(cache.v);
|
||||
LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
|
||||
vram_kv_cache += ggml_nbytes(cache.v);
|
||||
}
|
||||
if (n_gpu_layers > (int)n_layer + 2) {
|
||||
ggml_cuda_assign_buffers_no_scratch(cache.k);
|
||||
LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
|
||||
vram_kv_cache += ggml_nbytes(cache.k);
|
||||
}
|
||||
if (vram_kv_cache > 0) {
|
||||
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
GGML_UNUSED(n_gpu_layers);
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -2968,14 +2980,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3045,14 +3050,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3115,14 +3113,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3192,14 +3183,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3269,21 +3253,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (n_gpu_layers > int(n_layer + 1)) {
|
||||
LLAMA_LOG_ERROR("%s: CUDA backend missing Persimmon CUDA ops, can offload at most %ld layers. See: https://github.com/ggerganov/llama.cpp/issues/4038\n",
|
||||
__func__, n_layer + 1);
|
||||
throw std::runtime_error("Persimmon CUDA offload failed");
|
||||
}
|
||||
#endif
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3342,14 +3312,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3420,14 +3383,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3487,14 +3443,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3559,14 +3508,7 @@ static void llm_load_tensors(
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
@ -3642,8 +3584,8 @@ static void llm_load_tensors(
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
const int max_backend_supported_layers = hparams.n_layer + 3;
|
||||
const int max_offloadable_layers = hparams.n_layer + 3;
|
||||
const int max_backend_supported_layers = hparams.n_layer + 1;
|
||||
const int max_offloadable_layers = hparams.n_layer + 1;
|
||||
#elif GGML_USE_CLBLAST
|
||||
const int max_backend_supported_layers = hparams.n_layer + 1;
|
||||
const int max_offloadable_layers = hparams.n_layer + 1;
|
||||
@ -3811,11 +3753,11 @@ static void llm_build_k_shift(
|
||||
struct ggml_tensor * tmp =
|
||||
// we rotate only the first n_rot dimensions
|
||||
ggml_rope_custom_inplace(ctx,
|
||||
ggml_view_3d(ctx, kv.k,
|
||||
ggml_view_3d(ctx, kv.k_l[il],
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv.k)*n_embd_head,
|
||||
ggml_element_size(kv.k)*n_embd_gqa,
|
||||
ggml_element_size(kv.k)*n_embd_gqa*n_ctx*il),
|
||||
ggml_type_sizef(kv.k_l[il]->type)*n_embd_head,
|
||||
ggml_type_sizef(kv.k_l[il]->type)*n_embd_gqa,
|
||||
0),
|
||||
K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
cb(tmp, "K_shifted", il);
|
||||
@ -3842,13 +3784,13 @@ static void llm_build_kv_store(
|
||||
//struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
|
||||
cb(v_cur_t, "v_cur_t", il);
|
||||
|
||||
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k, n_tokens*n_embd_gqa,
|
||||
(ggml_element_size(kv.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
||||
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_gqa,
|
||||
(ggml_type_sizef(kv.k_l[il]->type)*n_embd_gqa)*kv_head);
|
||||
cb(k_cache_view, "k_cache_view", il);
|
||||
|
||||
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v, n_tokens, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv.v),
|
||||
(il*n_ctx)*ggml_element_size(kv.v)*n_embd_gqa + kv_head*ggml_element_size(kv.v));
|
||||
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv.v_l[il]),
|
||||
(kv_head)*ggml_element_size(kv.v_l[il]));
|
||||
cb(v_cache_view, "v_cache_view", il);
|
||||
|
||||
// important: storing RoPE-ed version of K in the KV cache!
|
||||
@ -4000,11 +3942,11 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
cb(q, "q", il);
|
||||
|
||||
struct ggml_tensor * k =
|
||||
ggml_view_3d(ctx, kv.k,
|
||||
ggml_view_3d(ctx, kv.k_l[il],
|
||||
n_embd_head, n_kv, n_head_kv,
|
||||
ggml_element_size(kv.k)*n_embd_gqa,
|
||||
ggml_element_size(kv.k)*n_embd_head,
|
||||
ggml_element_size(kv.k)*n_embd_gqa*n_ctx*il);
|
||||
ggml_type_sizef(kv.k_l[il]->type)*n_embd_gqa,
|
||||
ggml_type_sizef(kv.k_l[il]->type)*n_embd_head,
|
||||
0);
|
||||
cb(k, "k", il);
|
||||
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||||
@ -4035,11 +3977,11 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
|
||||
// split cached v into n_head heads
|
||||
struct ggml_tensor * v =
|
||||
ggml_view_3d(ctx, kv.v,
|
||||
ggml_view_3d(ctx, kv.v_l[il],
|
||||
n_kv, n_embd_head, n_head_kv,
|
||||
ggml_element_size(kv.v)*n_ctx,
|
||||
ggml_element_size(kv.v)*n_ctx*n_embd_head,
|
||||
ggml_element_size(kv.v)*n_ctx*n_embd_gqa*il);
|
||||
ggml_element_size(kv.v_l[il])*n_ctx,
|
||||
ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head,
|
||||
0);
|
||||
cb(v, "v", il);
|
||||
|
||||
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
|
||||
@ -4631,6 +4573,7 @@ struct llm_build_context {
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
|
||||
cb(inpL, "imp_embd", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
@ -4638,6 +4581,7 @@ struct llm_build_context {
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
|
||||
@ -5244,7 +5188,7 @@ struct llm_build_context {
|
||||
struct ggml_tensor * KQ_scale= ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it wil be broadcasted to all heads)
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask= ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
|
||||
@ -5351,8 +5295,8 @@ struct llm_build_context {
|
||||
enum llm_offload_func_e {
|
||||
OFFLOAD_FUNC_NOP,
|
||||
OFFLOAD_FUNC,
|
||||
OFFLOAD_FUNC_KQ,
|
||||
OFFLOAD_FUNC_V,
|
||||
OFFLOAD_FUNC_FRC, // force offload
|
||||
OFFLOAD_FUNC_KQV,
|
||||
OFFLOAD_FUNC_NR,
|
||||
OFFLOAD_FUNC_EMB,
|
||||
OFFLOAD_FUNC_OUT,
|
||||
@ -5438,11 +5382,12 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
|
||||
//{ "inp_embd", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel
|
||||
{ "pos_embd", OFFLOAD_FUNC_NR },
|
||||
|
||||
{ "inp_pos", OFFLOAD_FUNC_KQ }, // this is often used for KQ ops (e.g. rope)
|
||||
{ "KQ_scale", OFFLOAD_FUNC_KQ },
|
||||
{ "KQ_mask", OFFLOAD_FUNC_KQ },
|
||||
{ "K_shift", OFFLOAD_FUNC_KQ },
|
||||
{ "K_shifted", OFFLOAD_FUNC_KQ },
|
||||
{ "inp_pos", OFFLOAD_FUNC_FRC }, // this is often used for KQ ops (e.g. rope)
|
||||
{ "KQ_scale", OFFLOAD_FUNC_FRC },
|
||||
{ "KQ_mask", OFFLOAD_FUNC_FRC },
|
||||
{ "K_shift", OFFLOAD_FUNC_FRC },
|
||||
|
||||
{ "K_shifted", OFFLOAD_FUNC },
|
||||
|
||||
{ "inp_norm", OFFLOAD_FUNC_NR },
|
||||
{ "inp_norm_w", OFFLOAD_FUNC_NR },
|
||||
@ -5455,38 +5400,38 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
|
||||
{ "attn_norm", OFFLOAD_FUNC },
|
||||
{ "attn_norm_2", OFFLOAD_FUNC },
|
||||
|
||||
{ "wqkv", OFFLOAD_FUNC_KQ },
|
||||
{ "bqkv", OFFLOAD_FUNC_KQ },
|
||||
{ "wqkv_clamped", OFFLOAD_FUNC_KQ },
|
||||
{ "wqkv", OFFLOAD_FUNC_KQV },
|
||||
{ "bqkv", OFFLOAD_FUNC_KQV },
|
||||
{ "wqkv_clamped", OFFLOAD_FUNC_KQV },
|
||||
|
||||
{ "tmpk", OFFLOAD_FUNC_KQ },
|
||||
{ "tmpq", OFFLOAD_FUNC_KQ },
|
||||
{ "tmpv", OFFLOAD_FUNC_V },
|
||||
{ "Kcur", OFFLOAD_FUNC_KQ },
|
||||
{ "Qcur", OFFLOAD_FUNC_KQ },
|
||||
{ "Vcur", OFFLOAD_FUNC_V },
|
||||
{ "tmpk", OFFLOAD_FUNC_KQV },
|
||||
{ "tmpq", OFFLOAD_FUNC_KQV },
|
||||
{ "tmpv", OFFLOAD_FUNC_KQV },
|
||||
{ "Kcur", OFFLOAD_FUNC_KQV },
|
||||
{ "Qcur", OFFLOAD_FUNC_KQV },
|
||||
{ "Vcur", OFFLOAD_FUNC_KQV },
|
||||
|
||||
{ "krot", OFFLOAD_FUNC_KQ },
|
||||
{ "qrot", OFFLOAD_FUNC_KQ },
|
||||
{ "kpass", OFFLOAD_FUNC_KQ },
|
||||
{ "qpass", OFFLOAD_FUNC_KQ },
|
||||
{ "krotated", OFFLOAD_FUNC_KQ },
|
||||
{ "qrotated", OFFLOAD_FUNC_KQ },
|
||||
{ "krot", OFFLOAD_FUNC_KQV },
|
||||
{ "qrot", OFFLOAD_FUNC_KQV },
|
||||
{ "kpass", OFFLOAD_FUNC_KQV },
|
||||
{ "qpass", OFFLOAD_FUNC_KQV },
|
||||
{ "krotated", OFFLOAD_FUNC_KQV },
|
||||
{ "qrotated", OFFLOAD_FUNC_KQV },
|
||||
|
||||
{ "q", OFFLOAD_FUNC_KQ },
|
||||
{ "k", OFFLOAD_FUNC_KQ },
|
||||
{ "kq", OFFLOAD_FUNC_KQ },
|
||||
{ "kq_scaled", OFFLOAD_FUNC_KQ },
|
||||
{ "kq_scaled_alibi", OFFLOAD_FUNC_KQ },
|
||||
{ "kq_masked", OFFLOAD_FUNC_KQ },
|
||||
{ "kq_soft_max", OFFLOAD_FUNC_V },
|
||||
{ "kq_soft_max_ext", OFFLOAD_FUNC_V },
|
||||
{ "v", OFFLOAD_FUNC_V },
|
||||
{ "kqv", OFFLOAD_FUNC_V },
|
||||
{ "kqv_merged", OFFLOAD_FUNC_V },
|
||||
{ "kqv_merged_cont", OFFLOAD_FUNC_V },
|
||||
{ "kqv_wo", OFFLOAD_FUNC_V },
|
||||
{ "kqv_out", OFFLOAD_FUNC_V },
|
||||
{ "q", OFFLOAD_FUNC_KQV },
|
||||
{ "k", OFFLOAD_FUNC_KQV },
|
||||
{ "kq", OFFLOAD_FUNC_KQV },
|
||||
{ "kq_scaled", OFFLOAD_FUNC_KQV },
|
||||
{ "kq_scaled_alibi", OFFLOAD_FUNC_KQV },
|
||||
{ "kq_masked", OFFLOAD_FUNC_KQV },
|
||||
{ "kq_soft_max", OFFLOAD_FUNC_KQV },
|
||||
{ "kq_soft_max_ext", OFFLOAD_FUNC_KQV },
|
||||
{ "v", OFFLOAD_FUNC_KQV },
|
||||
{ "kqv", OFFLOAD_FUNC_KQV },
|
||||
{ "kqv_merged", OFFLOAD_FUNC_KQV },
|
||||
{ "kqv_merged_cont", OFFLOAD_FUNC_KQV },
|
||||
{ "kqv_wo", OFFLOAD_FUNC_KQV },
|
||||
{ "kqv_out", OFFLOAD_FUNC_KQV },
|
||||
|
||||
{ "ffn_inp", OFFLOAD_FUNC },
|
||||
{ "ffn_norm", OFFLOAD_FUNC },
|
||||
@ -5679,14 +5624,14 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{ OFFLOAD_FUNC_OUT, "CPU" },
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
{ OFFLOAD_FUNC, "GPU (CUDA)" },
|
||||
{ OFFLOAD_FUNC_KQ, "GPU (CUDA) KQ" },
|
||||
{ OFFLOAD_FUNC_V, "GPU (CUDA) V" },
|
||||
{ OFFLOAD_FUNC_FRC, "GPU (CUDA) FRC" },
|
||||
{ OFFLOAD_FUNC_KQV, "GPU (CUDA) KQV" },
|
||||
{ OFFLOAD_FUNC_NR, "GPU (CUDA) NR" },
|
||||
{ OFFLOAD_FUNC_EMB, "GPU (CUDA) EMB" },
|
||||
#else
|
||||
{ OFFLOAD_FUNC, "CPU" },
|
||||
{ OFFLOAD_FUNC_KQ, "CPU" },
|
||||
{ OFFLOAD_FUNC_V, "CPU" },
|
||||
{ OFFLOAD_FUNC_FRC, "CPU" },
|
||||
{ OFFLOAD_FUNC_KQV, "CPU" },
|
||||
{ OFFLOAD_FUNC_NR, "CPU" },
|
||||
{ OFFLOAD_FUNC_EMB, "CPU" },
|
||||
#endif // GGML_USE_CUBLAS
|
||||
@ -5719,21 +5664,26 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
}
|
||||
}
|
||||
break;
|
||||
case OFFLOAD_FUNC_FRC:
|
||||
if (!lctx.cparams.offload_kqv) {
|
||||
func_e = OFFLOAD_FUNC_NOP;
|
||||
} break;
|
||||
case OFFLOAD_FUNC_KQV:
|
||||
if (!lctx.cparams.offload_kqv) {
|
||||
func_e = OFFLOAD_FUNC_NOP;
|
||||
} else {
|
||||
if (n_gpu_layers < n_layer) {
|
||||
if (il < i_gpu_start) {
|
||||
func_e = OFFLOAD_FUNC_NOP;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case OFFLOAD_FUNC_NR:
|
||||
if (n_gpu_layers <= n_layer + 0) {
|
||||
func_e = OFFLOAD_FUNC_NOP;
|
||||
}
|
||||
break;
|
||||
case OFFLOAD_FUNC_V:
|
||||
if (n_gpu_layers <= n_layer + 1) {
|
||||
func_e = OFFLOAD_FUNC_NOP;
|
||||
}
|
||||
break;
|
||||
case OFFLOAD_FUNC_KQ:
|
||||
if (n_gpu_layers <= n_layer + 2) {
|
||||
func_e = OFFLOAD_FUNC_NOP;
|
||||
}
|
||||
break;
|
||||
case OFFLOAD_FUNC_EMB:
|
||||
if (!offload_emb || n_gpu_layers < n_layer) {
|
||||
func_e = OFFLOAD_FUNC_NOP;
|
||||
@ -5755,8 +5705,8 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
case OFFLOAD_FUNC_NOP:
|
||||
case OFFLOAD_FUNC_OUT: func = ggml_offload_nop; break;
|
||||
case OFFLOAD_FUNC:
|
||||
case OFFLOAD_FUNC_KQ:
|
||||
case OFFLOAD_FUNC_V:
|
||||
case OFFLOAD_FUNC_KQV:
|
||||
case OFFLOAD_FUNC_FRC:
|
||||
case OFFLOAD_FUNC_NR:
|
||||
case OFFLOAD_FUNC_EMB: func = ggml_offload_gpu; break;
|
||||
default: GGML_ASSERT(false);
|
||||
@ -5942,6 +5892,7 @@ static int llama_decode_internal(
|
||||
// after enough generations, the benefit from this heuristic disappears
|
||||
// if we start defragmenting the cache, the benefit from this will be more important
|
||||
kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
|
||||
//kv_self.n = llama_kv_cache_cell_max(kv_self);
|
||||
|
||||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
||||
|
||||
@ -5992,7 +5943,7 @@ static int llama_decode_internal(
|
||||
n_threads = std::min(4, n_threads);
|
||||
}
|
||||
|
||||
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
|
||||
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 1;
|
||||
if (ggml_cpu_has_cublas() && fully_offloaded) {
|
||||
n_threads = 1;
|
||||
}
|
||||
@ -8821,10 +8772,12 @@ struct llama_context_params llama_context_default_params() {
|
||||
/*.yarn_beta_fast =*/ 32.0f,
|
||||
/*.yarn_beta_slow =*/ 1.0f,
|
||||
/*.yarn_orig_ctx =*/ 0,
|
||||
/*.type_k =*/ GGML_TYPE_F16,
|
||||
/*.type_v =*/ GGML_TYPE_F16,
|
||||
/*.mul_mat_q =*/ true,
|
||||
/*.f16_kv =*/ true,
|
||||
/*.logits_all =*/ false,
|
||||
/*.embedding =*/ false,
|
||||
/*.offload_kqv =*/ true,
|
||||
};
|
||||
|
||||
return result;
|
||||
@ -8941,6 +8894,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
||||
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
||||
cparams.mul_mat_q = params.mul_mat_q;
|
||||
cparams.offload_kqv = params.offload_kqv;
|
||||
|
||||
cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
|
||||
cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
|
||||
@ -8974,19 +8928,36 @@ struct llama_context * llama_new_context_with_model(
|
||||
ctx->rng = std::mt19937(params.seed);
|
||||
ctx->logits_all = params.logits_all;
|
||||
|
||||
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
const ggml_type type_k = params.type_k;
|
||||
const ggml_type type_v = params.type_v;
|
||||
|
||||
GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(type_k) == 0);
|
||||
GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(type_v) == 0);
|
||||
|
||||
// reserve memory for context buffers
|
||||
if (!hparams.vocab_only) {
|
||||
if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) {
|
||||
if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, type_k, type_v, cparams.n_ctx, model->n_gpu_layers, cparams.offload_kqv)) {
|
||||
LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
{
|
||||
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||
LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
size_t memory_size_k = 0;
|
||||
size_t memory_size_v = 0;
|
||||
|
||||
for (auto & k : ctx->kv_self.k_l) {
|
||||
memory_size_k += ggml_nbytes(k);
|
||||
}
|
||||
|
||||
for (auto & v : ctx->kv_self.v_l) {
|
||||
memory_size_v += ggml_nbytes(v);
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
||||
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
||||
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
||||
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
||||
}
|
||||
|
||||
// resized during inference
|
||||
@ -9057,8 +9028,12 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
|
||||
size_t kv_vram_size = 0;
|
||||
add_tensor(ctx->kv_self.k, kv_vram_size);
|
||||
add_tensor(ctx->kv_self.v, kv_vram_size);
|
||||
for (auto & k : ctx->kv_self.k_l) {
|
||||
add_tensor(k, kv_vram_size);
|
||||
}
|
||||
for (auto & v : ctx->kv_self.v_l) {
|
||||
add_tensor(v, kv_vram_size);
|
||||
}
|
||||
|
||||
size_t ctx_vram_size = alloc_size + kv_vram_size;
|
||||
size_t total_vram_size = model_vram_size + ctx_vram_size;
|
||||
@ -9528,37 +9503,45 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
|
||||
data_ctx->write(&kv_used, sizeof(kv_used));
|
||||
|
||||
if (kv_buf_size) {
|
||||
const size_t elt_size = ggml_element_size(kv_self.k);
|
||||
const size_t elt_size = ggml_element_size(kv_self.k_l[0]);
|
||||
|
||||
ggml_context * cpy_ctx = ggml_init({ 6*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
|
||||
ggml_context * cpy_ctx = ggml_init({ 6*n_layer*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
|
||||
ggml_cgraph * gf = ggml_new_graph(cpy_ctx);
|
||||
|
||||
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
|
||||
std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
|
||||
kout3d->data = kout3d_data.data();
|
||||
std::vector<std::vector<uint8_t>> kout2d_data(n_layer);
|
||||
std::vector<std::vector<uint8_t>> vout2d_data(n_layer);
|
||||
|
||||
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
|
||||
std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
|
||||
vout3d->data = vout3d_data.data();
|
||||
for (int il = 0; il < (int) n_layer; ++il) {
|
||||
ggml_tensor * kout2d = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd, kv_head);
|
||||
kout2d_data[il].resize(ggml_nbytes(kout2d));
|
||||
kout2d->data = kout2d_data[il].data();
|
||||
|
||||
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
|
||||
n_embd, kv_head, n_layer,
|
||||
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
|
||||
ggml_tensor * vout2d = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd);
|
||||
vout2d_data[il].resize(ggml_nbytes(vout2d));
|
||||
vout2d->data = vout2d_data[il].data();
|
||||
|
||||
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
|
||||
kv_head, n_embd, n_layer,
|
||||
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
|
||||
ggml_tensor * k2d = ggml_view_2d(cpy_ctx, kv_self.k_l[il],
|
||||
n_embd, kv_head,
|
||||
elt_size*n_embd, 0);
|
||||
|
||||
ggml_tensor * v2d = ggml_view_2d(cpy_ctx, kv_self.v_l[il],
|
||||
kv_head, n_embd,
|
||||
elt_size*n_ctx, 0);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, k2d, kout2d));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, v2d, vout2d));
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, k3d, kout3d));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, v3d, vout3d));
|
||||
ggml_graph_compute_helper(ctx->work_buffer, gf, /*n_threads*/ 1);
|
||||
|
||||
ggml_free(cpy_ctx);
|
||||
|
||||
// our data is now in the kout3d_data and vout3d_data buffers
|
||||
// our data is now in the kout2d_data and vout2d_data buffers
|
||||
// write them to file
|
||||
data_ctx->write(kout3d_data.data(), kout3d_data.size());
|
||||
data_ctx->write(vout3d_data.data(), vout3d_data.size());
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
data_ctx->write(kout2d_data[il].data(), kout2d_data[il].size());
|
||||
data_ctx->write(vout2d_data[il].data(), vout2d_data[il].size());
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < kv_size; ++i) {
|
||||
@ -9658,29 +9641,32 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
if (kv_buf_size) {
|
||||
GGML_ASSERT(kv_self.buf.size == kv_buf_size);
|
||||
|
||||
const size_t elt_size = ggml_element_size(kv_self.k);
|
||||
const size_t elt_size = ggml_element_size(kv_self.k_l[0]);
|
||||
|
||||
ggml_context * cpy_ctx = ggml_init({ 6*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
|
||||
ggml_context * cpy_ctx = ggml_init({ 6*n_layer*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
|
||||
ggml_cgraph * gf = ggml_new_graph(cpy_ctx);
|
||||
|
||||
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
|
||||
kin3d->data = (void *) inp;
|
||||
inp += ggml_nbytes(kin3d);
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * kin2d = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd, kv_head);
|
||||
kin2d->data = (void *) inp;
|
||||
inp += ggml_nbytes(kin2d);
|
||||
|
||||
ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
|
||||
vin3d->data = (void *) inp;
|
||||
inp += ggml_nbytes(vin3d);
|
||||
ggml_tensor * vin2d = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd);
|
||||
vin2d->data = (void *) inp;
|
||||
inp += ggml_nbytes(vin2d);
|
||||
|
||||
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
|
||||
n_embd, kv_head, n_layer,
|
||||
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
|
||||
ggml_tensor * k2d = ggml_view_2d(cpy_ctx, kv_self.k_l[il],
|
||||
n_embd, kv_head,
|
||||
elt_size*n_embd, 0);
|
||||
|
||||
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
|
||||
kv_head, n_embd, n_layer,
|
||||
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
|
||||
ggml_tensor * v2d = ggml_view_2d(cpy_ctx, kv_self.v_l[il],
|
||||
kv_head, n_embd,
|
||||
elt_size*n_ctx, 0);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, kin2d, k2d));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, vin2d, v2d));
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, kin3d, k3d));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, vin3d, v3d));
|
||||
ggml_graph_compute_helper(ctx->work_buffer, gf, /*n_threads*/ 1);
|
||||
|
||||
ggml_free(cpy_ctx);
|
||||
|
7
llama.h
7
llama.h
@ -42,7 +42,7 @@
|
||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 2
|
||||
#define LLAMA_SESSION_VERSION 3
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
@ -211,11 +211,14 @@ extern "C" {
|
||||
float yarn_beta_slow; // YaRN high correction dim
|
||||
uint32_t yarn_orig_ctx; // YaRN original context size
|
||||
|
||||
enum ggml_type type_k; // data type for K cache
|
||||
enum ggml_type type_v; // data type for V cache
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||||
bool f16_kv; // use fp16 for KV cache, fp32 otherwise
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool embedding; // embedding mode only
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
};
|
||||
|
||||
// model quantization parameters
|
||||
|
Loading…
x
Reference in New Issue
Block a user