diff --git a/ggml-mpi.c b/ggml-mpi.c index 46ee5bacb..6dd7e7b76 100644 --- a/ggml-mpi.c +++ b/ggml-mpi.c @@ -74,6 +74,7 @@ int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) { return -1; } +// TODO: there are many improvements that can be done to this implementation void ggml_mpi_graph_compute( struct ggml_mpi_context * ctx_mpi, struct ggml_context * ctx, @@ -82,18 +83,24 @@ void ggml_mpi_graph_compute( const int mpi_rank = ctx_mpi->rank; const int mpi_size = ctx_mpi->size; - struct ggml_tensor * embd = ggml_graph_get_tensor(gf, "layer_inp_0"); - if (embd == NULL) { - fprintf(stderr, "%s: tensor 'embd' not found\n", __func__); + struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens"); + if (inp_tokens == NULL) { + fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__); return; } - GGML_ASSERT(embd == gf->nodes[0]); + struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0"); + if (inp0 == NULL) { + fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__); + return; + } + + GGML_ASSERT(inp0 == gf->nodes[0]); // distribute the compute graph into slices across the MPI nodes // // the main node (0) processes the last layers + the remainder of the compute graph - // and is responsible to pass the input embeddings to the first node (1) + // and is responsible to pass the input tokens to the first node (1) // // node 1: [( 0) * n_per_node, ( 1) * n_per_node) // node 2: [( 1) * n_per_node, ( 2) * n_per_node) @@ -102,22 +109,28 @@ void ggml_mpi_graph_compute( // node 0: [(n-1) * n_per_node, n_nodes) // if (mpi_rank > 0) { - // recv input data for each node into the "embd" tensor (i.e. the first node in the compute graph) - { + if (mpi_rank == 1) { // the first node receives the input tokens from the main node MPI_Status status; UNUSED(status); const int mpi_rank_src = mpi_rank - 1; - //printf("%s: node %d: waiting for %d elements from %d\n", __func__, mpi_rank, (int) ggml_nelements(embd), mpi_rank_src); - const int retval = MPI_Recv(embd->data, ggml_nelements(embd), MPI_FLOAT, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); + const int retval = MPI_Recv(inp_tokens->data, ggml_nelements(inp_tokens), MPI_INT, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); + GGML_ASSERT(retval == MPI_SUCCESS); + } else { // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph) + MPI_Status status; UNUSED(status); + + const int mpi_rank_src = mpi_rank - 1; + + //printf("%s: node %d: waiting for %d elements from %d\n", __func__, mpi_rank, (int) ggml_nelements(inp0), mpi_rank_src); + const int retval = MPI_Recv(inp0->data, ggml_nelements(inp0), MPI_FLOAT, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); GGML_ASSERT(retval == MPI_SUCCESS); } - } else { - // node 0 sends the input data to node 1 + } else if (mpi_size > 1) { + // node 0 sends the input tokens to node 1 { const int mpi_rank_dst = mpi_rank + 1; - const int retval = MPI_Send(embd->data, ggml_nelements(embd), MPI_FLOAT, mpi_rank_dst, 0, MPI_COMM_WORLD); + const int retval = MPI_Send(inp_tokens->data, ggml_nelements(inp_tokens), MPI_INT, mpi_rank_dst, 0, MPI_COMM_WORLD); GGML_ASSERT(retval == MPI_SUCCESS); } @@ -127,8 +140,8 @@ void ggml_mpi_graph_compute( const int mpi_rank_src = mpi_size - 1; - //fprintf(stderr, "%s: node %d: waiting for %d elements from %d\n", __func__, mpi_rank, (int) ggml_nelements(embd), mpi_rank_src); - const int retval = MPI_Recv(embd->data, ggml_nelements(embd), MPI_FLOAT, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); + //fprintf(stderr, "%s: node %d: waiting for %d elements from %d\n", __func__, mpi_rank, (int) ggml_nelements(inp0), mpi_rank_src); + const int retval = MPI_Recv(inp0->data, ggml_nelements(inp0), MPI_FLOAT, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); GGML_ASSERT(retval == MPI_SUCCESS); } } @@ -148,7 +161,7 @@ void ggml_mpi_graph_compute( snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1); const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0); - const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) : gf->n_nodes; + const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes; if (idx_l0 < 0 || idx_l1 < 0) { fprintf(stderr, "%s: layer input nodes not found\n", __func__); @@ -156,16 +169,24 @@ void ggml_mpi_graph_compute( } // attach the input data to the first layer for this node - gf->nodes[idx_l0 + 1]->src0 = gf->nodes[1]->src0; - gf->nodes[idx_l0 + 1]->src1 = gf->nodes[1]->src1; - - memcpy(gf->nodes[idx_l0 + 1]->opt, gf->nodes[1]->opt, sizeof(gf->nodes[idx_l0 + 1]->opt)); + for (int i = idx_l0; i < idx_l1; i++) { + if (gf->nodes[i]->src0 == gf->nodes[idx_l0]) { + gf->nodes[i]->src0 = inp0; + } + if (gf->nodes[i]->src1 == gf->nodes[idx_l0]) { + gf->nodes[i]->src1 = inp0; + } + } + // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph for (int i = 1; i < idx_l1 - idx_l0; i++) { gf->nodes[i] = gf->nodes[idx_l0 + i]; gf->grads[i] = gf->grads[idx_l0 + i]; + } - //fprintf(stderr, "%s: node %d: %d -> %d\n", __func__, mpi_rank, idx_l0 + i, i); + // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node + if (mpi_idx != 0) { + gf->nodes[0]->op = GGML_OP_NONE; } gf->n_nodes = idx_l1 - idx_l0; @@ -175,11 +196,6 @@ void ggml_mpi_graph_compute( ggml_graph_compute(ctx, gf); - //if (mpi_rank == 0) { - // ggml_graph_print(gf); - // ggml_graph_dump_dot(gf, NULL, "llama.dot"); - //} - //fprintf(stderr, "%s: node %d: done\n", __func__, mpi_rank); // send the output data to the next node diff --git a/llama.cpp b/llama.cpp index 4bf1e75d2..b7aad4c6e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1336,16 +1336,16 @@ static bool llama_eval_internal( struct ggml_tensor * inpL; if (tokens) { - struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - memcpy(embd->data, tokens, N*ggml_element_size(embd)); - inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens)); + ggml_set_name(inp_tokens, "inp_tokens"); + + inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N); memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL)); } - ggml_set_name(inpL, "embd"); - const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start;