mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 13:28:50 +01:00
Update and fix Vulkan soft_max and argsort implementations (#7237)
* Update and fix Vulkan softmax implementation * Update and fix Vulkan argsort implementation
This commit is contained in:
parent
de73196344
commit
c1b295eea5
File diff suppressed because it is too large
Load Diff
194
ggml-vulkan.cpp
194
ggml-vulkan.cpp
@ -294,7 +294,6 @@ struct vk_op_rope_neox_push_constants {
|
||||
struct vk_op_soft_max_push_constants {
|
||||
uint32_t KX;
|
||||
uint32_t KY;
|
||||
uint32_t KZ;
|
||||
float scale;
|
||||
float max_bias;
|
||||
float m0;
|
||||
@ -304,7 +303,8 @@ struct vk_op_soft_max_push_constants {
|
||||
|
||||
struct vk_op_argsort_push_constants {
|
||||
uint32_t ncols;
|
||||
bool ascending;
|
||||
uint32_t ncols_pad;
|
||||
int32_t order;
|
||||
};
|
||||
|
||||
// Allow pre-recording command buffers
|
||||
@ -1501,8 +1501,8 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
|
||||
|
||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||
@ -3752,7 +3752,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
|
||||
}
|
||||
|
||||
|
||||
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
|
||||
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) {
|
||||
switch (op) {
|
||||
case GGML_OP_ADD:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
@ -3834,7 +3834,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_soft_max_f32;
|
||||
}
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && src2->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_soft_max_f32_f16;
|
||||
}
|
||||
return nullptr;
|
||||
@ -3900,15 +3900,12 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
|
||||
}
|
||||
|
||||
template<typename PC>
|
||||
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) {
|
||||
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) {
|
||||
#ifdef GGML_VULKAN_DEBUG
|
||||
std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||
if (src1 != nullptr) {
|
||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||
}
|
||||
if (src2 != nullptr) {
|
||||
std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", backend=" << src2->backend << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
|
||||
}
|
||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
|
||||
@ -3929,10 +3926,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
const uint64_t nb2 = dst->nb[2];
|
||||
const uint64_t nb3 = dst->nb[3];
|
||||
|
||||
const bool use_src2 = src2 != nullptr;
|
||||
const uint64_t ne2 = use_src2 ? src2->ne[0] * src2->ne[1] : 0;
|
||||
|
||||
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op);
|
||||
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op);
|
||||
ggml_vk_func_t op_func;
|
||||
|
||||
if (pipeline == nullptr) {
|
||||
@ -3955,18 +3949,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
|
||||
|
||||
vk_buffer d_X = nullptr;
|
||||
size_t x_buf_offset = 0;
|
||||
vk_buffer d_Y = nullptr;
|
||||
size_t y_buf_offset = 0;
|
||||
vk_buffer d_Z = nullptr;
|
||||
size_t z_buf_offset = 0;
|
||||
|
||||
bool src0_uma = false;
|
||||
bool src1_uma = false;
|
||||
bool src2_uma = false;
|
||||
|
||||
if (ctx->device->uma) {
|
||||
ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset);
|
||||
@ -3975,15 +3966,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset);
|
||||
src1_uma = d_Y != nullptr;
|
||||
}
|
||||
if (use_src2) {
|
||||
ggml_vk_host_get(ctx, src1->data, d_Z, z_buf_offset);
|
||||
src2_uma = d_Z != nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment);
|
||||
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||
uint64_t z_sz = use_src2 ? ggml_vk_align_size(ggml_type_size(src2->type) * ne2, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
|
||||
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
@ -4007,12 +3993,6 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
GGML_ASSERT(d_Y != nullptr);
|
||||
}
|
||||
|
||||
if (use_src2 && !src2_uma) {
|
||||
d_Z = extra_src2->buffer_gpu.lock();
|
||||
z_buf_offset = extra_src2->offset;
|
||||
GGML_ASSERT(d_Z != nullptr);
|
||||
}
|
||||
|
||||
if (op_supports_incontiguous) {
|
||||
x_sz = ggml_nbytes(src0);
|
||||
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
|
||||
@ -4046,7 +4026,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 };
|
||||
break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) };
|
||||
elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) };
|
||||
break;
|
||||
case GGML_OP_ARGSORT:
|
||||
elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 };
|
||||
break;
|
||||
default:
|
||||
elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
|
||||
@ -4066,7 +4049,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
}
|
||||
|
||||
if (op == GGML_OP_SOFT_MAX) {
|
||||
// Empty src1 and src2 are possible on soft_max, but the shader needs buffers
|
||||
// Empty src1 is possible on soft_max, but the shader needs a buffer
|
||||
vk_subbuffer subbuf_y;
|
||||
if (use_src1) {
|
||||
subbuf_y = { d_Y, y_buf_offset, y_sz };
|
||||
@ -4074,15 +4057,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
subbuf_y = { d_X, 0, d_X->size };
|
||||
}
|
||||
|
||||
vk_subbuffer subbuf_z;
|
||||
if (use_src2) {
|
||||
subbuf_z = { d_Z, z_buf_offset, z_sz };
|
||||
} else {
|
||||
subbuf_z = { d_X, 0, d_X->size };
|
||||
}
|
||||
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||
} else if (use_src1) {
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||
@ -4099,13 +4075,13 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
|
||||
GGML_ASSERT(op != GGML_OP_ARGSORT);
|
||||
|
||||
ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03);
|
||||
|
||||
switch (dst->op) {
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
elements = { (uint32_t)ne01, 1, 1 };
|
||||
break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
@ -4145,7 +4121,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
}
|
||||
|
||||
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
@ -4153,7 +4129,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx,
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, {
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||
@ -4168,7 +4144,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, {
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ADD, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||
@ -4183,7 +4159,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, {
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_MUL, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||
@ -4198,7 +4174,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
@ -4211,7 +4187,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
@ -4225,7 +4201,7 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
@ -4240,7 +4216,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
@ -4252,24 +4228,24 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
||||
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
float * op_params = (float *)dst->op_params;
|
||||
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
float * op_params = (float *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
int32_t * op_params = (int32_t *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
|
||||
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
|
||||
}
|
||||
|
||||
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
|
||||
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
float * op_params = (float *)dst->op_params;
|
||||
|
||||
float scale = op_params[0];
|
||||
@ -4285,13 +4261,9 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
#pragma message("TODO: src2 is no longer used in soft_max - should be removed and ALiBi calculation should be updated")
|
||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192")
|
||||
|
||||
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_SOFT_MAX, {
|
||||
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, {
|
||||
ncols,
|
||||
src1 != nullptr ? nrows_y : (uint32_t)0,
|
||||
src2 != nullptr ? (uint32_t)1 : (uint32_t)0,
|
||||
scale, max_bias,
|
||||
m0, m1,
|
||||
n_head_log2,
|
||||
@ -4321,15 +4293,39 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
|
||||
if (is_neox) {
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
const float inv_ndims = -1.0f / n_dims;
|
||||
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims });
|
||||
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
|
||||
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
|
||||
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims
|
||||
});
|
||||
} else {
|
||||
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f} });
|
||||
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
|
||||
(uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1],
|
||||
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
int32_t * op_params = (int32_t *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, { (uint32_t)src0->ne[0], ((ggml_sort_order) op_params[0]) == GGML_SORT_ORDER_ASC });
|
||||
|
||||
uint32_t ncols = src0->ne[0];
|
||||
|
||||
uint32_t ncols_pad = 1;
|
||||
while (ncols_pad < ncols) {
|
||||
ncols_pad *= 2;
|
||||
}
|
||||
|
||||
GGML_ASSERT(ncols_pad <= 1024);
|
||||
|
||||
std::cerr << "ncols=" << ncols << " ncols_pad=" << ncols_pad << " ascending=" << op_params[0] << std::endl;
|
||||
|
||||
std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl;
|
||||
|
||||
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_ARGSORT, {
|
||||
ncols,
|
||||
ncols_pad,
|
||||
op_params[0],
|
||||
});
|
||||
}
|
||||
|
||||
#ifdef GGML_VULKAN_RUN_TESTS
|
||||
@ -5432,7 +5428,6 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
|
||||
const ggml_tensor * src0 = node->src[0];
|
||||
const ggml_tensor * src1 = node->src[1];
|
||||
const ggml_tensor * src2 = node->src[2];
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
|
||||
|
||||
@ -5547,7 +5542,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
|
||||
break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, src2, node);
|
||||
ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, node);
|
||||
|
||||
break;
|
||||
case GGML_OP_ROPE:
|
||||
@ -6548,7 +6543,7 @@ static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<c
|
||||
}
|
||||
|
||||
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_I32) {
|
||||
return;
|
||||
}
|
||||
i0 = std::max(i0, 5);
|
||||
@ -6569,6 +6564,8 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
|
||||
val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
||||
} else if (tensor->type == GGML_TYPE_F16) {
|
||||
val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
||||
} else if (tensor->type == GGML_TYPE_I32) {
|
||||
val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
@ -6671,7 +6668,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
|
||||
ggml_tensor * src0 = tensor->src[0];
|
||||
ggml_tensor * src1 = tensor->src[1];
|
||||
ggml_tensor * src2 = tensor->src[2];
|
||||
|
||||
struct ggml_init_params iparams = {
|
||||
/*.mem_size =*/ 1024*1024*1024,
|
||||
@ -6798,66 +6794,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
|
||||
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
|
||||
}
|
||||
if (src2 != nullptr) {
|
||||
src2_clone = ggml_dup_tensor(ggml_ctx, src2);
|
||||
|
||||
src2_size = ggml_nbytes(src2);
|
||||
|
||||
src2_buffer = malloc(src2_size);
|
||||
src2_clone->data = src2_buffer;
|
||||
if (src2->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
memcpy(src2_clone->data, src2->data, src2_size);
|
||||
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (src2->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra;
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
uint64_t offset = extra->offset;
|
||||
if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) {
|
||||
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
|
||||
const int idx = i3*src2->ne[2] + i2;
|
||||
ggml_vk_buffer_read(ctx, buf, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
src2_clone->nb[0] = src2->nb[0];
|
||||
src2_clone->nb[1] = src2->nb[1];
|
||||
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
||||
src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1];
|
||||
}
|
||||
} else {
|
||||
if (offset + src2_size >= buf->size) {
|
||||
src2_size = buf->size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(ctx, buf, offset, src2_clone->data, src2_size);
|
||||
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
||||
ggml_vk_print_tensor(ctx, src2, "src2");
|
||||
std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl;
|
||||
std::cerr << "src2_clone=" << tensor << " src2_clone->backend: " << src2_clone->backend << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl;
|
||||
if (src2->src[0] != nullptr) {
|
||||
std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " backend=" << src2->src[0]->backend << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl;
|
||||
}
|
||||
if (src2->src[1] != nullptr) {
|
||||
std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " backend=" << src2->src[1]->backend << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl;
|
||||
}
|
||||
std::cerr << std::endl << "Result:" << std::endl;
|
||||
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0);
|
||||
std::cerr << std::endl;
|
||||
std::cerr << std::endl << "Result:" << std::endl;
|
||||
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0);
|
||||
std::cerr << std::endl;
|
||||
std::vector<const ggml_tensor *> done;
|
||||
ggml_vk_print_graph_origin(src2_clone, done);
|
||||
}
|
||||
|
||||
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src2", src2_clone);
|
||||
}
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT) {
|
||||
tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone);
|
||||
@ -6877,7 +6813,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
|
||||
} else if (tensor->op == GGML_OP_SOFT_MAX) {
|
||||
if (src1 != nullptr) {
|
||||
tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
|
||||
tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
|
||||
} else {
|
||||
tensor_clone = ggml_soft_max(ggml_ctx, src0_clone);
|
||||
}
|
||||
@ -6964,9 +6900,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
if (src1 != nullptr) {
|
||||
free(src1_buffer);
|
||||
}
|
||||
if (src2 != nullptr) {
|
||||
free(src2_buffer);
|
||||
}
|
||||
|
||||
ggml_free(ggml_ctx);
|
||||
}
|
||||
@ -7026,8 +6959,11 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
} else if (tensor->type == GGML_TYPE_F16) {
|
||||
correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
|
||||
result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
||||
} else if (tensor->type == GGML_TYPE_I32) {
|
||||
correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
|
||||
result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
|
||||
} else {
|
||||
std::cerr << "comp_size=" << comp_size << " but required is " << (i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]) << std::endl;
|
||||
std::cerr << "Results check not implemented for type " << ggml_type_name(tensor->type) << std::endl;
|
||||
}
|
||||
} else {
|
||||
std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
|
||||
|
@ -2432,7 +2432,6 @@ layout (push_constant) uniform parameter
|
||||
{
|
||||
uint KX;
|
||||
uint KY;
|
||||
uint KZ;
|
||||
float scale;
|
||||
float max_bias;
|
||||
float m0;
|
||||
@ -2449,8 +2448,7 @@ layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
||||
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
|
||||
layout (binding = 2) readonly buffer Z {C_TYPE data_c[];};
|
||||
layout (binding = 3) buffer D {D_TYPE data_d[];};
|
||||
layout (binding = 2) buffer D {D_TYPE data_d[];};
|
||||
|
||||
shared FLOAT_TYPE vals[BLOCK_SIZE];
|
||||
|
||||
@ -2459,7 +2457,7 @@ void main() {
|
||||
const uint rowx = gl_WorkGroupID.x;
|
||||
const uint rowy = rowx % p.KY;
|
||||
|
||||
float slope = 0.0f;
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (p.max_bias > 0.0f) {
|
||||
@ -2472,11 +2470,18 @@ void main() {
|
||||
}
|
||||
|
||||
// Find max
|
||||
vals[tid] = uintBitsToFloat(0xFF800000);
|
||||
FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);
|
||||
|
||||
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
|
||||
vals[tid] = max(vals[tid], FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) + (p.KZ > 0 ? slope * FLOAT_TYPE(data_c[col]) : 0.0f));
|
||||
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
||||
const uint col = col0 + tid;
|
||||
|
||||
if (col >= p.KX) {
|
||||
break;
|
||||
}
|
||||
|
||||
max_val = max(max_val, FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)));
|
||||
}
|
||||
vals[tid] = max_val;
|
||||
|
||||
barrier();
|
||||
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
||||
@ -2486,15 +2491,21 @@ void main() {
|
||||
barrier();
|
||||
}
|
||||
|
||||
const FLOAT_TYPE max_val = vals[0];
|
||||
max_val = vals[0];
|
||||
barrier();
|
||||
|
||||
// Sum up values
|
||||
vals[tid] = FLOAT_TYPE(0.0f);
|
||||
|
||||
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
|
||||
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
||||
const uint col = col0 + tid;
|
||||
|
||||
if (col >= p.KX) {
|
||||
break;
|
||||
}
|
||||
|
||||
const uint i = rowx * p.KX + col;
|
||||
const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
|
||||
const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
|
||||
vals[tid] += val;
|
||||
data_d[i] = D_TYPE(val);
|
||||
}
|
||||
@ -2509,7 +2520,13 @@ void main() {
|
||||
|
||||
const D_TYPE divisor = D_TYPE(vals[0]);
|
||||
|
||||
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
|
||||
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
||||
const uint col = col0 + tid;
|
||||
|
||||
if (col >= p.KX) {
|
||||
break;
|
||||
}
|
||||
|
||||
data_d[rowx*p.KX + col] /= divisor;
|
||||
}
|
||||
}
|
||||
@ -2672,20 +2689,26 @@ argsort_src = """
|
||||
|
||||
#extension GL_EXT_shader_16bit_storage : require
|
||||
|
||||
layout(local_size_x = 1024, local_size_y = 1, local_size_z = 1) in;
|
||||
#define BLOCK_SIZE 1024
|
||||
#define ASC 0
|
||||
|
||||
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) buffer D {int data_d[];};
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint ncols;
|
||||
bool ascending;
|
||||
uint ncols_pad;
|
||||
uint order;
|
||||
} p;
|
||||
|
||||
shared int dst_row[BLOCK_SIZE];
|
||||
|
||||
void swap(uint idx0, uint idx1) {
|
||||
int tmp = data_d[idx0];
|
||||
data_d[idx0] = data_d[idx1];
|
||||
data_d[idx1] = tmp;
|
||||
int tmp = dst_row[idx0];
|
||||
dst_row[idx0] = dst_row[idx1];
|
||||
dst_row[idx1] = tmp;
|
||||
}
|
||||
|
||||
void main() {
|
||||
@ -2693,36 +2716,45 @@ void main() {
|
||||
const int col = int(gl_LocalInvocationID.x);
|
||||
const uint row = gl_WorkGroupID.y;
|
||||
|
||||
if (col >= p.ncols) {
|
||||
if (col >= p.ncols_pad) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint a_idx = row * p.ncols;
|
||||
const uint d_idx = row * p.ncols;
|
||||
const uint row_offset = row * p.ncols;
|
||||
|
||||
// initialize indices
|
||||
if (col < p.ncols) {
|
||||
data_d[col] = col;
|
||||
}
|
||||
dst_row[col] = col;
|
||||
barrier();
|
||||
|
||||
for (uint k = 2; k <= p.ncols; k *= 2) {
|
||||
for (uint k = 2; k <= p.ncols_pad; k *= 2) {
|
||||
for (uint j = k / 2; j > 0; j /= 2) {
|
||||
const uint ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (p.ascending ? data_a[a_idx + data_d[d_idx + col]] > data_a[a_idx + data_d[d_idx + ixj]] : data_a[a_idx + data_d[d_idx + col]] < data_a[a_idx + data_d[d_idx + ixj]]) {
|
||||
swap(d_idx + col, d_idx + ixj);
|
||||
if (dst_row[col] >= p.ncols ||
|
||||
(dst_row[ixj] < p.ncols && (p.order == ASC ?
|
||||
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]] :
|
||||
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]]))
|
||||
) {
|
||||
swap(col, ixj);
|
||||
}
|
||||
} else {
|
||||
if (p.ascending ? data_a[a_idx + data_d[d_idx + col]] < data_a[a_idx + data_d[d_idx + ixj]] : data_a[a_idx + data_d[d_idx + col]] > data_a[a_idx + data_d[d_idx + ixj]]) {
|
||||
swap(d_idx + col, d_idx + ixj);
|
||||
if (dst_row[ixj] >= p.ncols ||
|
||||
(dst_row[col] < p.ncols && (p.order == ASC ?
|
||||
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]] :
|
||||
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]]))
|
||||
) {
|
||||
swap(col, ixj);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
}
|
||||
|
||||
if (col < p.ncols) {
|
||||
data_d[row_offset + col] = dst_row[col];
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user