mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 20:22:25 +01:00
ggml-cpu: support IQ4_NL_4_4 by runtime repack (#10541)
* ggml-cpu: support IQ4_NL_4_4 by runtime repack * ggml-cpu: add __ARM_FEATURE_DOTPROD guard
This commit is contained in:
parent
2025fa67e9
commit
c202cef168
@ -91,6 +91,7 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_neon (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_arm_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fp16_va (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_dotprod (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_sve (void);
|
||||
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
|
||||
|
@ -389,6 +389,9 @@ extern "C" {
|
||||
GGML_TYPE_Q4_0_8_8 = 33,
|
||||
GGML_TYPE_TQ1_0 = 34,
|
||||
GGML_TYPE_TQ2_0 = 35,
|
||||
GGML_TYPE_IQ4_NL_4_4 = 36,
|
||||
// GGML_TYPE_IQ4_NL_4_8 = 37,
|
||||
// GGML_TYPE_IQ4_NL_8_8 = 38,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
|
@ -418,6 +418,12 @@ typedef struct {
|
||||
} block_iq4_xs;
|
||||
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
|
||||
|
||||
typedef struct {
|
||||
ggml_half d[4]; // deltas for 4 iq4_nl blocks
|
||||
uint8_t qs[QK4_NL * 2];// nibbles / quants for 4 iq4_nl blocks
|
||||
} block_iq4_nlx4;
|
||||
static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wrong iq4_nlx4 block size/padding");
|
||||
|
||||
#endif // GGML_COMMON_DECL
|
||||
#endif // GGML_COMMON_DECL
|
||||
|
||||
|
@ -187,6 +187,8 @@ static inline __m256i mul_sum_i8_pairs_int32x8(const __m256i x, const __m256i y)
|
||||
}
|
||||
#endif
|
||||
|
||||
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
static void quantize_q8_0_4x4(const float * restrict x, void * restrict vy, int64_t k) {
|
||||
assert(QK8_0 == 32);
|
||||
assert(k % QK8_0 == 0);
|
||||
@ -528,7 +530,7 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
if (ggml_cpu_has_neon()) {
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
float * res_ptr = s;
|
||||
@ -996,6 +998,102 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 4;
|
||||
const int blocklen = 4;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
const int8x16_t kvalues = vld1q_s8(kvalues_iq4nl);
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
float * res_ptr = s;
|
||||
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
|
||||
float32x4_t sumf = vdupq_n_f32(0);
|
||||
for (int l = 0; l < nb; l++) {
|
||||
uint8x16_t b_0 = vld1q_u8(b_ptr[l].qs + 0);
|
||||
uint8x16_t b_1 = vld1q_u8(b_ptr[l].qs + 16);
|
||||
uint8x16_t b_2 = vld1q_u8(b_ptr[l].qs + 32);
|
||||
uint8x16_t b_3 = vld1q_u8(b_ptr[l].qs + 48);
|
||||
|
||||
int8x16_t b_0_hi = vqtbl1q_s8(kvalues, b_0 >> 4);
|
||||
int8x16_t b_0_lo = vqtbl1q_s8(kvalues, b_0 & 0x0F);
|
||||
int8x16_t b_1_hi = vqtbl1q_s8(kvalues, b_1 >> 4);
|
||||
int8x16_t b_1_lo = vqtbl1q_s8(kvalues, b_1 & 0x0F);
|
||||
int8x16_t b_2_hi = vqtbl1q_s8(kvalues, b_2 >> 4);
|
||||
int8x16_t b_2_lo = vqtbl1q_s8(kvalues, b_2 & 0x0F);
|
||||
int8x16_t b_3_hi = vqtbl1q_s8(kvalues, b_3 >> 4);
|
||||
int8x16_t b_3_lo = vqtbl1q_s8(kvalues, b_3 & 0x0F);
|
||||
|
||||
int8x16_t a_0 = vld1q_s8(a_ptr[l].qs + 0);
|
||||
int8x16_t a_1 = vld1q_s8(a_ptr[l].qs + 16);
|
||||
|
||||
int32x4_t sumi = vdupq_n_s32(0);
|
||||
sumi = vdotq_laneq_s32(sumi, b_0_lo, a_0, 0);
|
||||
sumi = vdotq_laneq_s32(sumi, b_0_hi, a_1, 0);
|
||||
sumi = vdotq_laneq_s32(sumi, b_1_lo, a_0, 1);
|
||||
sumi = vdotq_laneq_s32(sumi, b_1_hi, a_1, 1);
|
||||
sumi = vdotq_laneq_s32(sumi, b_2_lo, a_0, 2);
|
||||
sumi = vdotq_laneq_s32(sumi, b_2_hi, a_1, 2);
|
||||
sumi = vdotq_laneq_s32(sumi, b_3_lo, a_0, 3);
|
||||
sumi = vdotq_laneq_s32(sumi, b_3_hi, a_1, 3);
|
||||
|
||||
float32x4_t a_d = vcvt_f32_f16(vld1_dup_f16((const float16_t *)&a_ptr[l].d));
|
||||
float32x4_t b_d = vcvt_f32_f16(vld1_f16((const float16_t *)b_ptr[l].d));
|
||||
float32x4_t d = a_d * b_d;
|
||||
|
||||
sumf = vmlaq_f32(sumf, d, vcvtq_f32_s32(sumi));
|
||||
}
|
||||
|
||||
vst1q_f32(res_ptr + x * 4, sumf);
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
@ -1017,7 +1115,7 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
if (ggml_cpu_has_neon()) {
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
float * res_ptr = s;
|
||||
@ -3386,6 +3484,117 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 4;
|
||||
const int blocklen = 4;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nr % 4 == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
const int8x16_t kvalues = vld1q_s8(kvalues_iq4nl);
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
|
||||
float32x4_t sumf[4];
|
||||
for (int m = 0; m < 4; m++) {
|
||||
sumf[m] = vdupq_n_f32(0);
|
||||
}
|
||||
|
||||
for (int l = 0; l < nb; l++) {
|
||||
float32x4_t a_d = vcvt_f32_f16(vld1_f16((const float16_t *)a_ptr[l].d));
|
||||
float32x4_t b_d = vcvt_f32_f16(vld1_f16((const float16_t *)b_ptr[l].d));
|
||||
|
||||
int32x4_t sumi_0 = vdupq_n_s32(0);
|
||||
int32x4_t sumi_1 = vdupq_n_s32(0);
|
||||
int32x4_t sumi_2 = vdupq_n_s32(0);
|
||||
int32x4_t sumi_3 = vdupq_n_s32(0);
|
||||
|
||||
for (int k = 0; k < 4; k++) {
|
||||
int8x16_t a_0 = vld1q_s8(a_ptr[l].qs + 16 * k + 0);
|
||||
int8x16_t a_1 = vld1q_s8(a_ptr[l].qs + 16 * k + 64);
|
||||
|
||||
uint8x16_t b = vld1q_u8(b_ptr[l].qs + 16 * k);
|
||||
int8x16_t b_hi = vqtbl1q_s8(kvalues, b >> 4);
|
||||
int8x16_t b_lo = vqtbl1q_s8(kvalues, b & 0xF);
|
||||
|
||||
sumi_0 = vdotq_laneq_s32(sumi_0, b_lo, a_0, 0);
|
||||
sumi_1 = vdotq_laneq_s32(sumi_1, b_lo, a_0, 1);
|
||||
sumi_2 = vdotq_laneq_s32(sumi_2, b_lo, a_0, 2);
|
||||
sumi_3 = vdotq_laneq_s32(sumi_3, b_lo, a_0, 3);
|
||||
sumi_0 = vdotq_laneq_s32(sumi_0, b_hi, a_1, 0);
|
||||
sumi_1 = vdotq_laneq_s32(sumi_1, b_hi, a_1, 1);
|
||||
sumi_2 = vdotq_laneq_s32(sumi_2, b_hi, a_1, 2);
|
||||
sumi_3 = vdotq_laneq_s32(sumi_3, b_hi, a_1, 3);
|
||||
}
|
||||
|
||||
sumf[0] = vmlaq_f32(sumf[0], vmulq_laneq_f32(b_d, a_d, 0), vcvtq_f32_s32(sumi_0));
|
||||
sumf[1] = vmlaq_f32(sumf[1], vmulq_laneq_f32(b_d, a_d, 1), vcvtq_f32_s32(sumi_1));
|
||||
sumf[2] = vmlaq_f32(sumf[2], vmulq_laneq_f32(b_d, a_d, 2), vcvtq_f32_s32(sumi_2));
|
||||
sumf[3] = vmlaq_f32(sumf[3], vmulq_laneq_f32(b_d, a_d, 3), vcvtq_f32_s32(sumi_3));
|
||||
}
|
||||
|
||||
for (int m = 0; m < 4; m++) {
|
||||
vst1q_f32(s + (y * 4 + m) * bs + x * 4, sumf[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4][4];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: this code is duplicated from ggml-aarch64.c
|
||||
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
|
||||
block_q4_0x4 out;
|
||||
@ -3518,6 +3727,70 @@ static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor *t, int interleave_block,
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_size_interleave) {
|
||||
block_iq4_nlx4 out;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
out.d[i] = in[i].d;
|
||||
}
|
||||
|
||||
const int end = QK4_NL * 2 / blck_size_interleave;
|
||||
|
||||
if (blck_size_interleave == 8) {
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 4;
|
||||
int src_offset = (i / 4) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
// Using memcpy to avoid unaligned memory accesses
|
||||
memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t));
|
||||
}
|
||||
} else if (blck_size_interleave == 4) {
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 4;
|
||||
int src_offset = (i / 4) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint32_t));
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * restrict data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
|
||||
GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
|
||||
|
||||
block_iq4_nlx4 * dst = (block_iq4_nlx4 *)t->data;
|
||||
const block_iq4_nl * src = (const block_iq4_nl *)data;
|
||||
block_iq4_nl dst_tmp[4];
|
||||
int nrow = t->ne[1]; // Number of rows
|
||||
int nrows_interleaved = 4;
|
||||
int nblocks = t->ne[0] / QK4_0;
|
||||
|
||||
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
|
||||
|
||||
if (nrow % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (int b = 0; b < nrow; b += nrows_interleaved) {
|
||||
for (int64_t x = 0; x < nblocks; x++) {
|
||||
for (int i = 0; i < nrows_interleaved; i++) {
|
||||
dst_tmp[i] = src[x + i * nblocks];
|
||||
}
|
||||
*dst++ = make_block_iq4_nlx4(dst_tmp, interleave_block);
|
||||
}
|
||||
src += nrows_interleaved * nblocks;
|
||||
}
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
// Prepare for optimized kernels if applicable
|
||||
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * restrict data, size_t data_size) {
|
||||
if (cur->type == repack_type) {
|
||||
@ -3525,20 +3798,30 @@ void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(cur->type == GGML_TYPE_Q4_0);
|
||||
|
||||
switch (repack_type) {
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
repack_q4_0_to_q4_0_8_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 4, data, data_size);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type");
|
||||
if (cur->type == GGML_TYPE_Q4_0) {
|
||||
switch (repack_type) {
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
repack_q4_0_to_q4_0_8_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 4, data, data_size);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type");
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_IQ4_NL) {
|
||||
switch (repack_type) {
|
||||
case GGML_TYPE_IQ4_NL_4_4:
|
||||
repack_iq4_nl_to_iq4_nl_4_bl(cur, 4, data, data_size);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type");
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("Unsupported type");
|
||||
}
|
||||
}
|
||||
|
||||
@ -3551,9 +3834,13 @@ enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * c
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
|
||||
return GGML_TYPE_Q4_0_4_8;
|
||||
}
|
||||
if (ggml_cpu_has_neon()) {
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
return GGML_TYPE_Q4_0_4_4;
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_IQ4_NL) {
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
return GGML_TYPE_IQ4_NL_4_4;
|
||||
}
|
||||
}
|
||||
|
||||
return cur->type;
|
||||
|
@ -15,11 +15,13 @@ void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// GEMM
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * data, size_t data_size);
|
||||
enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur);
|
||||
|
@ -109,10 +109,11 @@ static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
|
||||
#if defined(__ARM_ARCH)
|
||||
struct ggml_arm_arch_features_type {
|
||||
int has_neon;
|
||||
int has_dotprod;
|
||||
int has_i8mm;
|
||||
int has_sve;
|
||||
int sve_cnt;
|
||||
} ggml_arm_arch_features = {-1, -1, -1, 0};
|
||||
} ggml_arm_arch_features = {-1, -1, -1, -1, 0};
|
||||
#endif
|
||||
|
||||
|
||||
@ -446,6 +447,15 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_IQ4_NL_4_4] = {
|
||||
.from_float = NULL,
|
||||
.vec_dot = NULL,
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
.nrows = 1,
|
||||
.ncols = 4,
|
||||
.gemv = ggml_gemv_iq4_nl_4x4_q8_0,
|
||||
.gemm = ggml_gemm_iq4_nl_4x4_q8_0,
|
||||
},
|
||||
};
|
||||
|
||||
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
|
||||
@ -2439,6 +2449,7 @@ static void ggml_init_arm_arch_features(void) {
|
||||
uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||||
|
||||
ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
|
||||
ggml_arm_arch_features.has_dotprod = !!(hwcap && HWCAP_ASIMDDP);
|
||||
ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
|
||||
ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
|
||||
|
||||
@ -2453,6 +2464,11 @@ static void ggml_init_arm_arch_features(void) {
|
||||
}
|
||||
ggml_arm_arch_features.has_neon = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_dotprod = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
@ -9133,6 +9149,7 @@ static void ggml_compute_forward_clamp(
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
case GGML_TYPE_IQ4_NL_4_4:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
@ -13880,6 +13897,14 @@ int ggml_cpu_has_neon(void) {
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_dotprod(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD)
|
||||
return ggml_arm_arch_features.has_dotprod;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_sve(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
|
||||
return ggml_arm_arch_features.has_sve;
|
||||
|
@ -457,7 +457,7 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
if (src0 && src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
|
||||
if (op->op != GGML_OP_MUL_MAT || src0->type != GGML_TYPE_Q4_0 || ggml_aarch64_get_optimal_repack_type(src0) == GGML_TYPE_Q4_0) {
|
||||
if (op->op != GGML_OP_MUL_MAT || src0->type == ggml_aarch64_get_optimal_repack_type(src0)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -831,6 +831,15 @@ static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
|
||||
.to_float = (ggml_to_float_t) dequantize_row_tq2_0,
|
||||
.from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
|
||||
},
|
||||
[GGML_TYPE_IQ4_NL_4_4] = {
|
||||
.type_name = "iq4_nl_4x4",
|
||||
.blck_size = QK4_NL,
|
||||
.blck_size_interleave = 4,
|
||||
.type_size = sizeof(block_iq4_nl),
|
||||
.is_quantized = true,
|
||||
.to_float = NULL,
|
||||
.from_float_ref = NULL,
|
||||
},
|
||||
};
|
||||
|
||||
const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) {
|
||||
|
Loading…
Reference in New Issue
Block a user