From 017efe899d8fa76118aef88e963210d48da01172 Mon Sep 17 00:00:00 2001 From: Eve <139727413+netrunnereve@users.noreply.github.com> Date: Tue, 3 Oct 2023 16:53:15 +0000 Subject: [PATCH 001/295] cmake : make LLAMA_NATIVE flag actually use the instructions supported by the processor (#3273) * fix LLAMA_NATIVE * syntax * alternate implementation * my eyes must be getting bad... * set cmake LLAMA_NATIVE=ON by default * march=native doesn't work for ios/tvos, so disable for those targets. also see what happens if we use it on msvc * revert 8283237 and only allow LLAMA_NATIVE on x86 like the Makefile * remove -DLLAMA_MPI=ON --------- Co-authored-by: netrunnereve --- .github/workflows/build.yml | 16 ++++++++-------- CMakeLists.txt | 28 +++++++++++++++++----------- flake.nix | 2 +- 3 files changed, 26 insertions(+), 20 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 2fb101d78..35f84e404 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -188,7 +188,7 @@ jobs: sysctl -a mkdir build cd build - cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF .. + cmake .. cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) - name: Test @@ -265,17 +265,17 @@ jobs: matrix: include: - build: 'noavx' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx2' - defines: '-DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON' - build: 'avx' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx512' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON' - build: 'clblast' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"' - build: 'openblas' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' steps: - name: Clone @@ -414,7 +414,7 @@ jobs: run: | mkdir build cd build - cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON + cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} - name: Determine tag name diff --git a/CMakeLists.txt b/CMakeLists.txt index 49b37f7d5..7c79ec486 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -44,7 +44,7 @@ endif() # general option(LLAMA_STATIC "llama: static link libraries" OFF) -option(LLAMA_NATIVE "llama: enable -march=native flag" OFF) +option(LLAMA_NATIVE "llama: enable -march=native flag" ON) option(LLAMA_LTO "llama: enable link time optimization" OFF) # debug @@ -58,15 +58,21 @@ option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF) # instruction set specific -option(LLAMA_AVX "llama: enable AVX" ON) -option(LLAMA_AVX2 "llama: enable AVX2" ON) -option(LLAMA_AVX512 "llama: enable AVX512" OFF) -option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF) -option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF) -option(LLAMA_FMA "llama: enable FMA" ON) +if (LLAMA_NATIVE) + set(INS_ENB OFF) +else() + set(INS_ENB ON) +endif() + +option(LLAMA_AVX "llama: enable AVX" ${INS_ENB}) +option(LLAMA_AVX2 "llama: enable AVX2" ${INS_ENB}) +option(LLAMA_AVX512 "llama: enable AVX512" OFF) +option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF) +option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF) +option(LLAMA_FMA "llama: enable FMA" ${INS_ENB}) # in MSVC F16C is implied with AVX2/AVX512 if (NOT MSVC) - option(LLAMA_F16C "llama: enable F16C" ON) + option(LLAMA_F16C "llama: enable F16C" ${INS_ENB}) endif() # 3rd party libs @@ -504,9 +510,6 @@ if (NOT MSVC) if (LLAMA_GPROF) add_compile_options(-pg) endif() - if (LLAMA_NATIVE) - add_compile_options(-march=native) - endif() endif() if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64")) @@ -561,6 +564,9 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE add_compile_options($<$:/arch:AVX>) endif() else() + if (LLAMA_NATIVE) + add_compile_options(-march=native) + endif() if (LLAMA_F16C) add_compile_options(-mf16c) endif() diff --git a/flake.nix b/flake.nix index 433d3d942..cfc4776a4 100644 --- a/flake.nix +++ b/flake.nix @@ -62,7 +62,7 @@ mkdir -p $out/include cp ${src}/llama.h $out/include/ ''; - cmakeFlags = [ "-DLLAMA_BUILD_SERVER=ON" "-DLLAMA_MPI=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ]; + cmakeFlags = [ "-DLLAMA_NATIVE=OFF" "-DLLAMA_BUILD_SERVER=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ]; in { packages.default = pkgs.stdenv.mkDerivation { From f56e1baec361b5381e32ee6b6e56e4f00e002dfe Mon Sep 17 00:00:00 2001 From: Jiahao Li Date: Wed, 4 Oct 2023 00:55:21 +0800 Subject: [PATCH 002/295] metal : alibi for arbitrary number of heads (#3426) --- ggml-metal.m | 9 ++++----- ggml-metal.metal | 11 +++++++++-- 2 files changed, 13 insertions(+), 7 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index b3c463f03..866fed434 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1213,12 +1213,9 @@ void ggml_metal_graph_compute( float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - if (__builtin_popcount(n_head) != 1) { - GGML_ASSERT(false && "only power-of-two n_head implemented"); - } - const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); [encoder setComputePipelineState:ctx->pipeline_alibi_f32]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; @@ -1239,7 +1236,9 @@ void ggml_metal_graph_compute( [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; + [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; + [encoder setBytes:&m1 length:sizeof( float) atIndex:19]; + [encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; diff --git a/ggml-metal.metal b/ggml-metal.metal index 5e1af6a09..5a860098f 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -830,7 +830,9 @@ kernel void kernel_alibi_f32( constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, - constant float & m0, + constant float & m0, + constant float & m1, + constant int & n_heads_log2_floor, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { @@ -846,7 +848,12 @@ kernel void kernel_alibi_f32( const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); - float m_k = pow(m0, i2 + 1); + float m_k; + if (i2 < n_heads_log2_floor) { + m_k = pow(m0, i2 + 1); + } else { + m_k = pow(m1, 2 * (i2 - n_heads_log2_floor) + 1); + } for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1); From 48be797ffbd80b062f55778e09e97180eb25d2ab Mon Sep 17 00:00:00 2001 From: Alex Klinkhamer Date: Tue, 3 Oct 2023 10:09:28 -0700 Subject: [PATCH 003/295] llama : expose model's rope_freq_scale in the API (#3418) so it can be scaled further before creating a context. --- llama.cpp | 4 ++++ llama.h | 3 +++ 2 files changed, 7 insertions(+) diff --git a/llama.cpp b/llama.cpp index 4a61eecdd..aa1b4732c 100644 --- a/llama.cpp +++ b/llama.cpp @@ -7038,6 +7038,10 @@ int llama_n_embd(const struct llama_model * model) { return model->hparams.n_embd; } +float llama_rope_freq_scale_train(const struct llama_model * model) { + return model->hparams.rope_freq_scale_train; +} + int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { return snprintf(buf, buf_size, "%s %s %s", llama_model_arch_name(model->arch).c_str(), diff --git a/llama.h b/llama.h index fd2158400..0177d07a9 100644 --- a/llama.h +++ b/llama.h @@ -282,6 +282,9 @@ extern "C" { LLAMA_API int llama_n_ctx_train(const struct llama_model * model); LLAMA_API int llama_n_embd (const struct llama_model * model); + // Get the model's RoPE frequency scaling factor + LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model); + // Get a string describing the model type LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size); From ac2219fef34eb5b713c286c34c6e4162c39c8f3b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 3 Oct 2023 21:04:01 +0300 Subject: [PATCH 004/295] llama : fix session saving/loading (#3400) * llama : fix session saving/loading * llama : temp fix for clearing "future" tokens from the KV cache * llama : fix handling of "future" tokens when loading sessions * llama : fix comments for llama_kv_cache API --- examples/chat-persistent.sh | 8 +- examples/main/main.cpp | 3 + examples/parallel/parallel.cpp | 2 +- examples/server/server.cpp | 2 +- examples/speculative/speculative.cpp | 6 +- llama.cpp | 134 +++++++++++++++++---------- llama.h | 10 +- 7 files changed, 106 insertions(+), 59 deletions(-) diff --git a/examples/chat-persistent.sh b/examples/chat-persistent.sh index e0c251e5b..22f5b83d3 100755 --- a/examples/chat-persistent.sh +++ b/examples/chat-persistent.sh @@ -9,7 +9,7 @@ if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then exit 1 fi -MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}" +MODEL="${MODEL:-./models/llama-13b/ggml-model-q4_0.gguf}" PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}" USER_NAME="${USER_NAME:-User}" AI_NAME="${AI_NAME:-ChatLLaMa}" @@ -61,9 +61,9 @@ fi if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then echo 'Prompt cache does not exist, building...' - # Default batch_size to 8 here for better user feedback during initial prompt processing + # Default batch_size to 64 here for better user feedback during initial prompt processing ./main 2>>"$LOG" \ - --batch_size 8 \ + --batch_size 64 \ "${OPTS[@]}" \ --prompt-cache "$PROMPT_CACHE_FILE" \ --file "$CUR_PROMPT_FILE" \ @@ -132,7 +132,7 @@ while read -e line; do # HACK get num tokens from debug message # TODO get both messages in one go if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" || - ! sample_time_msg="$( tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then + ! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then echo >&2 "Couldn't get number of tokens from ./main output!" exit 1 fi diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 3a4ed3f78..7367ae362 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -543,6 +543,9 @@ int main(int argc, char ** argv) { if (i > 0) { embd.erase(embd.begin(), embd.begin() + i); } + + // remove any "future" tokens that we might have inherited from the session from the KV cache + llama_kv_cache_tokens_rm(ctx, n_past, -1); } // evaluate tokens in batches diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 0434ded23..ffd7b1db4 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -332,7 +332,7 @@ int main(int argc, char ** argv) { } // delete only the generated part of the sequence, i.e. keep the system prompt in the cache - llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, n_ctx); + llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, -1); const auto t_main_end = ggml_time_us(); diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 6dda5e36b..921eb5da4 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -448,7 +448,7 @@ struct llama_server_context n_past = common_part(embd, prompt_tokens); // since #3228 we now have to manually manage the KV cache - llama_kv_cache_seq_rm(ctx, 0, n_past, params.n_ctx); + llama_kv_cache_seq_rm(ctx, 0, n_past, -1); embd = prompt_tokens; if (n_past == num_prompt_tokens) diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index c5e5b234f..75a2e5e22 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -172,7 +172,7 @@ int main(int argc, char ** argv) { LOG("out of drafted tokens\n"); } - llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, n_ctx); + llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1); llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0)); ++n_past_dft; @@ -257,7 +257,7 @@ int main(int argc, char ** argv) { } // evaluate the drafted token on the draft model - llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, n_ctx); + llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1); llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0)); ++n_past_cur; @@ -267,7 +267,7 @@ int main(int argc, char ** argv) { } // evaluate the target model on the drafted tokens - llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, n_ctx); + llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1); llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0)); ++n_past_tgt; diff --git a/llama.cpp b/llama.cpp index aa1b4732c..a40da6839 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1283,8 +1283,8 @@ static bool llama_kv_cache_init( // find an empty slot of size "n_tokens" in the cache // updates the cache head static bool llama_kv_cache_find_slot( - struct llama_kv_cache & cache, - const struct llama_batch & batch) { + struct llama_kv_cache & cache, + const struct llama_batch & batch) { const uint32_t n_ctx = cache.size; const uint32_t n_tokens = batch.n_tokens; @@ -1352,10 +1352,13 @@ static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, } static void llama_kv_cache_seq_rm( - struct llama_kv_cache & cache, - llama_seq_id seq_id, - llama_pos p0, - llama_pos p1) { + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1) { + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.erase(seq_id); @@ -1367,11 +1370,14 @@ static void llama_kv_cache_seq_rm( } static void llama_kv_cache_seq_cp( - struct llama_kv_cache & cache, - llama_seq_id seq_id_src, - llama_seq_id seq_id_dst, - llama_pos p0, - llama_pos p1) { + struct llama_kv_cache & cache, + llama_seq_id seq_id_src, + llama_seq_id seq_id_dst, + llama_pos p0, + llama_pos p1) { + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.insert(seq_id_dst); @@ -1389,11 +1395,14 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id } static void llama_kv_cache_seq_shift( - struct llama_kv_cache & cache, - llama_seq_id seq_id, - llama_pos p0, - llama_pos p1, - llama_pos delta) { + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + llama_pos delta) { + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].pos += delta; @@ -7209,16 +7218,6 @@ struct llama_data_file_context : llama_data_context { * */ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) { - // TODO: does not support multi-sequence states - { - const auto & kv_self = ctx->kv_self; - for (uint32_t i = 0; i < kv_self.head; ++i) { - GGML_ASSERT(kv_self.cells[i].pos == (int32_t) i); - GGML_ASSERT(kv_self.cells[i].seq_id.size() == 1); - GGML_ASSERT(kv_self.cells[i].has_seq_id(0)); - } - } - // copy rng { std::stringstream rng_ss; @@ -7271,36 +7270,38 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat const auto & hparams = ctx->model.hparams; const auto & cparams = ctx->cparams; - const int n_layer = hparams.n_layer; - const int n_embd = hparams.n_embd_gqa(); - const int n_ctx = cparams.n_ctx; + const auto n_layer = hparams.n_layer; + const auto n_embd = hparams.n_embd_gqa(); + const auto n_ctx = cparams.n_ctx; - const size_t kv_size = kv_self.buf.size; - const int kv_ntok = kv_self.head; + const size_t kv_buf_size = kv_self.buf.size; + const uint32_t kv_head = kv_self.head; + const uint32_t kv_size = kv_self.size; - data_ctx->write(&kv_size, sizeof(kv_size)); - data_ctx->write(&kv_ntok, sizeof(kv_ntok)); + data_ctx->write(&kv_buf_size, sizeof(kv_buf_size)); + data_ctx->write(&kv_head, sizeof(kv_head)); + data_ctx->write(&kv_size, sizeof(kv_size)); - if (kv_size) { + if (kv_buf_size) { const size_t elt_size = ggml_element_size(kv_self.k); ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; - ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); + ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer); std::vector kout3d_data(ggml_nbytes(kout3d), 0); kout3d->data = kout3d_data.data(); - ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); + ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer); std::vector vout3d_data(ggml_nbytes(vout3d), 0); vout3d->data = vout3d_data.data(); ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, - n_embd, kv_ntok, n_layer, + n_embd, kv_head, n_layer, elt_size*n_embd, elt_size*n_embd*n_ctx, 0); ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, - kv_ntok, n_embd, n_layer, + kv_head, n_embd, n_layer, elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d)); @@ -7314,6 +7315,20 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat data_ctx->write(kout3d_data.data(), kout3d_data.size()); data_ctx->write(vout3d_data.data(), vout3d_data.size()); } + + for (uint32_t i = 0; i < kv_size; ++i) { + const auto & cell = kv_self.cells[i]; + + const llama_pos pos = cell.pos; + const size_t seq_id_size = cell.seq_id.size(); + + data_ctx->write(&pos, sizeof(pos)); + data_ctx->write(&seq_id_size, sizeof(seq_id_size)); + + for (auto seq_id : cell.seq_id) { + data_ctx->write(&seq_id, sizeof(seq_id)); + } + } } } @@ -7385,34 +7400,36 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { const int n_embd = hparams.n_embd_gqa(); const int n_ctx = cparams.n_ctx; - size_t kv_size; - int kv_ntok; + size_t kv_buf_size; + uint32_t kv_head; + uint32_t kv_size; - memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); - memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok); + memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size); + memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head); + memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); - if (kv_size) { - GGML_ASSERT(kv_self.buf.size == kv_size); + if (kv_buf_size) { + GGML_ASSERT(kv_self.buf.size == kv_buf_size); const size_t elt_size = ggml_element_size(kv_self.k); ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; - ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); + ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer); kin3d->data = (void *) inp; inp += ggml_nbytes(kin3d); - ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); + ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer); vin3d->data = (void *) inp; inp += ggml_nbytes(vin3d); ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, - n_embd, kv_ntok, n_layer, + n_embd, kv_head, n_layer, elt_size*n_embd, elt_size*n_embd*n_ctx, 0); ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, - kv_ntok, n_embd, n_layer, + kv_head, n_embd, n_layer, elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d)); @@ -7422,8 +7439,27 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { ggml_free(cpy_ctx); } - ctx->kv_self.head = kv_ntok; + ctx->kv_self.head = kv_head; ctx->kv_self.size = kv_size; + + ctx->kv_self.cells.resize(kv_size); + + for (uint32_t i = 0; i < kv_size; ++i) { + llama_pos pos; + size_t seq_id_size; + + memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos); + memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size); + + ctx->kv_self.cells[i].pos = pos; + + llama_seq_id seq_id; + + for (size_t j = 0; j < seq_id_size; ++j) { + memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id); + ctx->kv_self.cells[i].seq_id.insert(seq_id); + } + } } const size_t nread = inp - src; diff --git a/llama.h b/llama.h index 0177d07a9..a78015ada 100644 --- a/llama.h +++ b/llama.h @@ -42,7 +42,7 @@ #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn' #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN -#define LLAMA_SESSION_VERSION 1 +#define LLAMA_SESSION_VERSION 2 #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) // Defined when llama.cpp is compiled with support for offloading model layers to GPU. @@ -333,12 +333,16 @@ extern "C" { "avoid using this, it will be removed in the future, instead - count the tokens in user code"); // Remove all tokens data of cells in [c0, c1) + // c0 < 0 : [0, c1] + // c1 < 0 : [c0, inf) LLAMA_API void llama_kv_cache_tokens_rm( struct llama_context * ctx, int32_t c0, int32_t c1); // Removes all tokens that belong to the specified sequence and have positions in [p0, p1) + // p0 < 0 : [0, p1] + // p1 < 0 : [p0, inf) LLAMA_API void llama_kv_cache_seq_rm( struct llama_context * ctx, llama_seq_id seq_id, @@ -347,6 +351,8 @@ extern "C" { // Copy all tokens that belong to the specified sequence to another sequence // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence + // p0 < 0 : [0, p1] + // p1 < 0 : [p0, inf) LLAMA_API void llama_kv_cache_seq_cp( struct llama_context * ctx, llama_seq_id seq_id_src, @@ -361,6 +367,8 @@ extern "C" { // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) // If the KV cache is RoPEd, the KV data is updated accordingly + // p0 < 0 : [0, p1] + // p1 < 0 : [p0, inf) LLAMA_API void llama_kv_cache_seq_shift( struct llama_context * ctx, llama_seq_id seq_id, From 8186242b6d67cf87ae179fb1a62f52fdf0e5c5eb Mon Sep 17 00:00:00 2001 From: h-h-h-h <13482553+h-h-h-h@users.noreply.github.com> Date: Tue, 3 Oct 2023 20:16:15 +0200 Subject: [PATCH 005/295] main : consistent prefix/suffix coloring (#3425) * Typo * No `--in-prefix` coloring The `--in-prefix` text was inconsistently colored. Now, it's never colored, just like the `--in-suffix` text. --- examples/main/main.cpp | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 7367ae362..775a5a201 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -670,7 +670,7 @@ int main(int argc, char ** argv) { } fflush(stdout); } - // reset color to default if we there is no pending user input + // reset color to default if there is no pending user input if (input_echo && (int) embd_inp.size() == n_consumed) { console::set_display(console::reset); } @@ -697,10 +697,8 @@ int main(int argc, char ** argv) { if (last_output.find(antiprompt, search_start_pos) != std::string::npos) { if (params.interactive) { is_interacting = true; - console::set_display(console::user_input); } is_antiprompt = true; - fflush(stdout); break; } } @@ -724,8 +722,6 @@ int main(int argc, char ** argv) { is_interacting = true; printf("\n"); - console::set_display(console::user_input); - fflush(stdout); } else if (params.instruct) { is_interacting = true; } @@ -750,6 +746,9 @@ int main(int argc, char ** argv) { printf("%s", buffer.c_str()); } + // color user input only + console::set_display(console::user_input); + std::string line; bool another_line = true; do { From 79f34abddb72ac5ddbf118f3d87520b611a10a7d Mon Sep 17 00:00:00 2001 From: Tameem <113388789+AhmadTameem@users.noreply.github.com> Date: Tue, 3 Oct 2023 23:38:19 +0500 Subject: [PATCH 006/295] ggml : add RISC-V Vector Support for K-Quants and improved the existing intrinsics (#3453) * Added RVV intrinsics support for Q8 quantize row and also improved the existing dot product function for risc-v. The RVV intrinsics is added for the following quantize row functions quantize_row_q8_0 quantize_row_q8_1 The following dot product functions have also been optimized by using LMUL = 1/2 instead of LMUL = 1 ggml_vec_dot_q4_0_q8_0 ggml_vec_dot_q4_1_q8_1 ggml_vec_dot_q5_0_q8_0 ggml_vec_dot_q5_1_q8_1 And vector initialization in Q5 by temporary array is also replaced by the vid intrinsics Signed-off-by: Ahmad Tameem * Added RVV intrinsics support for k_quants This adds RISC-V Vector intrinsics support for the following K_quants functions for both QKK = 256 and QKK = 64 ggml_vec_dot_q2_K_q8_K ggml_vec_dot_q3_K_q8_K ggml_vec_dot_q4_K_q8_K ggml_vec_dot_q5_K_q8_K ggml_vec_dot_q6_K_q8_K Signed-off-by: Ahmad Tameem --------- Signed-off-by: Ahmad Tameem --- ggml.c | 250 +++++++++++------- k_quants.c | 744 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 897 insertions(+), 97 deletions(-) diff --git a/ggml.c b/ggml.c index bf1426d25..dd1d00bc8 100644 --- a/ggml.c +++ b/ggml.c @@ -1272,6 +1272,33 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); #endif } +#elif defined(__riscv_v_intrinsic) + + size_t vl = __riscv_vsetvl_e32m4(QK8_0); + + for (int i = 0; i < nb; i++) { + // load elements + vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl); + + vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl); + vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl); + vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl); + float amax = __riscv_vfmv_f_s_f32m1_f32(vmax); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl); + + // convert to integer + vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl); + vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl); + + // store result + __riscv_vse8_v_i8m1(y[i].qs , vs, vl); + } #else // scalar quantize_row_q8_0_reference(x, y, k); @@ -1490,6 +1517,41 @@ static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); #endif } +#elif defined(__riscv_v_intrinsic) + + size_t vl = __riscv_vsetvl_e32m4(QK8_1); + + for (int i = 0; i < nb; i++) { + // load elements + vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl); + + vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl); + vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl); + vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl); + float amax = __riscv_vfmv_f_s_f32m1_f32(vmax); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl); + + // convert to integer + vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl); + vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl); + + // store result + __riscv_vse8_v_i8m1(y[i].qs , vs, vl); + + // compute sum for y[i].s + vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl); + vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl); + + // set y[i].s + int sum = __riscv_vmv_x_s_i16m1_i16(vwrs); + y[i].s = sum*d; + } #else // scalar quantize_row_q8_1_reference(x, y, k); @@ -2662,30 +2724,32 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * size_t vl = __riscv_vsetvl_e8m1(qk/2); for (int i = 0; i < nb; i++) { - vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl); + // load elements + vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); - vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl); - vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl); + vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); + vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); - vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl); - vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl); + // mask and store lower part of x, and then upper part + vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); + vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); - vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a); - vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l); + vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); + vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); - vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl); - vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl); + // subtract offset + vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl); + vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl); - vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl); - vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl); + vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); + vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); - vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl); - vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl); + vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); + vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); - int sumi = __riscv_vmv_x_s_i32m1_i32(vs1); - sumi += __riscv_vmv_x_s_i32m1_i32(vs2); + int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d); } @@ -2823,27 +2887,28 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * size_t vl = __riscv_vsetvl_e8m1(qk/2); for (int i = 0; i < nb; i++) { - vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl); + // load elements + vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); - vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl); - vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl); + vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); + vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); - vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl); - vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl); + // mask and store lower part of x, and then upper part + vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); + vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); - vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a); - vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l); + vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); + vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); - vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl); - vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl); + vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); + vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); - vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl); - vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl); + vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); + vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); - int sumi = __riscv_vmv_x_s_i32m1_i32(vs1); - sumi += __riscv_vmv_x_s_i32m1_i32(vs2); + int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s; } @@ -3088,66 +3153,61 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * uint32_t qh; - // These temp values are for masking and shift operations - uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; - uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, - 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000}; - size_t vl = __riscv_vsetvl_e8m1(qk/2); + // These tempory registers are for masking and shift operations + vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl); + vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl); + + vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl); + vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl); + for (int i = 0; i < nb; i++) { memcpy(&qh, x[i].qh, sizeof(uint32_t)); - // temporary registers - vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl); - vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl); - vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl); - vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl); - // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; - vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl); - vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl); - vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl); + vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl); + vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl); + vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl); // ((qh & (1u << (j + 16))) >> (j + 12)); - vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl); - vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl); + vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl); + vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl); // narrowing - vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl); - vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl); + vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl); + vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl); - vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl); - vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl); + vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl); + vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl); // load - vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl); + vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); - vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl); - vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl); + vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); + vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); - vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl); - vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl); + vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); + vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); - vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl); - vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl); + vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl); + vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl); - vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a); - vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l); + vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); + vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); - vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl); - vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl); + vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl); + vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl); - vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl); - vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl); + vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); + vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); - vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl); - vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl); + vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); + vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); - int sumi = __riscv_vmv_x_s_i32m1_i32(vs1); - sumi += __riscv_vmv_x_s_i32m1_i32(vs2); + int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi; } @@ -3414,62 +3474,58 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * uint32_t qh; - // These temp values are for shift operations - uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; - size_t vl = __riscv_vsetvl_e8m1(qk/2); + // temporary registers for shift operations + vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl); + vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl); + for (int i = 0; i < nb; i++) { memcpy(&qh, x[i].qh, sizeof(uint32_t)); - // temporary registers - vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl); - vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl); - // load qh - vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl); + vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl); // ((qh >> (j + 0)) << 4) & 0x10; - vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl); - vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl); - vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl); + vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl); + vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl); + vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl); // ((qh >> (j + 12)) ) & 0x10; - vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl); - vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl); + vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl); + vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl); // narrowing - vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl); - vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl); + vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl); + vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl); - vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl); - vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl); + vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl); + vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl); // load - vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl); + vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); - vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl); - vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl); + vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); + vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); - vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl); - vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl); + vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); + vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); - vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl); - vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl); + vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl); + vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl); - vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a); - vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l); + vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); + vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); - vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl); - vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl); + vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); + vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); - vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl); - vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl); + vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); + vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); - int sumi = __riscv_vmv_x_s_i32m1_i32(vs1); - sumi += __riscv_vmv_x_s_i32m1_i32(vs2); + int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s; } diff --git a/k_quants.c b/k_quants.c index 62085882d..a1e687dd9 100644 --- a/k_quants.c +++ b/k_quants.c @@ -54,6 +54,10 @@ inline static int32_t vaddvq_s32(int32x4_t v) { #endif #endif +#ifdef __riscv_v_intrinsic +#include +#endif + #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) @@ -1582,6 +1586,90 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __riscv_v_intrinsic + + float sumf = 0; + uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * q2 = x[i].qs; + const int8_t * q8 = y[i].qs; + const uint8_t * sc = x[i].scales; + + const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + size_t vl = 16; + + vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl); + vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl); + + vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl); + + vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl); + vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl); + vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl)); + vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl); + vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); + + sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums); + + vl = 32; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl); + + uint8_t is=0; + int isum=0; + + for (int j = 0; j < QK_K/128; ++j) { + // load Q2 + vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl); + + vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl); + vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl); + vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl); + vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl); + + // duplicate scale elements for product + vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl); + vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl); + vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl); + vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl); + + vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl)); + vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl)); + vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl)); + vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl)); + + // load Q8 + vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl); + vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl); + vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl); + vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl); + + vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl); + vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl); + vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl); + vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl); + + vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl); + vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl); + + isum += __riscv_vmv_x_s_i32m1_i32(isum1); + + q2+=32; q8+=128; is=8; + + } + + sumf += dall * isum; + + } + + *s = sumf; + #else float sumf = 0; @@ -1807,6 +1895,64 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc) + summs; +#elif defined __riscv_v_intrinsic + + uint32_t aux32[2]; + const uint8_t * scales = (const uint8_t *)aux32; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * (float)x[i].d; + const float dmin = -y[i].d * (float)x[i].dmin; + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + + aux32[0] = sc[0] & 0x0f0f0f0f; + aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; + + sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); + + int isum1 = 0; + int isum2 = 0; + + size_t vl = 16; + + vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); + + // load Q2 + vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl); + + vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl)); + vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl)); + vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl)); + vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl)); + + // load Q8, and take product with Q2 + vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl); + vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); + vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); + vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); + + vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl); + vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl); + vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl); + vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl); + + isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0]; + isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1]; + isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2]; + isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3]; + + sumf += d * (isum1 + isum2); + + } + + *s = sumf; + #else float sumf = 0; @@ -2220,6 +2366,106 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __riscv_v_intrinsic + + uint32_t aux[3]; + uint32_t utmp[4]; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict qh = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + + memcpy(aux, x[i].scales, 12); + utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); + utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); + utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); + utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); + + int8_t * scale = (int8_t *)utmp; + for (int j = 0; j < 16; ++j) scale[j] -= 32; + + + size_t vl = 32; + uint8_t m = 1; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl); + + int sum_t = 0; + + for (int j = 0; j < QK_K; j += 128) { + + vl = 32; + + // load Q3 + vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl); + + vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl)); + vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl)); + vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl)); + vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl)); + + // compute mask for subtraction + vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl); + vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl); + m <<= 1; + + vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl); + vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl); + m <<= 1; + + vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl); + vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl); + m <<= 1; + + vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl); + vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl); + m <<= 1; + + // load Q8 and take product with Q3 + vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl); + vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl); + vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl); + vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl); + + vl = 16; + + // retreive lane to multiply with scale + vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl); + vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl); + vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl); + vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl); + vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl); + vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl); + vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl); + vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl); + + vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl); + vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl); + vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl); + vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl); + + sum_t += __riscv_vmv_x_s_i32m1_i32(isum3); + + q3 += 32; q8 += 128; scale += 8; + + } + + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + + sumf += d*sum_t; + + } + + *s = sumf; + #else // scalar version // This function is written like this so the compiler can manage to vectorize most of it @@ -2523,6 +2769,79 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __riscv_v_intrinsic + + uint16_t aux16[2]; + int8_t * scales = (int8_t *)aux16; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t a = *(const uint16_t *)x[i].scales; + aux16[0] = a & 0x0f0f; + aux16[1] = (a >> 4) & 0x0f0f; + + for (int j = 0; j < 4; ++j) scales[j] -= 8; + + int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); + + const float d = y[i].d * (float)x[i].d; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + + // load qh + vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8); + vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8)); + + size_t vl = 16; + + // extend and combine both qh_x1 and qh_x2 + vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl); + + vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl); + vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl); + vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl); + vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl); + + // load Q3 + vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl); + + vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl); + vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl); + vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl); + vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl); + + vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0); + vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1); + vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2); + vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3); + + // load Q8 and take product with Q3 + vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl); + vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); + vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); + vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); + + vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); + vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); + vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); + vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); + + isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3]; + + sumf += d * isum; + + } + + *s = sumf; + #else int8_t aux8[QK_K]; @@ -2823,6 +3142,78 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); +#elif defined __riscv_v_intrinsic + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + size_t vl = 8; + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl); + vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl); + vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl); + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl); + vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl)); + vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl); + + vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); + sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + vl = 32; + + int32_t sum_1 = 0; + int32_t sum_2 = 0; + + vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); + + for (int j = 0; j < QK_K/64; ++j) { + // load Q4 + vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl); + + // load Q8 and multiply it with lower Q4 nibble + vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl); + vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl)); + vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl); + vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl); + + sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0]; + + // load Q8 and multiply it with upper Q4 nibble + vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl); + vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl)); + vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl); + vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl); + + sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1]; + + q4 += 32; q8 += 64; + + } + + sumf += d*(sum_1 + sum_2); + + } + + *s = sumf; + #else @@ -3064,6 +3455,50 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc) - summs; +#elif defined __riscv_v_intrinsic + + uint16_t s16[2]; + const uint8_t * restrict scales = (const uint8_t *)s16; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t * restrict b = (const uint16_t *)x[i].scales; + s16[0] = b[0] & 0x0f0f; + s16[1] = (b[0] >> 4) & 0x0f0f; + + sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]); + + size_t vl = 32; + + vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); + + // load Q4 + vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl); + + // load Q8 and multiply it with lower Q4 nibble + vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl)); + vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl); + vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl); + + sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1); + + // load Q8 and multiply it with upper Q4 nibble + vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl)); + vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl); + vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl); + + sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2); + + } + + *s = sumf; + #else uint8_t aux8[QK_K]; @@ -3394,6 +3829,93 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc) + summs; +#elif defined __riscv_v_intrinsic + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + float sumf = 0; + float sums = 0.0; + + size_t vl; + + for (int i = 0; i < nb; ++i) { + + vl = 8; + + const uint8_t * restrict q5 = x[i].qs; + const uint8_t * restrict hm = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d; + + vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl); + vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl); + vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl); + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl); + vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl)); + vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl); + + vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); + sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi); + + vl = 32; + int32_t aux32 = 0; + int is = 0; + + uint8_t m = 1; + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl); + + for (int j = 0; j < QK_K/64; ++j) { + // load Q5 and Q8 + vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl); + vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl); + vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl); + + // compute mask for addition + vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl)); + vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl); + vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl); + m <<= 1; + + vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl)); + vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl); + vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl); + m <<= 1; + + vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl); + vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl); + + vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl); + vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl); + + vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl); + vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl); + + aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2); + q5 += 32; q8 += 64; + + } + + vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1); + sums += __riscv_vfmv_f_s_f32m1_f32(vaux); + + } + + *s = sumf+sums; + #else const uint8_t * scales = (const uint8_t*)&utmp[0]; @@ -3639,6 +4161,76 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __riscv_v_intrinsic + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * (float)x[i].d; + const int8_t * sc = x[i].scales; + + const uint8_t * restrict q5 = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + + // load qh + vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8); + vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8)); + + size_t vl = 16; + + // combine both qh_1 and qh_2 + vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl); + + vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl); + vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl); + vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl); + vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl); + + vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0); + vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1); + vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2); + vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3); + + // load q5 + vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl); + vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl); + + vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl)); + vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl)); + vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl)); + vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl)); + + vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl); + vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl); + vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl); + vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl); + + // load Q8 and multiply it with Q5 + vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl); + vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); + vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); + vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); + + vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); + vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); + vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); + vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); + + int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0); + int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1); + int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2); + int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3); + + sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); + + } + + *s = sumf; + #else int8_t aux8[QK_K]; @@ -4023,6 +4615,91 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __riscv_v_intrinsic + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + size_t vl; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + + int sum_t = 0; + int is = 0; + + for (int j = 0; j < QK_K/128; ++j) { + + vl = 32; + + // load qh + vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl); + + // load Q6 + vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl); + vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl); + + vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl); + vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl); + vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl); + vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl); + + vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl); + vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl); + vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl); + vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl); + + vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl); + vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl); + vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl); + vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl); + + vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl); + vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl); + vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl); + vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl); + + // load Q8 and take product + vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl); + vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl); + vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl); + vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl); + + vl = 16; + + vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl); + vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl); + vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl); + vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl); + vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl); + vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl); + vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl); + vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl); + + vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl); + vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl); + vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl); + vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl); + + sum_t += __riscv_vmv_x_s_i32m1_i32(isum3); + + q6 += 64; qh += 32; q8 += 128; is=8; + + } + + sumf += d * sum_t; + + } + + *s = sumf; + #else int8_t aux8[QK_K]; @@ -4276,6 +4953,73 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __riscv_v_intrinsic + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d_all = (float)x[i].d; + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + int32_t isum = 0; + + size_t vl = 16; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + + // load Q6 + vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl); + vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl); + + // load qh + vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl); + + vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); + qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); + vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); + qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); + vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); + qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); + vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); + + vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl); + vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl); + vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl); + vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl); + + vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl); + vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl); + vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl); + vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl); + + // load Q8 and take product + vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl); + vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); + vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); + vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); + + vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); + vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); + vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); + vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); + + isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3]; + + sumf += isum * d_all * y[i].d; + + } + + *s = sumf; + #else int8_t aux8[QK_K]; From f72f8f22c9cb60465b2e79df2767e4ba9604e576 Mon Sep 17 00:00:00 2001 From: Merrick Christensen Date: Wed, 4 Oct 2023 00:33:13 -0600 Subject: [PATCH 007/295] finetune : readme fix typo (#3465) Fix small typo --- examples/finetune/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/finetune/README.md b/examples/finetune/README.md index b7347c20c..36e62578c 100644 --- a/examples/finetune/README.md +++ b/examples/finetune/README.md @@ -61,7 +61,7 @@ For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' L --lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin ``` -The scale numbers don't need to add up to one, and you can also use numbers creater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values. +The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values. Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime. If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`. From f93af02488179b9c52d0d391b08ae4c4d891b8d3 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 4 Oct 2023 15:29:58 +0300 Subject: [PATCH 008/295] sync : ggml (conv 1d + 2d updates, UB fixes) (#3468) * sync : ggml (conv 1d + 2d updates) ggml-ci * ggml : fix UB in q5_0 and q5_1 quantize code ggml.c:1033:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int' SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior ggml.c:1081:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int' SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior ggml-ci * tests : fix UB in test-quantize-perf --- ggml.c | 1011 +++++++++++++++++++++++----------- ggml.h | 13 + k_quants.c | 2 - tests/test-grad0.cpp | 20 - tests/test-opt.cpp | 29 - tests/test-quantize-perf.cpp | 29 +- 6 files changed, 725 insertions(+), 379 deletions(-) diff --git a/ggml.c b/ggml.c index dd1d00bc8..4a94b0f33 100644 --- a/ggml.c +++ b/ggml.c @@ -1032,8 +1032,8 @@ static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * r y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); // get the 5-th bit and store it in qh at the right position - qh |= ((xi0 & 0x10) >> 4) << (j + 0); - qh |= ((xi1 & 0x10) >> 4) << (j + qk/2); + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2); } memcpy(&y[i].qh, &qh, sizeof(qh)); @@ -1080,8 +1080,8 @@ static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * r y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); // get the 5-th bit and store it in qh at the right position - qh |= ((xi0 & 0x10) >> 4) << (j + 0); - qh |= ((xi1 & 0x10) >> 4) << (j + qk/2); + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2); } memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); @@ -4081,12 +4081,16 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "ALIBI", "CLAMP", "CONV_1D", + "CONV_TRANSPOSE_1D", "CONV_2D", "CONV_TRANSPOSE_2D", "POOL_1D", "POOL_2D", "UPSCALE", + "CONV_1D_STAGE_0", + "CONV_1D_STAGE_1", + "FLASH_ATTN", "FLASH_FF", "FLASH_ATTN_BACK", @@ -4112,7 +4116,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68"); +static_assert(GGML_OP_COUNT == 71, "GGML_OP_COUNT != 71"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -4163,12 +4167,16 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "alibi(x)", "clamp(x)", "conv_1d(x)", + "conv_transpose_1d(x)", "conv_2d(x)", "conv_transpose_2d(x)", "pool_1d(x)", "pool_2d(x)", "upscale(x)", + "conv_1d_stage_0(x)", + "conv_1d_stage_1(x)", + "flash_attn(x)", "flash_ff(x)", "flash_attn_back(x)", @@ -4194,7 +4202,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68"); +static_assert(GGML_OP_COUNT == 71, "GGML_OP_COUNT != 71"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -4223,7 +4231,10 @@ static void ggml_setup_op_has_task_pass(void) { p[GGML_OP_DIAG_MASK_INF ] = true; p[GGML_OP_DIAG_MASK_ZERO ] = true; p[GGML_OP_CONV_1D ] = true; + p[GGML_OP_CONV_1D_STAGE_0 ] = true; + p[GGML_OP_CONV_1D_STAGE_1 ] = true; p[GGML_OP_CONV_2D ] = true; + p[GGML_OP_CONV_TRANSPOSE_1D ] = true; p[GGML_OP_CONV_TRANSPOSE_2D ] = true; p[GGML_OP_FLASH_ATTN_BACK ] = true; p[GGML_OP_CROSS_ENTROPY_LOSS ] = true; @@ -6746,7 +6757,6 @@ struct ggml_tensor * ggml_cont_4d( return result; } - // ggml_reshape struct ggml_tensor * ggml_reshape( @@ -7504,14 +7514,17 @@ static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; } -GGML_API struct ggml_tensor * ggml_conv_1d( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b, - int s0, - int p0, - int d0) { - GGML_ASSERT(ggml_is_matrix(b)); +// im2col: [N, IC, IL] => [N, OL, IC*K] +// a: [OC,IC, K] +// b: [N, IC, IL] +// result: [N, OL, IC*K] +static struct ggml_tensor * ggml_conv_1d_stage_0( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int p0, + int d0) { GGML_ASSERT(a->ne[1] == b->ne[1]); bool is_node = false; @@ -7520,16 +7533,20 @@ GGML_API struct ggml_tensor * ggml_conv_1d( is_node = true; } + const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0); + const int64_t ne[4] = { - ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0), - a->ne[2], 1, 1, + a->ne[1] * a->ne[0], + OL, + b->ne[2], + 1, }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne); int32_t params[] = { s0, p0, d0 }; ggml_set_op_params(result, params, sizeof(params)); - result->op = GGML_OP_CONV_1D; + result->op = GGML_OP_CONV_1D_STAGE_0; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = b; @@ -7537,6 +7554,87 @@ GGML_API struct ggml_tensor * ggml_conv_1d( return result; } +// ggml_conv_1d_stage_1 + +// gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K] +// a: [OC, IC, K] +// b: [N, OL, IC * K] +// result: [N, OC, OL] +static struct ggml_tensor * ggml_conv_1d_stage_1( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + + bool is_node = false; + + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { + b->ne[1], + a->ne[2], + b->ne[2], + 1, + }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_CONV_1D_STAGE_1; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_conv_1d + +GGML_API struct ggml_tensor * ggml_conv_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int p0, + int d0) { + struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0); + result = ggml_conv_1d_stage_1(ctx, a, result); + return result; +} + +// GGML_API struct ggml_tensor * ggml_conv_1d( +// struct ggml_context * ctx, +// struct ggml_tensor * a, +// struct ggml_tensor * b, +// int s0, +// int p0, +// int d0) { +// GGML_ASSERT(ggml_is_matrix(b)); +// GGML_ASSERT(a->ne[1] == b->ne[1]); +// bool is_node = false; + +// if (a->grad || b->grad) { +// GGML_ASSERT(false); // TODO: implement backward +// is_node = true; +// } + +// const int64_t ne[4] = { +// ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0), +// a->ne[2], 1, 1, +// }; +// struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + +// int32_t params[] = { s0, p0, d0 }; +// ggml_set_op_params(result, params, sizeof(params)); + +// result->op = GGML_OP_CONV_1D; +// result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; +// result->src[0] = a; +// result->src[1] = b; + +// return result; +// } + // ggml_conv_1d_ph struct ggml_tensor* ggml_conv_1d_ph( @@ -7548,6 +7646,50 @@ struct ggml_tensor* ggml_conv_1d_ph( return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d); } +// ggml_conv_transpose_1d + +static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) { + return (ins - 1) * s - 2 * p + d * (ks - 1) + 1; +} + +GGML_API struct ggml_tensor * ggml_conv_transpose_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int p0, + int d0) { + GGML_ASSERT(ggml_is_matrix(b)); + GGML_ASSERT(a->ne[2] == b->ne[1]); + GGML_ASSERT(a->ne[3] == 1); + + GGML_ASSERT(p0 == 0); + GGML_ASSERT(d0 == 1); + + bool is_node = false; + + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { + ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/), + a->ne[1], b->ne[2], 1, + }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + int32_t params[] = { s0, p0, d0 }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_CONV_TRANSPOSE_1D; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + // ggml_conv_2d struct ggml_tensor * ggml_conv_2d( @@ -13687,7 +13829,7 @@ static void ggml_compute_forward_rope_back( // ggml_compute_forward_conv_1d -static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( +static void ggml_compute_forward_conv_1d_f16_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -13705,46 +13847,37 @@ static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( const int nth = params->nth; const int nk = ne00; - const int nh = nk/2; - const int ew0 = ggml_up32(ne01); + // size of the convolution row - the kernel size unrolled across all input channels + const int ew0 = nk*ne01; + + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + const int32_t p0 = ((const int32_t*)(dst->op_params))[1]; + const int32_t d0 = ((const int32_t*)(dst->op_params))[2]; - GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); if (params->type == GGML_TASK_INIT) { - // TODO: fix this memset (wsize is overestimated) memset(params->wdata, 0, params->wsize); - // prepare kernel data (src0) - { - ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); - ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; - for (int64_t i00 = 0; i00 < ne00; i00++) { - dst_data[i00*ew0 + i01] = src[i00]; + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + ggml_fp16_t * dst_data = wdata; + + for (int64_t i0 = 0; i0 < ne0; i0++) { + for (int64_t ik = 0; ik < nk; ik++) { + const int idx0 = i0*s0 + ik*d0 - p0; + + if(!(idx0 < 0 || idx0 >= ne10)) { + dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]); } } } } - // prepare source data (src1) - { - ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; - - for (int64_t i11 = 0; i11 < ne11; i11++) { - const float * const src = (float *)((char *) src1->data + i11*nb11); - ggml_fp16_t * dst_data = wdata; - for (int64_t i10 = 0; i10 < ne10; i10++) { - dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]); - } - } - } - return; } @@ -13753,7 +13886,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( } // total rows in dst - const int nr = ne02; + const int nr = ne2; // rows per thread const int dr = (nr + nth - 1)/nth; @@ -13762,23 +13895,22 @@ static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); - for (int i1 = ir0; i1 < ir1; i1++) { - float * dst_data = (float *)((char *) dst->data + i1*nb1); - for (int64_t i0 = 0; i0 < ne10; ++i0) { - dst_data[i0] = 0; - for (int k = -nh; k <= nh; k++) { - float v = 0.0f; - ggml_vec_dot_f16(ew0, &v, - (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, - (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - dst_data[i0] += v; + for (int i2 = 0; i2 < ne2; i2++) { + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1); + + for (int i0 = 0; i0 < ne0; i0++) { + ggml_vec_dot_f16(ew0, dst_data + i0, + (ggml_fp16_t *) ((char *) src0->data + i1*nb02), + (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0); } } } } -static void ggml_compute_forward_conv_1d_s1_ph_f32( +static void ggml_compute_forward_conv_1d_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -13796,46 +13928,36 @@ static void ggml_compute_forward_conv_1d_s1_ph_f32( const int nth = params->nth; const int nk = ne00; - const int nh = nk/2; - const int ew0 = ggml_up32(ne01); + const int ew0 = nk*ne01; + + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + const int32_t p0 = ((const int32_t*)(dst->op_params))[1]; + const int32_t d0 = ((const int32_t*)(dst->op_params))[2]; - GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float)); if (params->type == GGML_TASK_INIT) { - // TODO: fix this memset (wsize is overestimated) memset(params->wdata, 0, params->wsize); - // prepare kernel data (src0) - { - float * const wdata = (float *) params->wdata + 0; + float * const wdata = (float *) params->wdata + 0; - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); - float * dst_data = wdata + i02*ew0*ne00; - for (int64_t i00 = 0; i00 < ne00; i00++) { - dst_data[i00*ew0 + i01] = src[i00]; + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + float * dst_data = wdata; + + for (int64_t i0 = 0; i0 < ne0; i0++) { + for (int64_t ik = 0; ik < nk; ik++) { + const int idx0 = i0*s0 + ik*d0 - p0; + + if(!(idx0 < 0 || idx0 >= ne10)) { + dst_data[i0*ew0 + i11*nk + ik] = src[idx0]; } } } } - // prepare source data (src1) - { - float * const wdata = (float *) params->wdata + ne02*ew0*ne00; - - for (int64_t i11 = 0; i11 < ne11; i11++) { - const float * const src = (float *)((char *) src1->data + i11*nb11); - float * dst_data = wdata; - for (int64_t i10 = 0; i10 < ne10; i10++) { - dst_data[(i10 + nh)*ew0 + i11] = src[i10]; - } - } - } - return; } @@ -13853,101 +13975,126 @@ static void ggml_compute_forward_conv_1d_s1_ph_f32( const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); - for (int i1 = ir0; i1 < ir1; i1++) { - float * dst_data = (float *)((char *) dst->data + i1*nb1); - for (int64_t i0 = 0; i0 < ne10; ++i0) { - dst_data[i0] = 0; - for (int k = -nh; k <= nh; k++) { - float v = 0.0f; - ggml_vec_dot_f32(ew0, &v, - (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, - (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + float * const wdata = (float *) params->wdata + 0; - dst_data[i0] += v; + for (int i2 = 0; i2 < ne2; i2++) { + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1); + + for (int i0 = 0; i0 < ne0; i0++) { + ggml_vec_dot_f32(ew0, dst_data + i0, + (float *) ((char *) src0->data + i1*nb02), + (float *) wdata + i2*nb2 + i0*ew0); } } } } -static void ggml_compute_forward_conv_1d_s1_ph( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - struct ggml_tensor * dst) { - switch (src0->type) { - case GGML_TYPE_F16: - { - ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst); - } break; - case GGML_TYPE_F32: - { - ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst); - } break; - default: - { - GGML_ASSERT(false); - } break; +static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k, + ggml_fp16_t * A, + ggml_fp16_t * B, + float * C, + const int ith, const int nth) { + // does not seem to make a difference + int64_t m0, m1, n0, n1; + // patches per thread + if (m > n) { + n0 = 0; + n1 = n; + + // total patches in dst + const int np = m; + + // patches per thread + const int dp = (np + nth - 1)/nth; + + // patch range for this thread + m0 = dp*ith; + m1 = MIN(m0 + dp, np); + } else { + m0 = 0; + m1 = m; + + // total patches in dst + const int np = n; + + // patches per thread + const int dp = (np + nth - 1)/nth; + + // patch range for this thread + n0 = dp*ith; + n1 = MIN(n0 + dp, np); + } + + // block-tiling attempt + int64_t blck_n = 16; + int64_t blck_m = 16; + + // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB + // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K); + // if (blck_size > 0) { + // blck_0 = 4; + // blck_1 = blck_size / blck_0; + // if (blck_1 < 0) { + // blck_1 = 1; + // } + // // blck_0 = (int64_t)sqrt(blck_size); + // // blck_1 = blck_0; + // } + // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1); + + for (int j = n0; j < n1; j+=blck_n) { + for (int i = m0; i < m1; i+=blck_m) { + // printf("i j k => %d %d %d\n", i, j, K); + for (int ii = i; ii < i + blck_m && ii < m1; ii++) { + for (int jj = j; jj < j + blck_n && jj < n1; jj++) { + ggml_vec_dot_f16(k, + C + ii*n + jj, + A + ii * k, + B + jj * k); + } + } + } } } -static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( +// src0: kernel [OC, IC, K] +// src1: signal [N, IC, IL] +// dst: result [N, OL, IC*K] +static void ggml_compute_forward_conv_1d_stage_0_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16); int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS + GGML_TENSOR_BINARY_OP_LOCALS; + + const int64_t N = ne12; + const int64_t IC = ne11; + const int64_t IL = ne10; + + const int64_t K = ne00; + + const int64_t OL = ne1; const int ith = params->ith; const int nth = params->nth; - const int nk = ne00; - const int nh = nk/2; + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + const int32_t p0 = ((const int32_t*)(dst->op_params))[1]; + const int32_t d0 = ((const int32_t*)(dst->op_params))[2]; - const int ew0 = ggml_up32(ne01); - - GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); if (params->type == GGML_TASK_INIT) { - // TODO: fix this memset (wsize is overestimated) - memset(params->wdata, 0, params->wsize); - - // prepare kernel data (src0) - { - ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); - ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; - for (int64_t i00 = 0; i00 < ne00; i00++) { - dst_data[i00*ew0 + i01] = src[i00]; - } - } - } - } - - // prepare source data (src1) - { - ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; - - for (int64_t i11 = 0; i11 < ne11; i11++) { - const float * const src = (float *)((char *) src1->data + i11*nb11); - ggml_fp16_t * dst_data = wdata; - for (int64_t i10 = 0; i10 < ne10; i10++) { - dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]); - } - } - } - + memset(dst->data, 0, ggml_nbytes(dst)); return; } @@ -13955,90 +14102,48 @@ static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( return; } - // total rows in dst - const int nr = ne02; + // im2col: [N, IC, IL] => [N, OL, IC*K] + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data; - // rows per thread - const int dr = (nr + nth - 1)/nth; + for (int64_t in = 0; in < N; in++) { + for (int64_t iol = 0; iol < OL; iol++) { + for (int64_t iic = ith; iic < IC; iic+=nth) { - // row range for this thread - const int ir0 = dr*ith; - const int ir1 = MIN(ir0 + dr, nr); + // micro kernel + ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K] + const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL] - for (int i1 = ir0; i1 < ir1; i1++) { - float * dst_data = (float *)((char *) dst->data + i1*nb1); - for (int64_t i0 = 0; i0 < ne10; i0 += 2) { - dst_data[i0/2] = 0; - for (int k = -nh; k <= nh; k++) { - float v = 0.0f; - ggml_vec_dot_f16(ew0, &v, - (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, - (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + for (int64_t ik = 0; ik < K; ik++) { + const int64_t iil = iol*s0 + ik*d0 - p0; - dst_data[i0/2] += v; + if (!(iil < 0 || iil >= IL)) { + dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]); + } + } + } } } } } -static void ggml_compute_forward_conv_1d_s2_ph_f32( +// gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K] +// src0: [OC, IC, K] +// src1: [N, OL, IC * K] +// result: [N, OC, OL] +static void ggml_compute_forward_conv_1d_stage_1_f16( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32); int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS - - const int ith = params->ith; - const int nth = params->nth; - - const int nk = ne00; - const int nh = nk/2; - - const int ew0 = ggml_up32(ne01); - - GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes - GGML_ASSERT(nb00 == sizeof(float)); - GGML_ASSERT(nb10 == sizeof(float)); - if (params->type == GGML_TASK_INIT) { - // TODO: fix this memset (wsize is overestimated) - memset(params->wdata, 0, params->wsize); - - // prepare kernel data (src0) - { - float * const wdata = (float *) params->wdata + 0; - - for (int64_t i02 = 0; i02 < ne02; i02++) { - for (int64_t i01 = 0; i01 < ne01; i01++) { - const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); - float * dst_data = wdata + i02*ew0*ne00; - for (int64_t i00 = 0; i00 < ne00; i00++) { - dst_data[i00*ew0 + i01] = src[i00]; - } - } - } - } - - // prepare source data (src1) - { - float * const wdata = (float *) params->wdata + ne02*ew0*ne00; - - for (int64_t i11 = 0; i11 < ne11; i11++) { - const float * const src = (float *)((char *) src1->data + i11*nb11); - float * dst_data = wdata; - for (int64_t i10 = 0; i10 < ne10; i10++) { - dst_data[(i10 + nh)*ew0 + i11] = src[i10]; - } - } - } - return; } @@ -14046,71 +14151,293 @@ static void ggml_compute_forward_conv_1d_s2_ph_f32( return; } - // total rows in dst - const int nr = ne02; + GGML_TENSOR_BINARY_OP_LOCALS; - // rows per thread - const int dr = (nr + nth - 1)/nth; + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb0 == sizeof(float)); - // row range for this thread - const int ir0 = dr*ith; - const int ir1 = MIN(ir0 + dr, nr); + const int N = ne12; + const int OL = ne11; - for (int i1 = ir0; i1 < ir1; i1++) { - float * dst_data = (float *)((char *) dst->data + i1*nb1); - for (int64_t i0 = 0; i0 < ne10; i0 += 2) { - dst_data[i0/2] = 0; - for (int k = -nh; k <= nh; k++) { - float v = 0.0f; - ggml_vec_dot_f32(ew0, &v, - (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, - (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + const int OC = ne02; + const int IC = ne01; + const int K = ne00; - dst_data[i0/2] += v; - } - } + const int ith = params->ith; + const int nth = params->nth; + + int64_t m = OC; + int64_t n = OL; + int64_t k = IC * K; + + // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K] + for (int i = 0; i < N; i++) { + ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k] + ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k] + float * C = (float *)dst->data + i * m * n; // [m, n] + + gemm_f16_out_f32(m, n, k, A, B, C, ith, nth); } } -static void ggml_compute_forward_conv_1d_s2_ph( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - struct ggml_tensor * dst) { - switch (src0->type) { - case GGML_TYPE_F16: - { - ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst); - } break; - case GGML_TYPE_F32: - { - ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst); - } break; - default: - { - GGML_ASSERT(false); - } break; - } -} - -// ggml_compute_forward_conv_1d - static void ggml_compute_forward_conv_1d( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + switch(src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_conv_1d_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_conv_1d_stage_0( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch(src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_conv_1d_stage_1( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch(src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_conv_transpose_1d + +static void ggml_compute_forward_conv_transpose_1d_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00*ne01*ne02; + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + memset(params->wdata, 0, params->wsize); + + // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); + ggml_fp16_t * dst_data = wdata + i01*ne00*ne02; + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ne02 + i02] = src[i00]; + } + } + } + } + + // permute source data (src1) from (L x Cin) to (Cin x L) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk; + ggml_fp16_t * dst_data = wdata; + + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + for (int64_t i10 = 0; i10 < ne10; i10++) { + dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]); + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; - const int32_t p0 = ((const int32_t*)(dst->op_params))[1]; - const int32_t d0 = ((const int32_t*)(dst->op_params))[2]; - GGML_ASSERT(d0 == 1); // dilation not supported - GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported - if (s0 == 1) { - ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst); - } else if (s0 == 2) { - ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst); - } else { - GGML_ASSERT(false); // only stride 1 and 2 supported + + // total rows in dst + const int nr = ne1; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + ggml_fp16_t * const wdata_src = wdata + nk; + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00; + for (int i10 = 0; i10 < ne10; i10++) { + const int i1n = i10*ne11; + for (int i00 = 0; i00 < ne00; i00++) { + float v = 0; + ggml_vec_dot_f16(ne02, &v, + (ggml_fp16_t *) wdata_src + i1n, + (ggml_fp16_t *) wdata_kernel + i00*ne02); + dst_data[i10*s0 + i00] += v; + } + } + } +} + +static void ggml_compute_forward_conv_transpose_1d_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00*ne01*ne02; + + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) + { + float * const wdata = (float *) params->wdata + 0; + + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); + float * dst_data = wdata + i01*ne00*ne02; + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i01*ne00*ne02 + i00*ne02 + i02] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + float * const wdata = (float *) params->wdata + nk; + float * dst_data = wdata; + + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + for (int64_t i10 = 0; i10 < ne10; i10++) { + dst_data[i10*ne11 + i11] = src[i10]; + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + + // total rows in dst + const int nr = ne1; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float * const wdata = (float *) params->wdata + 0; + float * const wdata_src = wdata + nk; + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + float * wdata_kernel = wdata + i1*ne02*ne00; + for (int i10 = 0; i10 < ne10; i10++) { + const int i1n = i10*ne11; + for (int i00 = 0; i00 < ne00; i00++) { + float v = 0; + ggml_vec_dot_f32(ne02, &v, + wdata_src + i1n, + wdata_kernel + i00*ne02); + dst_data[i10*s0 + i00] += v; + } + } + } +} + +static void ggml_compute_forward_conv_transpose_1d( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; } } @@ -14156,20 +14483,22 @@ static void ggml_compute_forward_conv_2d_f16_f32( { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - for (int i12 = 0; i12 < ne12; i12++) { - const float * const src = (float *)((char *) src1->data + i12*nb12); - ggml_fp16_t * dst_data = wdata; + for (int i13 = 0; i13 < ne13; i13++) { + for (int i12 = 0; i12 < ne12; i12++) { + const float * const src = (float *)((char *) src1->data + i13*nb13 + i12*nb12); + ggml_fp16_t * dst_data = wdata + i13*(ne1*ne0*ew0); - for (int i1 = 0; i1 < ne1; i1++) { - for (int i0 = 0; i0 < ne0; i0++) { - for (int ik1 = 0; ik1 < nk1; ik1++) { - for (int ik0 = 0; ik0 < nk0; ik0++) { - const int idx0 = i0*s0 + ik0*d0 - p0; - const int idx1 = i1*s1 + ik1*d1 - p1; + for (int i1 = 0; i1 < ne1; i1++) { + for (int i0 = 0; i0 < ne0; i0++) { + for (int ik1 = 0; ik1 < nk1; ik1++) { + for (int ik0 = 0; ik0 < nk0; ik0++) { + const int idx0 = i0*s0 + ik0*d0 - p0; + const int idx1 = i1*s1 + ik1*d1 - p1; - if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) { - dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] = - GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]); + if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) { + dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] = + GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]); + } } } } @@ -16452,6 +16781,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor); } break; + case GGML_OP_CONV_1D_STAGE_0: + { + ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor); + } break; + case GGML_OP_CONV_1D_STAGE_1: + { + ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor); + } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor); + } break; case GGML_OP_CONV_2D: { ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor); @@ -17377,10 +17718,22 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // TODO: not implemented } break; + case GGML_OP_CONV_1D_STAGE_0: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_1D_STAGE_1: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_CONV_2D: { GGML_ASSERT(false); // TODO: not implemented } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_CONV_TRANSPOSE_2D: { GGML_ASSERT(false); // TODO: not implemented @@ -18222,21 +18575,68 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { GGML_ASSERT(node->src[1]->ne[2] == 1); GGML_ASSERT(node->src[1]->ne[3] == 1); + const int64_t ne00 = node->src[0]->ne[0]; + const int64_t ne01 = node->src[0]->ne[1]; + const int64_t ne02 = node->src[0]->ne[2]; + + const int64_t ne10 = node->src[1]->ne[0]; + const int64_t ne11 = node->src[1]->ne[1]; + + const int64_t ne0 = node->ne[0]; + const int64_t ne1 = node->ne[1]; + const int64_t nk = ne00; + const int64_t ew0 = nk * ne01; + + UNUSED(ne02); + UNUSED(ne10); + UNUSED(ne11); + size_t cur = 0; - const int nk = node->src[0]->ne[0]; if (node->src[0]->type == GGML_TYPE_F16 && - node->src[1]->type == GGML_TYPE_F32) { - cur = sizeof(ggml_fp16_t)*( - nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] + - ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1] - ); + node->src[1]->type == GGML_TYPE_F32) { + cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0); } else if (node->src[0]->type == GGML_TYPE_F32 && - node->src[1]->type == GGML_TYPE_F32) { - cur = sizeof(float)*( - nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] + - ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1] - ); + node->src[1]->type == GGML_TYPE_F32) { + cur = sizeof(float)*(ne0*ne1*ew0); + } else { + GGML_ASSERT(false); + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_CONV_1D_STAGE_0: + { + n_tasks = n_threads; + } break; + case GGML_OP_CONV_1D_STAGE_1: + { + n_tasks = n_threads; + } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + n_tasks = n_threads; + + GGML_ASSERT(node->src[0]->ne[3] == 1); + GGML_ASSERT(node->src[1]->ne[2] == 1); + GGML_ASSERT(node->src[1]->ne[3] == 1); + + const int64_t ne00 = node->src[0]->ne[0]; // K + const int64_t ne01 = node->src[0]->ne[1]; // Cout + const int64_t ne02 = node->src[0]->ne[2]; // Cin + + const int64_t ne10 = node->src[1]->ne[0]; // L + const int64_t ne11 = node->src[1]->ne[1]; // Cin + + size_t cur = 0; + if (node->src[0]->type == GGML_TYPE_F16 && + node->src[1]->type == GGML_TYPE_F32) { + cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02; + cur += sizeof(ggml_fp16_t)*ne10*ne11; + } else if (node->src[0]->type == GGML_TYPE_F32 && + node->src[1]->type == GGML_TYPE_F32) { + cur += sizeof(float)*ne00*ne01*ne02; + cur += sizeof(float)*ne10*ne11; } else { GGML_ASSERT(false); } @@ -19362,7 +19762,7 @@ static enum ggml_opt_result ggml_opt_adam( if (callback) { callback(callback_data, accum_step, &sched, &cancel); if (cancel) { - break; + return GGML_OPT_CANCEL; } } // ggml_graph_reset (gf); @@ -19371,9 +19771,6 @@ static enum ggml_opt_result ggml_opt_adam( ggml_opt_acc_grad(np, ps, g, accum_norm); fx += ggml_get_f32_1d(f, 0); } - if (cancel) { - return GGML_OPT_DID_NOT_CONVERGE; - } fx *= accum_norm; opt->adam.fx_prev = fx; @@ -19399,9 +19796,6 @@ static enum ggml_opt_result ggml_opt_adam( // run the optimizer for (int t = 0; t < params.adam.n_iter; ++t) { - if (cancel) { - break; - } opt->iter = iter0 + t + 1; GGML_PRINT_DEBUG ("=== iter %d ===\n", t); @@ -19459,7 +19853,7 @@ static enum ggml_opt_result ggml_opt_adam( if (callback) { callback(callback_data, accum_step, &sched, &cancel); if (cancel) { - break; + return GGML_OPT_CANCEL;; } } // ggml_graph_reset (gf); @@ -19468,9 +19862,6 @@ static enum ggml_opt_result ggml_opt_adam( ggml_opt_acc_grad(np, ps, g, accum_norm); fx += ggml_get_f32_1d(f, 0); } - if (cancel) { - break; - } fx *= accum_norm; opt->loss_after = fx; @@ -19589,7 +19980,7 @@ static enum ggml_opt_result linesearch_backtracking( finit = *fx; dgtest = params->lbfgs.ftol*dginit; - while (!*cancel) { + while (true) { ggml_vec_cpy_f32(nx, x, xp); ggml_vec_mad_f32(nx, x, d, *step); @@ -19605,7 +19996,7 @@ static enum ggml_opt_result linesearch_backtracking( float sched = 0; callback(callback_data, accum_step, &sched, cancel); if (*cancel) { - break; + return GGML_OPT_CANCEL; } } // ggml_graph_reset (gf); @@ -19614,9 +20005,6 @@ static enum ggml_opt_result linesearch_backtracking( ggml_opt_acc_grad(np, ps, g, accum_norm); *fx += ggml_get_f32_1d(f, 0); } - if (*cancel) { - break; - } *fx *= accum_norm; } @@ -19749,7 +20137,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( float sched = 0; callback(callback_data, accum_step, &sched, &cancel); if (cancel) { - break; + return GGML_OPT_CANCEL; } } // ggml_graph_reset (gf); @@ -19758,9 +20146,6 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_opt_acc_grad(np, ps, g, accum_norm); fx += ggml_get_f32_1d(f, 0); } - if (cancel) { - return GGML_OPT_DID_NOT_CONVERGE; - } fx *= accum_norm; opt->loss_before = fx; @@ -19820,8 +20205,8 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_vec_cpy_f32(nx, gp, g); ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data); - if (!cancel) { - break; + if (cancel) { + return GGML_OPT_CANCEL; } if (ls < 0) { diff --git a/ggml.h b/ggml.h index 460857fa4..a9d4e33d9 100644 --- a/ggml.h +++ b/ggml.h @@ -401,10 +401,14 @@ extern "C" { GGML_OP_CLAMP, GGML_OP_CONV_1D, GGML_OP_CONV_2D, + GGML_OP_CONV_TRANSPOSE_1D, GGML_OP_CONV_TRANSPOSE_2D, GGML_OP_POOL_1D, GGML_OP_POOL_2D, + GGML_OP_CONV_1D_STAGE_0, // internal + GGML_OP_CONV_1D_STAGE_1, // internal + GGML_OP_UPSCALE, // nearest interpolate GGML_OP_FLASH_ATTN, @@ -1386,6 +1390,14 @@ extern "C" { int s, int d); + GGML_API struct ggml_tensor * ggml_conv_transpose_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int p0, + int d0); + GGML_API struct ggml_tensor * ggml_conv_2d( struct ggml_context * ctx, struct ggml_tensor * a, @@ -1759,6 +1771,7 @@ extern "C" { GGML_OPT_NO_CONTEXT, GGML_OPT_INVALID_WOLFE, GGML_OPT_FAIL, + GGML_OPT_CANCEL, GGML_LINESEARCH_FAIL = -128, GGML_LINESEARCH_MINIMUM_STEP, diff --git a/k_quants.c b/k_quants.c index a1e687dd9..558f5fda8 100644 --- a/k_quants.c +++ b/k_quants.c @@ -69,7 +69,6 @@ inline static int32_t vaddvq_s32(int32x4_t v) { // 2-6 bit quantization in super-blocks // - // // ===================== Helper functions // @@ -348,7 +347,6 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict const float q4scale = 15.f; for (int i = 0; i < nb; i++) { - float max_scale = 0; // as we are deducting the min, scales are always positive float max_min = 0; for (int j = 0; j < QK_K/16; ++j) { diff --git a/tests/test-grad0.cpp b/tests/test-grad0.cpp index c3cd73bcb..0a559b27a 100644 --- a/tests/test-grad0.cpp +++ b/tests/test-grad0.cpp @@ -208,26 +208,6 @@ static struct ggml_tensor * get_random_tensor_i32( return result; } -static void print_elements(const char* label, const struct ggml_tensor * t) { - if (!t) { - printf("%s: %s = null\n", __func__, label); - return; - } - const int nelements = ggml_nelements(t); - printf("%s: %s = [", __func__, label); - for (int k = 0; k < nelements; ++k) { - if (k > 0) { printf(", "); } - printf("%.5f", ggml_get_f32_1d(t, k)); - } - printf("] shape: ["); - for (int k = 0; k < t->n_dims; ++k) { - if (k > 0) { printf(", "); } - printf("%d", (int)t->ne[k]); - } - printf("]\n"); - -} - static bool check_gradient( const char * op_name, struct ggml_context * ctx0, diff --git a/tests/test-opt.cpp b/tests/test-opt.cpp index fb4e0be98..bb8af5962 100644 --- a/tests/test-opt.cpp +++ b/tests/test-opt.cpp @@ -40,27 +40,6 @@ static float frand(void) { return (float)rand()/(float)RAND_MAX; } -static int irand(int n) { - return rand()%n; -} - -static void get_random_dims(int64_t * dims, int ndims) { - dims[0] = dims[1] = dims[2] = dims[3] = 1; - - for (int i = 0; i < ndims; i++) { - dims[i] = 1 + irand(4); - } -} - -static void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) { - dims[0] = dims[1] = dims[2] = dims[3] = 1; - - for (int i = 0; i < ndims; i++) { - dims[i] = min + irand(max-min); - } -} - - static struct ggml_tensor * get_random_tensor( struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax ) { @@ -106,14 +85,6 @@ static struct ggml_tensor * get_random_tensor( return result; } -static float get_element(const struct ggml_tensor * t, int idx) { - return ((float *)t->data)[idx]; -} - -static void set_element(struct ggml_tensor * t, int idx, float value) { - ((float *)t->data)[idx] = value; -} - int main(void) { struct ggml_init_params params = { /* .mem_size = */ 1024*1024*1024, diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp index 01aa69877..88fac0e23 100644 --- a/tests/test-quantize-perf.cpp +++ b/tests/test-quantize-perf.cpp @@ -76,22 +76,21 @@ static void * align_with_offset(void * ptr, int offset) { return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset; } -static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function & function) { +static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function & func) { int64_t min_time_us = INT64_MAX; int64_t total_time_us = 0; int64_t min_time_cycles = INT64_MAX; int64_t total_time_cycles = 0; for (int i = 0; i < WARMUP; i++) { - function(); + func(); } - for (int i = 0; i < iterations; i++) { const int64_t start_time = ggml_time_us(); const int64_t start_cycles = cpu_cycles(); - function(); + func(); const int64_t end_cycles = cpu_cycles(); const int64_t end_time = ggml_time_us(); @@ -245,15 +244,15 @@ int main(int argc, char * argv[]) { std::vector test_data1_v(largest*4 + MAX_ALIGNMENT*2); std::vector test_data2_v(largest*4 + MAX_ALIGNMENT*2); - std::vector test_q1_v(largest*4 + MAX_ALIGNMENT*2); - std::vector test_q2_v(largest*4 + MAX_ALIGNMENT*2); - std::vector test_out_v(largest*4 + MAX_ALIGNMENT*2); + std::vector test_q1_v (largest*4 + MAX_ALIGNMENT*2); + std::vector test_q2_v (largest*4 + MAX_ALIGNMENT*2); + std::vector test_out_v (largest*4 + MAX_ALIGNMENT*2); float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset); float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset); - float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset); - float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset); - float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset); + float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset); + float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset); + float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset); generate_data(0, largest, test_data1); generate_data(1, largest, test_data2); @@ -283,7 +282,7 @@ int main(int argc, char * argv[]) { printf(" quantize_row_q_reference\n"); for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); - auto quantize_fn = [&](void ) { + auto quantize_fn = [&](void) -> float { qfns.from_float_reference(test_data1, test_q1, size); return test_q1[0]; }; @@ -297,7 +296,7 @@ int main(int argc, char * argv[]) { printf(" quantize_row_q\n"); for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); - auto quantize_fn = [&](void ) { + auto quantize_fn = [&](void) -> float { qfns.from_float(test_data1, test_q1, size); return test_q1[0]; }; @@ -312,7 +311,7 @@ int main(int argc, char * argv[]) { qfns.from_float(test_data1, test_q1, largest); for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); - auto quantize_fn = [&](void ) { + auto quantize_fn = [&](void) -> float { qfns.to_float(test_q1, test_out, size); return test_out[0]; }; @@ -326,7 +325,7 @@ int main(int argc, char * argv[]) { printf(" quantize_row_q_dot\n"); for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); - auto quantize_fn = [&](void ) { + auto quantize_fn = [&](void) -> float { auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type); vdot.from_float(test_data1, test_q1, size); return test_q1[0]; @@ -343,7 +342,7 @@ int main(int argc, char * argv[]) { qfns.from_float(test_data2, test_q2, largest); for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); - auto quantize_fn = [&](void ) { + auto quantize_fn = [&](void) -> float { float result; qfns.vec_dot(size, &result, test_q1, test_q2); return result; From f8c90cdbaa729e64493164c1aba7ea80da7b716f Mon Sep 17 00:00:00 2001 From: ds5t5 <145942675+ds5t5@users.noreply.github.com> Date: Wed, 4 Oct 2023 06:23:39 -0700 Subject: [PATCH 009/295] llm : add Refact model (#3329) * add refact model * resolve comments * rebase to the latest * solve alibi cpu error --------- Co-authored-by: Georgi Gerganov --- convert-refact-hf-to-gguf.py | 318 +++++++++++++++++++++++++++++ ggml.c | 2 - gguf-py/gguf/gguf.py | 31 ++- llama.cpp | 382 ++++++++++++++++++++++++++++++++++- 4 files changed, 723 insertions(+), 10 deletions(-) create mode 100755 convert-refact-hf-to-gguf.py diff --git a/convert-refact-hf-to-gguf.py b/convert-refact-hf-to-gguf.py new file mode 100755 index 000000000..e0cd417db --- /dev/null +++ b/convert-refact-hf-to-gguf.py @@ -0,0 +1,318 @@ +#!/usr/bin/env python3 +# HF refact--> gguf conversion + +from __future__ import annotations + +import argparse +import json +import os +import sys +from pathlib import Path + +import numpy as np +import torch +from transformers import AutoTokenizer # type: ignore[import] + +if "NO_LOCAL_GGUF" not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf")) +import gguf + + +def bytes_to_unicode(): + # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a significant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + + list(range(ord("¡"), ord("¬") + 1)) + + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + return dict(zip(bs, (chr(n) for n in cs))) + + +def count_model_parts(dir_model: Path) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts + + +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser( + description="Convert a Refact model to a GGML compatible file" + ) + parser.add_argument( + "--vocab-only", + action="store_true", + help="extract only the vocab", + ) + parser.add_argument( + "--outfile", + type=Path, + help="path to write to; default: based on input", + ) + parser.add_argument( + "model", + type=Path, + help="directory containing model file, or model file itself (*.bin)", + ) + parser.add_argument( + "ftype", + type=int, + choices=[0, 1], + default=1, + nargs="?", + help="output format - use 0 for float32, 1 for float16", + ) + return parser.parse_args() + + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f"Error: {args.model} is not a directory", file=sys.stderr) + sys.exit(1) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf" + +print("gguf: loading model " + dir_model.name) + +with open(dir_model / "config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) + +if hparams["architectures"][0] != "GPTRefactForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + + sys.exit(1) + +# get number of model parts +num_parts = count_model_parts(dir_model) + +ARCH = gguf.MODEL_ARCH.REFACT +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +# Get refact feed forward dimension +hidden_dim = hparams["n_embd"] +inner_dim = 4 * hidden_dim +hidden_dim = int(2 * inner_dim / 3) +multiple_of = 256 +ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) + +block_count = hparams["n_layer"] + +gguf_writer.add_name("Refact") +# refact uses Alibi. So this is from config.json which might be used by training. +gguf_writer.add_context_length(hparams["n_positions"]) +gguf_writer.add_embedding_length(hparams["n_embd"]) + +gguf_writer.add_feed_forward_length(ff_dim) +gguf_writer.add_block_count(block_count) +gguf_writer.add_head_count(hparams["n_head"]) +gguf_writer.add_head_count_kv(1) +gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"]) +gguf_writer.add_file_type(ftype) + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: list[bytearray] = [] +scores: list[float] = [] +toktypes: list[int] = [] + +tokenizer_json_file = dir_model / "tokenizer.json" +if not tokenizer_json_file.is_file(): + print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr) + sys.exit(1) + +# gpt2 tokenizer +gguf_writer.add_tokenizer_model("gpt2") + +with open(tokenizer_json_file, "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) + +print("gguf: get gpt2 tokenizer vocab") + +# The number of tokens in tokenizer.json can differ from the expected vocab size. +# This causes downstream issues with mismatched tensor sizes when running the inference +vocab_size = ( + hparams["vocab_size"] + if "vocab_size" in hparams + else len(tokenizer_json["model"]["vocab"]) +) + +tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) + +reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} +byte_encoder = bytes_to_unicode() +byte_decoder = {v: k for k, v in byte_encoder.items()} + +for i in range(vocab_size): + if i in reverse_vocab: + text = reverse_vocab[i] + try: + text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) + except KeyError: + text = bytearray() + for c in reverse_vocab[i]: + if ord(c) < 256: # single byte character + text.append(byte_decoder[ord(c)]) + else: # multibyte special token character + text.extend(c.encode("utf-8")) + else: + print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") + pad_token = f"[PAD{i}]".encode("utf8") + text = bytearray(pad_token) + + tokens.append(text) + scores.append(0.0) # dymmy + toktypes.append(gguf.TokenType.NORMAL) # dummy + +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) + +special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) +special_vocab.add_to_gguf(gguf_writer) + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH, block_count) + +# params for qkv transform +n_head = hparams["n_head"] +n_head_kv = 1 + +head_dim = hparams["n_embd"] // n_head + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = iter(("pytorch_model.bin",)) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) +for part_name in part_names: + if args.vocab_only: + break + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(dir_model / part_name, map_location="cpu") + + for i in range(block_count): + if f"transformer.h.{i}.attn.kv.weight" in model_part: + data = model_part[f"transformer.h.{i}.attn.kv.weight"] + model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[ + : n_head_kv * head_dim + ] + model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[ + n_head_kv * head_dim : + ] + del model_part[f"transformer.h.{i}.attn.kv.weight"] + if f"transformer.h.{i}.attn.q.weight" in model_part: + model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[ + f"transformer.h.{i}.attn.q.weight" + ] + del model_part[f"transformer.h.{i}.attn.q.weight"] + if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part: + data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"] + model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim] + model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:] + del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"] + + for name in model_part.keys(): + data = model_part[name] + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight",)) + if new_name is None: + print("Can not map tensor '" + name + "'") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ( + ftype == 1 + and data_dtype == np.float32 + and name.endswith(".weight") + and n_dims == 2 + ): + data = data.astype(np.float16) + + print( + new_name + + ", n_dims = " + + str(n_dims) + + ", " + + str(old_dtype) + + " --> " + + str(data.dtype) + ) + + gguf_writer.add_tensor(new_name, data) + + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print(f"gguf: model successfully exported to '{fname_out}'") +print("") diff --git a/ggml.c b/ggml.c index 4a94b0f33..f56d6ac72 100644 --- a/ggml.c +++ b/ggml.c @@ -13082,7 +13082,6 @@ static void ggml_compute_forward_alibi_f32( return; } - const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); @@ -13103,7 +13102,6 @@ static void ggml_compute_forward_alibi_f32( //const int nb3 = src0->nb[3]; GGML_ASSERT(nb0 == sizeof(float)); - GGML_ASSERT(ne1 + n_past == ne0); GGML_ASSERT(n_head == ne2); // add alibi to src0 (KQ_scaled) diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index c975da0cb..a2c570d7e 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -85,6 +85,7 @@ class MODEL_ARCH(IntEnum): GPTNEOX : int = auto() MPT : int = auto() STARCODER : int = auto() + REFACT : int = auto() BERT : int = auto() @@ -118,6 +119,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.GPTNEOX: "gptneox", MODEL_ARCH.MPT: "mpt", MODEL_ARCH.STARCODER: "starcoder", + MODEL_ARCH.REFACT: "refact", MODEL_ARCH.BERT: "bert", } @@ -247,6 +249,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.REFACT: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.GPT2: [ # TODO ], @@ -271,7 +287,7 @@ class TensorNameMap: # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt + "transformer.wte", # gpt2 gpt-j mpt refact "transformer.word_embeddings", # falcon "model.embed_tokens", # llama-hf "tok_embeddings", # llama-pth @@ -304,6 +320,7 @@ class TensorNameMap: "norm", # llama-pth "embeddings.LayerNorm", # bert "transformer.norm_f", # mpt + "ln_f", # refact ), # Rope frequencies @@ -316,7 +333,7 @@ class TensorNameMap: # Attention norm MODEL_TENSOR.ATTN_NORM: ( "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b "transformer.h.{bid}.ln_mlp", # falcon40b @@ -365,7 +382,7 @@ class TensorNameMap: # Attention output MODEL_TENSOR.ATTN_OUT: ( "gpt_neox.layers.{bid}.attention.dense", # gptneox - "transformer.h.{bid}.attn.c_proj", # gpt2 + "transformer.h.{bid}.attn.c_proj", # gpt2 refact "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "model.layers.{bid}.self_attn.o_proj", # llama-hf @@ -383,7 +400,7 @@ class TensorNameMap: # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 + "transformer.h.{bid}.ln_2", # gpt2 refact "transformer.blocks.{bid}.norm_2", # mpt "model.layers.{bid}.post_attention_layernorm", # llama-hf "layers.{bid}.ffn_norm", # llama-pth @@ -396,7 +413,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.c_fc", # gpt2 "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon - "model.layers.{bid}.mlp.up_proj", # llama-hf + "model.layers.{bid}.mlp.up_proj", # llama-hf refact "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert "transformer.h.{bid}.mlp.fc_in", # gpt-j @@ -404,14 +421,14 @@ class TensorNameMap: # Feed-forward gate MODEL_TENSOR.FFN_GATE: ( - "model.layers.{bid}.mlp.gate_proj", # llama-hf + "model.layers.{bid}.mlp.gate_proj", # llama-hf refact "layers.{bid}.feed_forward.w1", # llama-pth ), # Feed-forward down MODEL_TENSOR.FFN_DOWN: ( "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox - "transformer.h.{bid}.mlp.c_proj", # gpt2 + "transformer.h.{bid}.mlp.c_proj", # gpt2 refact "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "model.layers.{bid}.mlp.down_proj", # llama-hf diff --git a/llama.cpp b/llama.cpp index a40da6839..08d6c162a 100644 --- a/llama.cpp +++ b/llama.cpp @@ -165,6 +165,7 @@ enum llm_arch { LLM_ARCH_GPTNEOX, LLM_ARCH_MPT, LLM_ARCH_STARCODER, + LLM_ARCH_REFACT, LLM_ARCH_UNKNOWN, }; @@ -177,6 +178,7 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_MPT, "mpt" }, { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, + { LLM_ARCH_REFACT, "refact" }, }; enum llm_kv { @@ -397,6 +399,23 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, + { + LLM_ARCH_REFACT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -1927,6 +1946,14 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_REFACT: + { + GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_1B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -2164,6 +2191,7 @@ static void llm_load_tensors( const auto tn = LLM_TN(model.arch); switch (model.arch) { case LLM_ARCH_LLAMA: + case LLM_ARCH_REFACT: { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); @@ -3357,6 +3385,353 @@ static struct ggml_cgraph * llm_build_baichaun( return gf; } +static struct ggml_cgraph * llm_build_refact( + llama_context & lctx, + const llama_batch & batch) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + const float norm_rms_eps = hparams.f_norm_rms_eps; + + const int n_gpu_layers = model.n_gpu_layers; + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + // printf("n_kv = %d\n", n_kv); + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ false, + }; + + params.no_alloc = true; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); + } + ggml_set_name(inp_tokens, "inp_tokens"); + + inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inpL); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); + } + } + + const int i_gpu_start = n_layer - n_gpu_layers; + (void) i_gpu_start; + + // offload functions set the tensor output backend to GPU + // tensors are GPU-accelerated if any input or the output has been offloaded + offload_func_t offload_func_nr = llama_nop; // nr = non-repeating + offload_func_t offload_func_kq = llama_nop; + offload_func_t offload_func_v = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (n_gpu_layers > n_layer) { + offload_func_nr = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 1) { + offload_func_v = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 2) { + offload_func_kq = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head))); + } + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + offload_func_kq(KQ_mask); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + for (int il = 0; il < n_layer; ++il) { + ggml_format_name(inpL, "layer_inp_%d", il); + + offload_func_t offload_func = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (il >= i_gpu_start) { + offload_func = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + struct ggml_tensor * inpSA = inpL; + + // norm + { + cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); + offload_func(cur); + ggml_set_name(cur, "rms_norm_0"); + + // cur = cur*attn_norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); + offload_func(cur); + ggml_set_name(cur, "attention_norm_0"); + } + + // self-attention + { + // compute Q and K + struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + offload_func_kq(tmpk); + ggml_set_name(tmpk, "tmpk"); + + struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + offload_func_kq(tmpq); + ggml_set_name(tmpq, "tmpq"); + + struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens); + offload_func_kq(Kcur); + ggml_set_name(Kcur, "Kcur"); + + struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens); + offload_func_kq(Qcur); + ggml_set_name(Qcur, "Qcur"); + + // store key and value to memory + { + // compute the transposed [n_tokens, n_embd] V matrix + + struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + offload_func_v(tmpv); + ggml_set_name(tmpv, "tmpv"); + + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); + offload_func_v(Vcur); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); + offload_func_kq(k); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + offload_func_v(v); + ggml_set_name(v, "v"); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + offload_func_kq(Q); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + offload_func_kq(K); + ggml_set_name(K, "K"); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + offload_func_kq(KQ); + ggml_set_name(KQ, "KQ"); + + // KQ_scaled = KQ / sqrt(n_embd_head) + // KQ_scaled shape [n_kv, n_tokens, n_head, 1] + struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); + offload_func_kq(KQ_scaled); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + // KQ_masked = mask_past(KQ_scaled) + struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8); + ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); + + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); + offload_func_kq(KQ_masked); + ggml_set_name(KQ_masked, "KQ_masked"); + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); + offload_func_v(KQ_soft_max); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + // split cached V into n_head heads + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + offload_func_v(V); + ggml_set_name(V, "V"); + +#if 1 + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + offload_func_v(KQV); + ggml_set_name(KQV, "KQV"); +#else + // make V contiguous in memory to speed up the matmul, however we waste time on the copy + // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation + // is there a better way? + struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head)); + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); +#endif + + // KQV_merged = KQV.permute(0, 2, 1, 3) + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + offload_func_v(KQV_merged); + ggml_set_name(KQV_merged, "KQV_merged"); + + // cur = KQV_merged.contiguous().view(n_embd, n_tokens) + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + offload_func_v(cur); + ggml_set_name(cur, "KQV_merged_contiguous"); + + // projection (no bias) + cur = ggml_mul_mat(ctx0, + model.layers[il].wo, + cur); + offload_func(cur); + ggml_set_name(cur, "result_wo"); + } + + struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); + offload_func(inpFF); + ggml_set_name(inpFF, "inpFF"); + + // feed-forward network + { + // norm + { + cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); + offload_func(cur); + ggml_set_name(cur, "rms_norm_1"); + + // cur = cur*ffn_norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); + offload_func(cur); + ggml_set_name(cur, "ffn_norm"); + } + + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model.layers[il].w3, + cur); + offload_func(tmp); + ggml_set_name(tmp, "result_w3"); + + cur = ggml_mul_mat(ctx0, + model.layers[il].w1, + cur); + offload_func(cur); + ggml_set_name(cur, "result_w1"); + + // SILU activation + cur = ggml_silu(ctx0, cur); + offload_func(cur); + ggml_set_name(cur, "silu"); + + cur = ggml_mul(ctx0, cur, tmp); + offload_func(cur); + ggml_set_name(cur, "silu_x_result_w3"); + + cur = ggml_mul_mat(ctx0, + model.layers[il].w2, + cur); + offload_func(cur); + ggml_set_name(cur, "result_w2"); + } + + cur = ggml_add(ctx0, cur, inpFF); + offload_func(cur); + ggml_set_name(cur, "inpFF_+_result_w2"); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + // norm + { + cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); + offload_func_nr(cur); + ggml_set_name(cur, "rms_norm_2"); + + // cur = cur*norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.output_norm); + // offload_func_nr(cur); // TODO CPU + GPU mirrored backend + ggml_set_name(cur, "result_norm"); + } + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + static struct ggml_cgraph * llm_build_falcon( llama_context & lctx, const llama_batch & batch) { @@ -3997,6 +4372,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm_build_starcoder(lctx, batch); } break; + case LLM_ARCH_REFACT: + { + result = llm_build_refact(lctx, batch); + } break; default: GGML_ASSERT(false); } @@ -4130,7 +4509,8 @@ static int llama_decode_internal( // If all tensors can be run on the GPU then using more than 1 thread is detrimental. const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_BAICHUAN || - model.arch == LLM_ARCH_FALCON; + model.arch == LLM_ARCH_FALCON || + model.arch == LLM_ARCH_REFACT; const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3; if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) { n_threads = 1; From 0d152b37fecd5a4838330d47bb034cebf1681779 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 4 Oct 2023 16:25:41 +0300 Subject: [PATCH 010/295] ggml : fix build after #3329 --- ggml.c | 1 + 1 file changed, 1 insertion(+) diff --git a/ggml.c b/ggml.c index f56d6ac72..911a63988 100644 --- a/ggml.c +++ b/ggml.c @@ -13082,6 +13082,7 @@ static void ggml_compute_forward_alibi_f32( return; } + const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); From beabc8cfb0145b48aad68fefc573d316fe9c3a8a Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 4 Oct 2023 16:50:44 +0300 Subject: [PATCH 011/295] readme : add project status link --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index ec7b58943..e436818fa 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ [![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions) [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) -[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml) +[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml) Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ From 019ba1dcd0c7775a5ac0f7442634a330eb0173cc Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Wed, 4 Oct 2023 08:20:28 -0600 Subject: [PATCH 012/295] convert : fix Baichuan2 models by using vocab size in config.json (#3299) Use local GGUF package when possible in Baichuan converter --- convert-baichuan-hf-to-gguf.py | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/convert-baichuan-hf-to-gguf.py b/convert-baichuan-hf-to-gguf.py index 8bd34dc44..513a7516a 100755 --- a/convert-baichuan-hf-to-gguf.py +++ b/convert-baichuan-hf-to-gguf.py @@ -11,11 +11,14 @@ import sys from pathlib import Path from typing import TYPE_CHECKING, Any import itertools -import gguf import numpy as np import torch from sentencepiece import SentencePieceProcessor # type: ignore[import] +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) +import gguf + if TYPE_CHECKING: from typing import TypeAlias @@ -174,8 +177,11 @@ if not tokenizer_model_file.is_file(): print("gguf: get sentencepiece tokenizer vocab, scores and token types") tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) +vocab_size = hparams.get('vocab_size') +if vocab_size is None: + vocab_size = tokenizer.vocab_size() -for i in range(tokenizer.vocab_size()): +for i in range(vocab_size): text: bytes score: float From 0745384449fe8d89d6d99c93153569079e853247 Mon Sep 17 00:00:00 2001 From: Jhen-Jie Hong Date: Thu, 5 Oct 2023 08:56:21 -0500 Subject: [PATCH 013/295] ci : add swift build via xcodebuild (#3482) --- .github/workflows/build.yml | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 35f84e404..d3e4651c7 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -253,6 +253,29 @@ jobs: -DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) + macOS-latest-swift: + runs-on: macos-latest + + strategy: + matrix: + destination: ['platform=macOS,name=Any Mac', 'platform=iOS,name=Any iOS Device', 'platform=tvOS,name=Any tvOS Device'] + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v1 + + - name: Dependencies + id: depends + continue-on-error: true + run: | + brew update + + - name: xcodebuild for swift package + id: xcodebuild + run: | + xcodebuild -scheme llama -destination "${{ matrix.destination }}" + windows-latest-cmake: runs-on: windows-latest From 8f3a642ec1d878b2d0a0d15e3a4277f522790d4c Mon Sep 17 00:00:00 2001 From: Jhen-Jie Hong Date: Thu, 5 Oct 2023 09:00:07 -0500 Subject: [PATCH 014/295] swift : disable ACCELERATE_NEW_LAPACK (#3481) --- Package.swift | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/Package.swift b/Package.swift index 5fbcdb9db..3ee3b2a20 100644 --- a/Package.swift +++ b/Package.swift @@ -44,9 +44,12 @@ let package = Package( cSettings: [ .unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_K_QUANTS"), - .define("GGML_USE_ACCELERATE"), - .define("ACCELERATE_NEW_LAPACK"), - .define("ACCELERATE_LAPACK_ILP64") + .define("GGML_USE_ACCELERATE") + // NOTE: NEW_LAPACK will required iOS version 16.4+ + // We should consider add this in the future when we drop support for iOS 14 + // (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc) + // .define("ACCELERATE_NEW_LAPACK"), + // .define("ACCELERATE_LAPACK_ILP64") ] + additionalSettings, linkerSettings: [ .linkedFramework("Accelerate") From e8b8d32e8663ffc55a02c9721af3a5190382cbb0 Mon Sep 17 00:00:00 2001 From: Jhen-Jie Hong Date: Thu, 5 Oct 2023 09:02:55 -0500 Subject: [PATCH 015/295] server : fix incorrect num_tokens_predicted (#3480) --- examples/server/server.cpp | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 921eb5da4..6e31e1332 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -504,9 +504,11 @@ struct llama_server_context }); } + bool tg = true; while (n_past < embd.size()) { int n_eval = (int)embd.size() - n_past; + tg = n_eval == 1; if (n_eval > params.n_batch) { n_eval = params.n_batch; @@ -633,7 +635,9 @@ struct llama_server_context last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(result.tok); - num_tokens_predicted++; + if (tg) { + num_tokens_predicted++; + } } // add it to the context @@ -1124,8 +1128,6 @@ static json format_timings(llama_server_context &llama) { const auto timings = llama_get_timings(llama.ctx); - assert(timings.n_eval == ptrdiff_t(llama.num_tokens_predicted)); - return json{ {"prompt_n", timings.n_p_eval}, {"prompt_ms", timings.t_p_eval_ms}, From e2583cbc29cd7d6d1403f338842c07dfc0467e6c Mon Sep 17 00:00:00 2001 From: shibe2 Date: Thu, 5 Oct 2023 15:57:03 +0400 Subject: [PATCH 016/295] CLBlast: Fix handling of on-device tensor data Fix uploading tensor data to device, including 3D, 4D, and non-contiguous tensors. Use correct offsets into data that is already in VRAM. Correct handling of OpenCL events when multiple commands are queued. --- ggml-opencl.cpp | 86 +++++++++++++++++++++++++++++++------------------ 1 file changed, 54 insertions(+), 32 deletions(-) diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 7e4069d76..4a331f24a 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -202,14 +202,14 @@ inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8 __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy) { - const int i = get_group_id(0); + const int i = get_group_id(0) + get_global_offset(0); const int tid = get_local_id(0); const int n = tid / 32; const int l = tid - 32 * n; const int is = 8 * n + l / 16; const uint8_t q = x[i].qs[32 * n + l]; - __global float *y = yy + i * QK_K + 128 * n; + __global float *y = yy + get_group_id(0) * QK_K + 128 * n; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); @@ -223,7 +223,7 @@ __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __globa __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy) { int r = get_local_id(0) / 4; - int i = get_group_id(0); + int i = get_group_id(0) + get_global_offset(0); int tid = r / 2; int is0 = r % 2; int l0 = 16 * is0 + 4 * (get_local_id(0) % 4); @@ -241,7 +241,7 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa float d_all = vload_half(0, &x[i].d); float dl = d_all * (us - 32); - __global float *y = yy + i * QK_K + 128 * n + 32 * j; + __global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j; const __global uint8_t *q = x[i].qs + 32 * n; const __global uint8_t *hm = x[i].hmask; @@ -251,14 +251,14 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy) { - const int i = get_group_id(0); + const int i = get_group_id(0) + get_global_offset(0); const int tid = get_local_id(0); const int il = tid / 8; const int ir = tid % 8; const int is = 2 * il; const int n = 4; - __global float *y = yy + i * QK_K + 64 * il + n * ir; + __global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); @@ -281,13 +281,13 @@ __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __globa __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy) { - const int i = get_group_id(0); + const int i = get_group_id(0) + get_global_offset(0); const int tid = get_local_id(0); const int il = tid / 16; const int ir = tid % 16; const int is = 2 * il; - __global float *y = yy + i * QK_K + 64 * il + 2 * ir; + __global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); @@ -313,13 +313,13 @@ __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __globa __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy) { - const int i = get_group_id(0); + const int i = get_group_id(0) + get_global_offset(0); const int tid = get_local_id(0); const int ip = tid / 32; const int il = tid - 32 * ip; const int is = 8 * ip + il / 16; - __global float *y = yy + i * QK_K + 128 * ip + il; + __global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il; const float d = vload_half(0, &x[i].d); @@ -730,7 +730,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { const uint qk = QUANT_K; const uint qr = QUANT_R; - const int ib = i/qk; // block index + const int ib = i/qk + get_global_offset(0); // block index const int iqs = (i%qk)/qr; // quant index const int iybs = i - i%qk; // y block start index const int y_offset = qr == 1 ? 1 : qk/2; @@ -1349,30 +1349,42 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o const enum ggml_type type = src->type; const size_t ts = ggml_type_size(type); const size_t bs = ggml_blck_size(type); + const uint64_t row_size = ts*ne0/bs; - const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); - if (nb0 == ts && nb1 == ts*ne0/bs) { - err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev); - return err; + const char * x = (const char *) src->data + i2*nb2 + i3*nb3; + if (nb0 == ts && nb1 == row_size) { + return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev); } if (nb0 == ts) { const size_t buffer_origin[3] = { offset, 0, 0 }; const size_t host_origin[3] = { 0, 0, 0 }; - const size_t region[3] = { ts*ne0/bs, ne1, 1 }; - err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev); - return err; + const size_t region[3] = { row_size, ne1, 1 }; + return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev); } + std::vector events; + if (ev && ne1>1) events.reserve(ne1-1); for (uint64_t i1 = 0; i1 < ne1; i1++) { // pretend the row is a matrix with cols=1 - const size_t buffer_origin[3] = { offset, i1, 0 }; + const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 }; const size_t host_origin[3] = { 0, 0, 0 }; - const size_t region[3] = { ts/bs, ne0, 1 }; - err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev); + const size_t region[3] = { ts, ne0/bs, 1 }; + // if an event is requested, make the last write wait for all previous writes to complete + if (ev && i1) { + events.push_back(*ev); + } + cl_uint nevents = i1 == ne1-1 ? events.size() : 0U; + err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev); if (err != CL_SUCCESS) { - break; + for (auto event : events) { + clReleaseEvent(event); + } + return err; } } - return err; + for (auto event : events) { + CL_CHECK(clReleaseEvent(event)); + } + return CL_SUCCESS; } static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -1503,6 +1515,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); + size_t x_offset = 0; int64_t pi02 = -1; int64_t pi03 = -1; @@ -1513,7 +1526,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr int64_t i02 = i12 / r2; // copy data to device - if (src0->backend != GGML_BACKEND_GPU && (i02 != pi02 || i03 != pi03)) { + if (src0->backend == GGML_BACKEND_GPU) { + x_offset = (i03 * ne02 + i02) * x_ne; + } else if (i02 != pi02 || i03 != pi03) { CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); pi02 = i02; pi03 = i03; @@ -1528,7 +1543,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr clblast::Transpose::kYes, clblast::Transpose::kNo, ne01, ne11, ne10, alpha, - d_X, 0, ne00, + d_X, x_offset, ne00, d_Y, 0, ne10, beta, d_D, 0, ne01, @@ -1596,6 +1611,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr bool src1_cont_rows = nb10 == sizeof(float); bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); + size_t x_offset = 0; int64_t pi02 = -1; int64_t pi03 = -1; @@ -1606,7 +1622,9 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr int64_t i02 = i12 / r2; // copy src0 to device - if (src0->backend != GGML_BACKEND_GPU && (i02 != pi02 || i03 != pi03)) { + if (src0->backend == GGML_BACKEND_GPU) { + x_offset = (i03 * ne02 + i02) * x_ne; + } else if (i02 != pi02 || i03 != pi03) { CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); pi02 = i02; pi03 = i03; @@ -1646,7 +1664,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr clblast::Transpose::kYes, clblast::Transpose::kNo, ne01, ne11, ne10, alpha, - d_X, 0, ne00, + d_X, x_offset, ne00, d_Y, 0, ne10, beta, d_D, 0, ne01, @@ -1696,7 +1714,8 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; - const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type); + const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice + const size_t q_sz = ggml_type_size(type) * x_bps; size_t x_size; size_t y_size; @@ -1764,9 +1783,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * } else { // general dequantization kernel + CLBlast matrix matrix multiplication // convert src0 to fp32 on device const size_t global = x_ne / global_denom; + const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0; CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); - CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); + CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, offset > 0 ? &offset : NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); // copy src1 to device CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); @@ -1888,17 +1908,19 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) { const int64_t ne3 = tensor->ne[3]; const ggml_type type = tensor->type; - const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type); + const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type)); + const size_t q_sz = s_sz * (size_t) (ne2 * ne3); size_t q_size; cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size); tensor->data = data; // copy tensor to device + size_t offset = 0; for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { - int i = i3*ne2 + i2; - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL)); + CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL)); + offset += s_sz; } } From acec9eaaa93315711c11d15afa8d245d164b7cff Mon Sep 17 00:00:00 2001 From: staviq Date: Thu, 5 Oct 2023 18:17:29 +0200 Subject: [PATCH 017/295] common : process escape sequences in reverse prompts (#3461) --- common/common.cpp | 3 +++ 1 file changed, 3 insertions(+) diff --git a/common/common.cpp b/common/common.cpp index 7370017f2..269672b9f 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -616,6 +616,9 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { process_escapes(params.prompt); process_escapes(params.input_prefix); process_escapes(params.input_suffix); + for (auto & antiprompt : params.antiprompt) { + process_escapes(antiprompt); + } } return true; From 45eba9369fbcbd7f677eba9a2d3e4ffcfdc81824 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Kenvix=20=E2=AD=90?= Date: Fri, 6 Oct 2023 01:16:39 +0800 Subject: [PATCH 018/295] build : use std::make_tuple() for compatibility with older GCC versions (#3488) --- common/common.cpp | 4 ++-- examples/server/server.cpp | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index 269672b9f..6b9b4695c 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -361,7 +361,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.lora_adapter.push_back({argv[i], 1.0f}); + params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f)); params.use_mmap = false; } else if (arg == "--lora-scaled") { if (++i >= argc) { @@ -373,7 +373,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])}); + params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i]))); params.use_mmap = false; } else if (arg == "--lora-base") { if (++i >= argc) { diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 6e31e1332..5f9cdecd5 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1015,7 +1015,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, invalid_param = true; break; } - params.lora_adapter.push_back({argv[i], 1.0f}); + params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f)); params.use_mmap = false; } else if (arg == "--lora-scaled") @@ -1031,7 +1031,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, invalid_param = true; break; } - params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])}); + params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i]))); params.use_mmap = false; } else if (arg == "--lora-base") From 48edda30ee545fdac2e7a33d505382888f748bbf Mon Sep 17 00:00:00 2001 From: cebtenzzre Date: Thu, 5 Oct 2023 15:00:34 -0400 Subject: [PATCH 019/295] convert : update Falcon script for new HF config (#3448) Also adds Falcon-180B support. Closes #3049 Co-authored-by: jb --- convert-falcon-hf-to-gguf.py | 117 ++++++++++++++++++++--------------- 1 file changed, 66 insertions(+), 51 deletions(-) diff --git a/convert-falcon-hf-to-gguf.py b/convert-falcon-hf-to-gguf.py index cb79586d6..9252e1c46 100755 --- a/convert-falcon-hf-to-gguf.py +++ b/convert-falcon-hf-to-gguf.py @@ -4,6 +4,7 @@ from __future__ import annotations import argparse +import contextlib import json import os import struct @@ -20,10 +21,10 @@ if 'NO_LOCAL_GGUF' not in os.environ: import gguf -def count_model_parts(dir_model: Path) -> int: +def count_model_parts(dir_model: Path, prefix: str) -> int: num_parts = 0 for filename in os.listdir(dir_model): - if filename.startswith("pytorch_model-"): + if filename.startswith(prefix): num_parts += 1 if num_parts > 0: @@ -77,20 +78,26 @@ print("gguf: loading model "+dir_model.name) with open(dir_model / "config.json", "r", encoding="utf-8") as f: hparams = json.load(f) -if hparams["architectures"][0] != "RWForCausalLM": +if hparams["architectures"][0] != "FalconForCausalLM": print("Model architecture not supported: " + hparams["architectures"][0]) sys.exit(1) # get number of model parts -num_parts = count_model_parts(dir_model) +num_parts = count_model_parts(dir_model, "model-00") +if num_parts: + is_safetensors = True + from safetensors import safe_open +else: + is_safetensors = False + num_parts = count_model_parts(dir_model, "pytorch_model-") ARCH=gguf.MODEL_ARCH.FALCON gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) print("gguf: get model metadata") -block_count = hparams["n_layer"] +block_count = hparams["num_hidden_layers"] gguf_writer.add_name("Falcon") gguf_writer.add_context_length(2048) # not in config.json @@ -98,9 +105,9 @@ gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform gguf_writer.add_embedding_length(hparams["hidden_size"]) gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"]) gguf_writer.add_block_count(block_count) -gguf_writer.add_head_count(hparams["n_head"]) -if "n_head_kv" in hparams: - gguf_writer.add_head_count_kv(hparams["n_head_kv"]) +gguf_writer.add_head_count(hparams["num_attention_heads"]) +if "num_kv_heads" in hparams: + gguf_writer.add_head_count_kv(hparams["num_kv_heads"]) else: gguf_writer.add_head_count_kv(1) gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) @@ -146,8 +153,8 @@ special_vocab.add_to_gguf(gguf_writer) tensor_map = gguf.get_tensor_name_map(ARCH,block_count) # params for qkv transform -n_head = hparams["n_head"] -n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1 +n_head = hparams["num_attention_heads"] +n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1 head_dim = hparams["hidden_size"] // n_head @@ -156,6 +163,10 @@ print("gguf: get tensor metadata") if num_parts == 0: part_names = iter(("pytorch_model.bin",)) +elif is_safetensors: + part_names = ( + f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1) + ) else: part_names = ( f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) @@ -165,60 +176,64 @@ for part_name in part_names: if args.vocab_only: break print("gguf: loading model part '" + part_name + "'") - model_part = torch.load(dir_model / part_name, map_location="cpu") + if is_safetensors: + ctx = safe_open(dir_model / part_name, framework="pt", device="cpu") + else: + ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu")) - for name in model_part.keys(): - data = model_part[name] + with ctx as model_part: + for name in model_part.keys(): + data = model_part.get_tensor(name) if is_safetensors else model_part[name] - old_dtype = data.dtype + old_dtype = data.dtype - # convert any unsupported data types to float32 - if data.dtype != torch.float16 and data.dtype != torch.float32: - data = data.to(torch.float32) + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) - # QKV tensor transform - # The original query_key_value tensor contains n_head_kv "kv groups", - # each consisting of n_head/n_head_kv query weights followed by one key - # and one value weight (shared by all query heads in the kv group). - # This layout makes it a big pain to work with in GGML. - # So we rearrange them here,, so that we have n_head query weights - # followed by n_head_kv key weights followed by n_head_kv value weights, - # in contiguous fashion. - # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py + # QKV tensor transform + # The original query_key_value tensor contains n_head_kv "kv groups", + # each consisting of n_head/n_head_kv query weights followed by one key + # and one value weight (shared by all query heads in the kv group). + # This layout makes it a big pain to work with in GGML. + # So we rearrange them here,, so that we have n_head query weights + # followed by n_head_kv key weights followed by n_head_kv value weights, + # in contiguous fashion. + # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py - if "query_key_value" in name: - qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) - q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head) - k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) - v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) - data = torch.cat((q,k,v)).reshape_as(data) + if "query_key_value" in name: + qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) + q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head) + k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) + v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) + data = torch.cat((q,k,v)).reshape_as(data) - data = data.squeeze().numpy() + data = data.squeeze().numpy() - # map tensor names - new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) - if new_name is None: - print("Can not map tensor '" + name + "'") - sys.exit() + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: + print("Can not map tensor '" + name + "'") + sys.exit() - n_dims = len(data.shape) - data_dtype = data.dtype + n_dims = len(data.shape) + data_dtype = data.dtype - # if f32 desired, convert any float16 to float32 - if ftype == 0 and data_dtype == np.float16: - data = data.astype(np.float32) + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) - # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 - if ftype == 1 and data_dtype == np.float16 and n_dims == 1: - data = data.astype(np.float32) + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) - # if f16 desired, convert any float32 2-dim weight tensors to float16 - if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: - data = data.astype(np.float16) + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) - print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) - gguf_writer.add_tensor(new_name, data) + gguf_writer.add_tensor(new_name, data) print("gguf: write header") From 04b2f4386eda0264287156104cbf9d1b87895422 Mon Sep 17 00:00:00 2001 From: Jhen-Jie Hong Date: Fri, 6 Oct 2023 05:36:43 -0500 Subject: [PATCH 020/295] ci : fix xcodebuild destinations (#3491) * ci : fix xcodebuild destinations * ci : add .swift to paths --- .github/workflows/build.yml | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index d3e4651c7..c1e36ee28 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -10,10 +10,10 @@ on: push: branches: - master - paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu'] + paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift'] pull_request: types: [opened, synchronize, reopened] - paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu'] + paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift'] env: BRANCH_NAME: ${{ github.head_ref || github.ref_name }} @@ -258,7 +258,7 @@ jobs: strategy: matrix: - destination: ['platform=macOS,name=Any Mac', 'platform=iOS,name=Any iOS Device', 'platform=tvOS,name=Any tvOS Device'] + destination: ['generic/platform=macOS', 'generic/platform=iOS', 'generic/platform=tvOS'] steps: - name: Clone From 16820a5a0d885113f21021ce934f0b0027b9d69a Mon Sep 17 00:00:00 2001 From: l3utterfly Date: Fri, 6 Oct 2023 18:47:59 +0800 Subject: [PATCH 021/295] llama : correct hparams comparison (#3446) * fixed floating point comparison issues * updated implementation for hparam comparison to handle inf and NaN * fixed code review comments * minor simplification * rename is_float_eq -> is_float_close --------- Co-authored-by: Cebtenzzre --- llama.cpp | 40 +++++++++++++++++++++++++++++++++++++++- 1 file changed, 39 insertions(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index 08d6c162a..56413f3a2 100644 --- a/llama.cpp +++ b/llama.cpp @@ -125,6 +125,27 @@ static void replace_all(std::string & s, const std::string & search, const std:: } s = std::move(result); } + +static bool is_float_close(float a, float b, float abs_tol) { + // Check for non-negative tolerance + if (abs_tol < 0.0) { + throw std::invalid_argument("Tolerance must be non-negative"); + } + + // Exact equality check + if (a == b) { + return true; + } + + // Check for infinities + if (std::isinf(a) || std::isinf(b)) { + return false; + } + + // Regular comparison using the provided absolute tolerance + return std::fabs(b - a) <= abs_tol; +} + #ifdef GGML_USE_CPU_HBM #include #endif @@ -969,7 +990,24 @@ struct llama_hparams { float rope_freq_scale_train; bool operator!=(const llama_hparams & other) const { - return static_cast(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT + if (this->vocab_only != other.vocab_only) return true; + if (this->n_vocab != other.n_vocab) return true; + if (this->n_ctx_train != other.n_ctx_train) return true; + if (this->n_embd != other.n_embd) return true; + if (this->n_head != other.n_head) return true; + if (this->n_head_kv != other.n_head_kv) return true; + if (this->n_layer != other.n_layer) return true; + if (this->n_rot != other.n_rot) return true; + if (this->n_ff != other.n_ff) return true; + + const float EPSILON = 1e-9; + + if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; + if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; + if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; + if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; + + return false; } uint32_t n_gqa() const { From 97af49fa395df77e4c18af0e1655b2fee67c9686 Mon Sep 17 00:00:00 2001 From: Jhen-Jie Hong Date: Fri, 6 Oct 2023 07:44:24 -0500 Subject: [PATCH 022/295] server : reuse llama_sample_token common util (#3494) * server : reuse llama_sample_token common function * common : use n_probs for temperature sampling --- common/common.cpp | 9 ++-- examples/server/server.cpp | 100 ++++--------------------------------- 2 files changed, 16 insertions(+), 93 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index 6b9b4695c..186f5b268 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1020,10 +1020,11 @@ llama_token llama_sample_token( id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else { // Temperature sampling - llama_sample_top_k (ctx, &cur_p, top_k, 1); - llama_sample_tail_free (ctx, &cur_p, tfs_z, 1); - llama_sample_typical (ctx, &cur_p, typical_p, 1); - llama_sample_top_p (ctx, &cur_p, top_p, 1); + size_t min_keep = std::max(1, params.n_probs); + llama_sample_top_k (ctx, &cur_p, top_k, min_keep); + llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep); + llama_sample_typical (ctx, &cur_p, typical_p, min_keep); + llama_sample_top_p (ctx, &cur_p, top_p, min_keep); llama_sample_temp(ctx, &cur_p, temp); { diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 5f9cdecd5..c53a64867 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -534,98 +534,20 @@ struct llama_server_context return result; } - // out of user input, sample next token - const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k; - const float top_p = params.top_p; - const float tfs_z = params.tfs_z; - const float typical_p = params.typical_p; - const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; - const float repeat_penalty = params.repeat_penalty; - const float alpha_presence = params.presence_penalty; - const float alpha_frequency = params.frequency_penalty; - const int mirostat = params.mirostat; - const float mirostat_tau = params.mirostat_tau; - const float mirostat_eta = params.mirostat_eta; - const bool penalize_nl = params.penalize_nl; - const int32_t n_probs = params.n_probs; - { - auto *logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(model); - - // Apply params.logit_bias map - for (const auto &it : params.logit_bias) - { - logits[it.first] += it.second; - } - + // out of user input, sample next token std::vector candidates; - candidates.reserve(n_vocab); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) + candidates.reserve(llama_n_vocab(model)); + + result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates); + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + + const int32_t n_probs = params.n_probs; + if (params.temp <= 0 && n_probs > 0) { - candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); - } - - llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false}; - - // Apply penalties - float nl_logit = logits[llama_token_nl(ctx)]; - auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); - llama_sample_repetition_penalty(ctx, &candidates_p, - last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - last_n_repeat, repeat_penalty); - llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, - last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - last_n_repeat, alpha_frequency, alpha_presence); - if (!penalize_nl) - { - logits[llama_token_nl(ctx)] = nl_logit; - } - - if (grammar != nullptr) { - llama_sample_grammar(ctx, &candidates_p, grammar); - } - - if (temp <= 0) - { - // Greedy sampling - result.tok = llama_sample_token_greedy(ctx, &candidates_p); - if (n_probs > 0) - { - llama_sample_softmax(ctx, &candidates_p); - } - } - else - { - if (mirostat == 1) - { - static float mirostat_mu = 2.0f * mirostat_tau; - const int mirostat_m = 100; - llama_sample_temp(ctx, &candidates_p, temp); - result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); - } - else if (mirostat == 2) - { - static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temp(ctx, &candidates_p, temp); - result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); - } - else - { - // Temperature sampling - size_t min_keep = std::max(1, n_probs); - llama_sample_top_k(ctx, &candidates_p, top_k, min_keep); - llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep); - llama_sample_typical(ctx, &candidates_p, typical_p, min_keep); - llama_sample_top_p(ctx, &candidates_p, top_p, min_keep); - llama_sample_temp(ctx, &candidates_p, temp); - result.tok = llama_sample_token(ctx, &candidates_p); - } - } - - if (grammar != nullptr) { - llama_grammar_accept_token(ctx, grammar, result.tok); + // For llama_sample_token_greedy we need to sort candidates + llama_sample_softmax(ctx, &candidates_p); } for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i) From a8777ad84e00cda0399e827cdf971e2c3fab1da2 Mon Sep 17 00:00:00 2001 From: pudepiedj Date: Fri, 6 Oct 2023 14:16:38 +0100 Subject: [PATCH 023/295] parallel : add option to load external prompt file (#3416) * Enable external file and add datestamp * Add name of external file at end * Upload ToK2024 * Delete ToK2024.txt * Experiments with jeopardy * Move ParallelQuestions to /proimpts and rename * Interim commit * Interim commit * Final revision * Remove trailing whitespace * remove cmake_all.sh * Remove cmake_all.sh * Changed .gitignore * Improved reporting and new question files. * Corrected typo * More LLM questions * Update LLM-questions.txt * Yet more LLM-questions * Remove jeopardy results file * Reinstate original jeopardy.sh * Update examples/parallel/parallel.cpp --------- Co-authored-by: Georgi Gerganov --- common/common.cpp | 2 ++ common/common.h | 1 + examples/jeopardy/README.md | 2 +- examples/parallel/parallel.cpp | 56 +++++++++++++++++++++++++++++++--- llama.cpp | 10 +++--- prompts/LLM-questions.txt | 49 +++++++++++++++++++++++++++++ prompts/parallel-questions.txt | 42 +++++++++++++++++++++++++ 7 files changed, 151 insertions(+), 11 deletions(-) create mode 100644 prompts/LLM-questions.txt create mode 100644 prompts/parallel-questions.txt diff --git a/common/common.cpp b/common/common.cpp index 186f5b268..60b00b5fb 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -167,6 +167,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } + // store the external file name in params + params.prompt_file = argv[i]; std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (params.prompt.back() == '\n') { params.prompt.pop_back(); diff --git a/common/common.h b/common/common.h index e095c56e3..c80215279 100644 --- a/common/common.h +++ b/common/common.h @@ -79,6 +79,7 @@ struct gpt_params { std::string model_draft = ""; // draft model for speculative decoding std::string model_alias = "unknown"; // model alias std::string prompt = ""; + std::string prompt_file = ""; // store the external prompt file name std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state std::string input_prefix = ""; // string to prefix user inputs with std::string input_suffix = ""; // string to suffix user inputs with diff --git a/examples/jeopardy/README.md b/examples/jeopardy/README.md index 4c42e3cdb..ffa13cbf3 100644 --- a/examples/jeopardy/README.md +++ b/examples/jeopardy/README.md @@ -2,7 +2,7 @@ This is pretty much just a straight port of aigoopy/llm-jeopardy/ with an added graph viewer. -The jeopardy test can be used to compare the fact knowledge of different models and compare them to eachother. This is in contrast to some other tests, which test logical deduction, creativity, writing skills, etc. +The jeopardy test can be used to compare the fact knowledge of different models and compare them to each other. This is in contrast to some other tests, which test logical deduction, creativity, writing skills, etc. Step 1: Open jeopardy.sh and modify the following: diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index ffd7b1db4..721888da7 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -10,6 +10,7 @@ #include #include #include +#include // trim whitespace from the beginning and end of a string static std::string trim(const std::string & str) { @@ -70,6 +71,26 @@ struct client { std::vector tokens_prev; }; +static void print_date_time() { + std::time_t current_time = std::time(nullptr); + std::tm* local_time = std::localtime(¤t_time); + char buffer[80]; + strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", local_time); + + printf("\n\033[35mrun parameters as at %s\033[0m\n", buffer); +} + +// Define a split string function to ... +static std::vector split_string(const std::string& input, char delimiter) { + std::vector tokens; + std::istringstream stream(input); + std::string token; + while (std::getline(stream, token, delimiter)) { + tokens.push_back(token); + } + return tokens; +} + int main(int argc, char ** argv) { srand(1234); @@ -104,6 +125,23 @@ int main(int argc, char ** argv) { params.logits_all = true; std::tie(model, ctx) = llama_init_from_gpt_params(params); + // load the prompts from an external file if there are any + if (params.prompt.empty()) { + printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n"); + } else { + // Output each line of the input params.prompts vector and copy to k_prompts + int index = 0; + printf("\n\033[32mNow printing the external prompt file %s\033[0m\n\n", params.prompt_file.c_str()); + + std::vector prompts = split_string(params.prompt, '\n'); + for (const auto& prompt : prompts) { + k_prompts.resize(index + 1); + k_prompts[index] = prompt; + index++; + printf("%3d prompt: %s\n", index, prompt.c_str()); + } + } + fprintf(stderr, "\n\n"); fflush(stderr); @@ -233,7 +271,7 @@ int main(int argc, char ** argv) { client.n_decoded = 0; client.i_batch = batch.n_tokens - 1; - LOG_TEE("\033[1mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id); + LOG_TEE("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id); g_seq_id += 1; @@ -336,8 +374,8 @@ int main(int argc, char ** argv) { const auto t_main_end = ggml_time_us(); - LOG_TEE("\033[1mClient %3d, seq %4d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \n\nInput: %s\nResponse: %s\n\n", - client.id, client.seq_id, client.n_prompt, client.n_decoded, + LOG_TEE("\033[31mClient %3d, seq %3d/%3d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \nInput: %s\n\033[35mResponse: %s\033[0m\n\n", + client.id, client.seq_id, n_seq, client.n_prompt, client.n_decoded, (t_main_end - client.t_start_prompt) / 1e6, (double) (client.n_prompt + client.n_decoded) / (t_main_end - client.t_start_prompt) * 1e6, n_cache_miss, @@ -357,13 +395,21 @@ int main(int argc, char ** argv) { const auto t_main_end = ggml_time_us(); - LOG_TEE("\n\n"); + print_date_time(); + + LOG_TEE("\n%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system); + if (params.prompt_file.empty()) { + params.prompt_file = "used built-in defaults"; + } + LOG_TEE("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str()); + LOG_TEE("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str()); + LOG_TEE("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6); LOG_TEE("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6); LOG_TEE("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6); LOG_TEE("Cache misses: %6d\n", n_cache_miss); - LOG_TEE("\n\n"); + LOG_TEE("\n"); llama_print_timings(ctx); diff --git a/llama.cpp b/llama.cpp index 56413f3a2..1a7d37b8d 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8219,14 +8219,14 @@ void llama_print_timings(struct llama_context * ctx) { const llama_timings timings = llama_get_timings(ctx); LLAMA_LOG_INFO("\n"); - LLAMA_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms); - LLAMA_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", + LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms); + LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample); - LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", + LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval); - LLAMA_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", + LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval); - LLAMA_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms)); + LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms)); } void llama_reset_timings(struct llama_context * ctx) { diff --git a/prompts/LLM-questions.txt b/prompts/LLM-questions.txt new file mode 100644 index 000000000..fdf3d52f4 --- /dev/null +++ b/prompts/LLM-questions.txt @@ -0,0 +1,49 @@ +In the context of LLMs, what is "Attention"? +In the context of LLMs, what is a completion? +In the context of LLMs, what is a prompt? +In the context of LLMs, what is GELU? +In the context of LLMs, what is RELU? +In the context of LLMs, what is softmax? +In the context of LLMs, what is decoding? +In the context of LLMs, what is encoding? +In the context of LLMs, what is tokenizing? +In the context of LLMs, what is an embedding? +In the context of LLMs, what is quantization? +In the context of LLMs, what is a tensor? +In the context of LLMs, what is a sparse tensor? +In the context of LLMs, what is a vector? +In the context of LLMs, how is attention implemented? +In the context of LLMs, why is attention all you need? +In the context of LLMs, what is "RoPe" and what is it used for? +In the context of LLMs, what is "LoRA" and what is it used for? +In the context of LLMs, what are weights? +In the context of LLMs, what are biases? +In the context of LLMs, what are checkpoints? +In the context of LLMs, what is "perplexity"? +In the context of LLMs, what are models? +In the context of machine-learning, what is "catastrophic forgetting"? +In the context of machine-learning, what is "elastic weight consolidation (EWC)"? +In the context of neural nets, what is a hidden layer? +In the context of neural nets, what is a convolution? +In the context of neural nets, what is dropout? +In the context of neural nets, what is cross-entropy? +In the context of neural nets, what is over-fitting? +In the context of neural nets, what is under-fitting? +What is the difference between an interpreted computer language and a compiled computer language? +In the context of software development, what is a debugger? +When processing using a GPU, what is off-loading? +When processing using a GPU, what is a batch? +When processing using a GPU, what is a block? +When processing using a GPU, what is the difference between a batch and a block? +When processing using a GPU, what is a scratch tensor? +When processing using a GPU, what is a layer? +When processing using a GPU, what is a cache? +When processing using a GPU, what is unified memory? +When processing using a GPU, what is VRAM? +When processing using a GPU, what is a kernel? +When processing using a GPU, what is "metal"? +In the context of LLMs, what are "Zero-Shot", "One-Shot" and "Few-Shot" learning models? +In the context of LLMs, what is the "Transformer-model" architecture? +In the context of LLMs, what is "Multi-Head Attention"? +In the context of LLMs, what is "Self-Attention"? +In the context of transformer-model architectures, how do attention mechanisms use masks? \ No newline at end of file diff --git a/prompts/parallel-questions.txt b/prompts/parallel-questions.txt new file mode 100644 index 000000000..0ef9d8893 --- /dev/null +++ b/prompts/parallel-questions.txt @@ -0,0 +1,42 @@ +What do you know about Hobbits? +What is quantum field theory? +Why did the chicken cross the road? +Who is the president of the United States? +How do I run CMake on MacOS? +Do you agree that C++ is a really finicky language compared with Python3? +Is it a good idea to invest in technology? +Do you like Wagner's Ring? +Do you think this file input option is really neat? +What should we all do about climate change? +Is time-travel possible within the laws of current physics? +Is it like anything to be a bat? +Once the chicken has crossed the road, does it try to go back? +Who is the greatest of all musical composers? +What is art? +Is there life elsewhere in the universe? +What is intelligence? +What is the difference between knowledge and intelligence? +Will religion ever die? +Do we understand ourselves? +What is the best way to cook eggs? +If you cannot see things, on what basis do you evaluate them? +Explain the role of the np junction in photovoltaic cells? +Is professional sport a good or bad influence on human behaviour? +Is capital punishment immoral? +Should we care about other people? +Who are you? +Which sense would you surrender if you could? +Was Henry Ford a hero or a villain? +Do we need leaders? +What is nucleosynthesis? +Who is the greatest scientist of all time? +Who first observed what came to be known as the photovoltaic effect? +What is nuclear fusion and why does it release energy? +Can you know that you exist? +What is an exoplanet? +Do you like cream? +What is the difference? +Can I know that I exist while I'm dreaming that I'm Descartes? +Who said "I didn't know I thought that until I heard myself saying it"? +Does anything really matter? +Can you explain the unreasonable effectiveness of mathematics? \ No newline at end of file From 0c731ca4039ccff86ffab90eaae4ca98037c4496 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 6 Oct 2023 16:35:55 +0300 Subject: [PATCH 024/295] prompts : fix editorconfig checks after #3416 --- prompts/parallel-questions.txt | 85 +++++++++++++++++----------------- 1 file changed, 43 insertions(+), 42 deletions(-) diff --git a/prompts/parallel-questions.txt b/prompts/parallel-questions.txt index 0ef9d8893..c9fc7b8b4 100644 --- a/prompts/parallel-questions.txt +++ b/prompts/parallel-questions.txt @@ -1,42 +1,43 @@ -What do you know about Hobbits? -What is quantum field theory? -Why did the chicken cross the road? -Who is the president of the United States? -How do I run CMake on MacOS? -Do you agree that C++ is a really finicky language compared with Python3? -Is it a good idea to invest in technology? -Do you like Wagner's Ring? -Do you think this file input option is really neat? -What should we all do about climate change? -Is time-travel possible within the laws of current physics? -Is it like anything to be a bat? -Once the chicken has crossed the road, does it try to go back? -Who is the greatest of all musical composers? -What is art? -Is there life elsewhere in the universe? -What is intelligence? -What is the difference between knowledge and intelligence? -Will religion ever die? -Do we understand ourselves? -What is the best way to cook eggs? -If you cannot see things, on what basis do you evaluate them? -Explain the role of the np junction in photovoltaic cells? -Is professional sport a good or bad influence on human behaviour? -Is capital punishment immoral? -Should we care about other people? -Who are you? -Which sense would you surrender if you could? -Was Henry Ford a hero or a villain? -Do we need leaders? -What is nucleosynthesis? -Who is the greatest scientist of all time? -Who first observed what came to be known as the photovoltaic effect? -What is nuclear fusion and why does it release energy? -Can you know that you exist? -What is an exoplanet? -Do you like cream? -What is the difference? -Can I know that I exist while I'm dreaming that I'm Descartes? -Who said "I didn't know I thought that until I heard myself saying it"? -Does anything really matter? -Can you explain the unreasonable effectiveness of mathematics? \ No newline at end of file +What do you know about Hobbits? +What is quantum field theory? +Why did the chicken cross the road? +Who is the president of the United States? +How do I run CMake on MacOS? +Do you agree that C++ is a really finicky language compared with Python3? +Is it a good idea to invest in technology? +Do you like Wagner's Ring? +Do you think this file input option is really neat? +What should we all do about climate change? +Is time-travel possible within the laws of current physics? +Is it like anything to be a bat? +Once the chicken has crossed the road, does it try to go back? +Who is the greatest of all musical composers? +What is art? +Is there life elsewhere in the universe? +What is intelligence? +What is the difference between knowledge and intelligence? +Will religion ever die? +Do we understand ourselves? +What is the best way to cook eggs? +If you cannot see things, on what basis do you evaluate them? +Explain the role of the np junction in photovoltaic cells? +Is professional sport a good or bad influence on human behaviour? +Is capital punishment immoral? +Should we care about other people? +Who are you? +Which sense would you surrender if you could? +Was Henry Ford a hero or a villain? +Do we need leaders? +What is nucleosynthesis? +Who is the greatest scientist of all time? +Who first observed what came to be known as the photovoltaic effect? +What is nuclear fusion and why does it release energy? +Can you know that you exist? +What is an exoplanet? +Do you like cream? +What is the difference? +Can I know that I exist while I'm dreaming that I'm Descartes? +Who said "I didn't know I thought that until I heard myself saying it"? +Does anything really matter? +Can you explain the unreasonable effectiveness of mathematics? + From 9ca79d5cbbc8d43f2bff951404b6a40ff1ee3788 Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Fri, 6 Oct 2023 10:10:13 -0600 Subject: [PATCH 025/295] kv cache slot search improvements (#3493) * kv cache slot search improvements * Use n_ctx in kv find slot for consistency * Ensure kv cache head points to a valid slot in llama_decode internal * Add some comments to prevent dumb people (like me) from getting confused. --- llama.cpp | 41 +++++++++++++++++++++++++++++++++++------ 1 file changed, 35 insertions(+), 6 deletions(-) diff --git a/llama.cpp b/llama.cpp index 1a7d37b8d..79ea2b235 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1082,6 +1082,9 @@ struct llama_kv_cell { struct llama_kv_cache { bool has_shift = false; + // Note: The value of head isn't only used to optimize searching + // for a free KV slot. llama_decode_internal also uses it, so it + // cannot be freely changed after a slot has been allocated. uint32_t head = 0; uint32_t size = 0; @@ -1339,6 +1342,8 @@ static bool llama_kv_cache_init( // find an empty slot of size "n_tokens" in the cache // updates the cache head +// Note: On success, it's important that cache.head points +// to the first cell of the slot. static bool llama_kv_cache_find_slot( struct llama_kv_cache & cache, const struct llama_batch & batch) { @@ -1354,8 +1359,8 @@ static bool llama_kv_cache_find_slot( while (true) { if (cache.head + n_tokens > n_ctx) { + n_tested += n_ctx - cache.head; cache.head = 0; - n_tested += n_ctx - cache.head; continue; } @@ -1406,6 +1411,9 @@ static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); } + + // Searching for a free slot can start here since we know it will be empty. + cache.head = uint32_t(c0); } static void llama_kv_cache_seq_rm( @@ -1413,6 +1421,8 @@ static void llama_kv_cache_seq_rm( llama_seq_id seq_id, llama_pos p0, llama_pos p1) { + uint32_t new_head = cache.size; + if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); @@ -1421,9 +1431,13 @@ static void llama_kv_cache_seq_rm( cache.cells[i].seq_id.erase(seq_id); if (cache.cells[i].seq_id.empty()) { cache.cells[i].pos = -1; + if (new_head == cache.size) new_head = i; } } } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != cache.size) cache.head = new_head; } static void llama_kv_cache_seq_cp( @@ -1435,6 +1449,8 @@ static void llama_kv_cache_seq_cp( if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); + cache.head = 0; + for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.insert(seq_id_dst); @@ -1443,12 +1459,18 @@ static void llama_kv_cache_seq_cp( } static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { + uint32_t new_head = cache.size; + for (uint32_t i = 0; i < cache.size; ++i) { if (!cache.cells[i].has_seq_id(seq_id)) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); + if (new_head == cache.size) new_head = i; } } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != cache.size) cache.head = new_head; } static void llama_kv_cache_seq_shift( @@ -1457,6 +1479,8 @@ static void llama_kv_cache_seq_shift( llama_pos p0, llama_pos p1, llama_pos delta) { + uint32_t new_head = cache.size; + if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); @@ -1466,12 +1490,17 @@ static void llama_kv_cache_seq_shift( if (cache.cells[i].pos < 0) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); + if (new_head == cache.size) new_head = i; } else { cache.has_shift = true; cache.cells[i].delta = delta; } } } + + // If we freed up a slot, set head to it so searching can start there. + // Otherwise we just start the next search from the beginning. + cache.head = new_head != cache.size ? new_head : 0; } // @@ -4492,10 +4521,6 @@ static int llama_decode_internal( batch.seq_id = seq_id.data(); } - // we always start to search for a free slot from the start of the cache - // TODO: better strategies can be implemented - kv_self.head = 0; - if (!llama_kv_cache_find_slot(kv_self, batch)) { return 1; } @@ -4581,8 +4606,12 @@ static int llama_decode_internal( #endif // update the kv ring buffer - lctx.kv_self.head += n_tokens; lctx.kv_self.has_shift = false; + lctx.kv_self.head += n_tokens; + // Ensure kv cache head points to a valid index. + if (lctx.kv_self.head >= lctx.kv_self.size) { + lctx.kv_self.head = 0; + } #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) From cb13d73a720c42d1958bff79b6869d77b26b8cea Mon Sep 17 00:00:00 2001 From: Mihai Date: Fri, 6 Oct 2023 21:39:33 +0300 Subject: [PATCH 026/295] server : docs fix default values and add n_probs (#3506) --- examples/server/README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/examples/server/README.md b/examples/server/README.md index 9ee62d06a..8a079ae26 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -114,9 +114,9 @@ node index.js `top_k`: Limit the next token selection to the K most probable tokens (default: 40). - `top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9). + `top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95). - `n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: 128, -1 = infinity). + `n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity). `n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context. By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt. @@ -156,6 +156,8 @@ node index.js `logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced (default: []). + `n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0) + - **POST** `/tokenize`: Tokenize a given text. *Options:* From 1faaae8c2bdc4a21302e367e0754c3fe74a8113e Mon Sep 17 00:00:00 2001 From: BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com> Date: Fri, 6 Oct 2023 15:13:36 -0400 Subject: [PATCH 027/295] readme : update models, cuda + ppl instructions (#3510) --- README.md | 27 ++++++++++++++------------- 1 file changed, 14 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index e436818fa..056279562 100644 --- a/README.md +++ b/README.md @@ -95,6 +95,7 @@ as the main playground for developing new features for the [ggml](https://github - [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B) - [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187) - [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) +- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) **Bindings:** @@ -377,7 +378,7 @@ Building the program with BLAS support may lead to some performance improvements - #### cuBLAS - This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads). + This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads). - Using `make`: ```bash make LLAMA_CUBLAS=1 @@ -613,6 +614,18 @@ For more information, see [https://huggingface.co/docs/transformers/perplexity]( The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads. +#### How to run + +1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research +2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw` +3. Output: +``` +perplexity : calculating perplexity over 655 chunks +24.43 seconds per pass - ETA 4.45 hours +[1]4.5970,[2]5.1807,[3]6.0382,... +``` +And after 4.45 hours, you will have the final perplexity. + ### Interactive mode If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter. @@ -775,18 +788,6 @@ If your issue is with model generation quality, then please at least scan the fo - [Aligning language models to follow instructions](https://openai.com/research/instruction-following) - [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155) -#### How to run - -1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research -2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw` -3. Output: -``` -perplexity : calculating perplexity over 655 chunks -24.43 seconds per pass - ETA 4.45 hours -[1]4.5970,[2]5.1807,[3]6.0382,... -``` -And after 4.45 hours, you will have the final perplexity. - ### Android #### Building the Project using Android NDK From 3a716b4dae545c3db307594fbc509a95d3e21b6e Mon Sep 17 00:00:00 2001 From: goerch Date: Sat, 7 Oct 2023 06:57:01 +0200 Subject: [PATCH 028/295] Fix for #3454 (#3455) Fix: `sentencepiece` tokenizers with added tokens failed with an incorrect assertion --- llama.cpp | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/llama.cpp b/llama.cpp index 79ea2b235..89dc403b9 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8200,7 +8200,9 @@ int llama_token_to_piece(const struct llama_model * model, llama_token token, ch buf[0] = llama_token_to_byte(model->vocab, token); return 1; } else { - GGML_ASSERT(false); + // TODO: for now we accept all unsupported token types, + // suppressing them like CONTROL tokens. + // GGML_ASSERT(false); } break; } @@ -8216,7 +8218,9 @@ int llama_token_to_piece(const struct llama_model * model, llama_token token, ch } else if (llama_is_control_token(model->vocab, token)) { ; } else { - GGML_ASSERT(false); + // TODO: for now we accept all unsupported token types, + // suppressing them like CONTROL tokens. + // GGML_ASSERT(false); } break; } From 0e797c2fc571b866090f7d60ac7d39d8533593f2 Mon Sep 17 00:00:00 2001 From: Phillip Kravtsov Date: Sat, 7 Oct 2023 00:12:43 -0700 Subject: [PATCH 029/295] llm : support Adept Persimmon 8B (#3410) * Produces garbage output * wip: correct tensors up to RoPE * correct tensors thru RoPE * Correct outputs through masked & softmax'd KQ * fp32 works * Rename adept->persimmon * Produces correct outputs * clean up convert scripts * remove printing logic from ggml.c * remove prints from llama.cpp & fix merge * trivial cleanups * Add offload funcs * update conversion script to directly take adept artifacts rather than .saftensors file * Fix norm eps bug * Support sqr and concat on metal, persimmon-8b-q4 runs correctly * Small changes from review * Formatting changes * Minor changes to conversion script * Remove old script * Fix editorconfig formatting * Fix build * add overlooked offload code ggml-ci --- convert-persimmon-to-gguf.py | 130 +++++++++ ggml-metal.m | 54 ++++ ggml-metal.metal | 63 +++++ gguf-py/gguf/gguf.py | 161 +++++++---- llama.cpp | 522 +++++++++++++++++++++++++++++++++-- 5 files changed, 854 insertions(+), 76 deletions(-) create mode 100644 convert-persimmon-to-gguf.py diff --git a/convert-persimmon-to-gguf.py b/convert-persimmon-to-gguf.py new file mode 100644 index 000000000..e022ffe46 --- /dev/null +++ b/convert-persimmon-to-gguf.py @@ -0,0 +1,130 @@ +import torch +import os +from pprint import pprint +import sys +import argparse +from pathlib import Path +from sentencepiece import SentencePieceProcessor +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) +import gguf + +def _flatten_dict(dct, tensors, prefix=None): + assert isinstance(dct, dict) + for key in dct.keys(): + new_prefix = prefix + '.' + key if prefix is not None else key + if isinstance(dct[key], torch.Tensor): + tensors[new_prefix] = dct[key] + elif isinstance(dct[key], dict): + _flatten_dict(dct[key], tensors, new_prefix) + else: + raise ValueError(type(dct[key])) + return None + +def _get_sentencepiece_tokenizer_info(dir_model: Path): + tokenizer_path = dir_model / 'adept_vocab.model' + print('gguf: getting sentencepiece tokenizer from', tokenizer_path) + tokenizer = SentencePieceProcessor(str(tokenizer_path)) + print('gguf: adding tokens') + tokens: list[bytes] = [] + scores: list[float] = [] + toktypes: list[int] = [] + + for i in range(tokenizer.vocab_size()): + text: bytes + score: float + + piece = tokenizer.id_to_piece(i) + text = piece.encode("utf-8") + score = tokenizer.get_score(i) + + toktype = 1 + if tokenizer.is_unknown(i): + toktype = 2 + if tokenizer.is_control(i): + toktype = 3 + if tokenizer.is_unused(i): + toktype = 5 + if tokenizer.is_byte(i): + toktype = 6 + + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + pass + return tokens, scores, toktypes + +def main(): + parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file") + parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release") + parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory") + args = parser.parse_args() + sys.path.append(str(args.adept_inference_dir)) + persimmon_model = torch.load(args.ckpt_path) + hparams = persimmon_model['args'] + pprint(hparams) + tensors = {} + _flatten_dict(persimmon_model['model'], tensors, None) + + arch = gguf.MODEL_ARCH.PERSIMMON + gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch]) + + block_count = hparams.num_layers + head_count = hparams.num_attention_heads + head_count_kv = head_count + ctx_length = hparams.seq_length + hidden_size = hparams.hidden_size + + gguf_writer.add_name('persimmon-8b-chat') + gguf_writer.add_context_length(ctx_length) + gguf_writer.add_embedding_length(hidden_size) + gguf_writer.add_block_count(block_count) + gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size) + gguf_writer.add_rope_dimension_count(hidden_size // head_count) + gguf_writer.add_head_count(head_count) + gguf_writer.add_head_count_kv(head_count_kv) + gguf_writer.add_rope_freq_base(hparams.rotary_emb_base) + gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon) + + tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir) + gguf_writer.add_tokenizer_model('llama') + gguf_writer.add_token_list(tokens) + gguf_writer.add_token_scores(scores) + gguf_writer.add_token_types(toktypes) + gguf_writer.add_bos_token_id(71013) + gguf_writer.add_eos_token_id(71013) + + tensor_map = gguf.get_tensor_name_map(arch, block_count) + print(tensor_map) + for name in tensors.keys(): + data = tensors[name] + if name.endswith(".self_attention.rotary_emb.inv_freq"): + continue + old_dtype = data.dtype + # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?) + data = data.to(torch.float32).squeeze().numpy() + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: + print("Can not map tensor '" + name + "'") + sys.exit() + n_dims = len(data.shape) + print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + gguf_writer.add_tensor(new_name, data) + print("gguf: write header") + gguf_writer.write_header_to_file() + print("gguf: write metadata") + gguf_writer.write_kv_data_to_file() + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + + gguf_writer.close() + + print(f"gguf: model successfully exported to '{args.outfile}'") + print("") + + + +if __name__ == '__main__': + main() diff --git a/ggml-metal.m b/ggml-metal.m index 866fed434..c7fb89054 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -109,6 +109,8 @@ struct ggml_metal_context { GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f32); GGML_METAL_DECL_KERNEL(cpy_f16_f16); + GGML_METAL_DECL_KERNEL(concat); + GGML_METAL_DECL_KERNEL(sqr); #undef GGML_METAL_DECL_KERNEL }; @@ -300,6 +302,8 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f32); GGML_METAL_ADD_KERNEL(cpy_f16_f16); + GGML_METAL_ADD_KERNEL(concat); + GGML_METAL_ADD_KERNEL(sqr); #undef GGML_METAL_ADD_KERNEL } @@ -375,6 +379,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { GGML_METAL_DEL_KERNEL(cpy_f32_f16); GGML_METAL_DEL_KERNEL(cpy_f32_f32); GGML_METAL_DEL_KERNEL(cpy_f16_f16); + GGML_METAL_DEL_KERNEL(concat); + GGML_METAL_DEL_KERNEL(sqr); #undef GGML_METAL_DEL_KERNEL @@ -766,6 +772,43 @@ void ggml_metal_graph_compute( { // noop } break; + case GGML_OP_CONCAT: + { + + int64_t nb = ne00; + [encoder setComputePipelineState:ctx->pipeline_concat]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; + [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; + + const int nth = MIN(1024, ne0); + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; case GGML_OP_ADD: { GGML_ASSERT(ggml_is_contiguous(src0)); @@ -903,6 +946,17 @@ void ggml_metal_graph_compute( GGML_ASSERT(false); } } break; + case GGML_OP_SQR: + { + GGML_ASSERT(ggml_is_contiguous(src0)); + + [encoder setComputePipelineState:ctx->pipeline_sqr]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; case GGML_OP_SOFT_MAX: { const int nth = MIN(32, ne00); diff --git a/ggml-metal.metal b/ggml-metal.metal index 5a860098f..9bd94e82b 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -132,6 +132,13 @@ kernel void kernel_relu( dst[tpig] = max(0.0f, src0[tpig]); } +kernel void kernel_sqr( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * src0[tpig]; +} + constant float GELU_COEF_A = 0.044715f; constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; @@ -1098,6 +1105,62 @@ kernel void kernel_cpy_f32_f32( } } +kernel void kernel_concat( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03 * nb03 + i02 * nb02 + i01 * nb01 + tpitg.x*nb00; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + if (i02 < ne02) { + ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0]; + src0_ptr += ntg.x*nb00; + } else { + ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0]; + src1_ptr += ntg.x*nb10; + } + dst_ptr += ntg.x*nb0; + } +} + //============================================ k-quants ====================================================== #ifndef QK_K diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index a2c570d7e..fb677a6ed 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -85,6 +85,7 @@ class MODEL_ARCH(IntEnum): GPTNEOX : int = auto() MPT : int = auto() STARCODER : int = auto() + PERSIMMON : int = auto() REFACT : int = auto() BERT : int = auto() @@ -108,6 +109,8 @@ class MODEL_TENSOR(IntEnum): FFN_DOWN : int = auto() FFN_UP : int = auto() FFN_NORM : int = auto() + ATTN_Q_NORM : int = auto() + ATTN_K_NORM : int = auto() MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { @@ -119,6 +122,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.GPTNEOX: "gptneox", MODEL_ARCH.MPT: "mpt", MODEL_ARCH.STARCODER: "starcoder", + MODEL_ARCH.PERSIMMON: "persimmon", MODEL_ARCH.REFACT: "refact", MODEL_ARCH.BERT: "bert", } @@ -130,7 +134,6 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", @@ -139,6 +142,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", + MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", @@ -249,6 +254,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.PERSIMMON: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], MODEL_ARCH.REFACT: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -279,6 +298,9 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.PERSIMMON: [ + MODEL_TENSOR.ROPE_FREQS, + ] } @@ -286,12 +308,13 @@ class TensorNameMap: mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( - "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt refact - "transformer.word_embeddings", # falcon - "model.embed_tokens", # llama-hf - "tok_embeddings", # llama-pth - "embeddings.word_embeddings", # bert + "gpt_neox.embed_in", # gptneox + "transformer.wte", # gpt2 gpt-j mpt refact + "transformer.word_embeddings", # falcon + "model.embed_tokens", # llama-hf + "tok_embeddings", # llama-pth + "embeddings.word_embeddings", # bert + "language_model.embedding.word_embeddings", # persimmon ), # Token type embeddings @@ -307,20 +330,22 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( - "embed_out", # gptneox - "lm_head", # gpt2 gpt-j mpt falcon llama-hf baichuan - "output", # llama-pth + "embed_out", # gptneox + "lm_head", # gpt2 mpt falcon llama-hf baichuan + "output", # llama-pth + "word_embeddings_for_head", # persimmon ), # Output norm MODEL_TENSOR.OUTPUT_NORM: ( - "gpt_neox.final_layer_norm", # gptneox - "transformer.ln_f", # gpt2 gpt-j falcon - "model.norm", # llama-hf baichuan - "norm", # llama-pth - "embeddings.LayerNorm", # bert - "transformer.norm_f", # mpt - "ln_f", # refact + "gpt_neox.final_layer_norm", # gptneox + "transformer.ln_f", # gpt2 gpt-j falcon + "model.norm", # llama-hf baichuan + "norm", # llama-pth + "embeddings.LayerNorm", # bert + "transformer.norm_f", # mpt + "ln_f", # refact + "language_model.encoder.final_layernorm", # persimmon ), # Rope frequencies @@ -332,14 +357,15 @@ class TensorNameMap: block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { # Attention norm MODEL_TENSOR.ATTN_NORM: ( - "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact - "transformer.blocks.{bid}.norm_1", # mpt - "transformer.h.{bid}.input_layernorm", # falcon7b - "transformer.h.{bid}.ln_mlp", # falcon40b - "model.layers.{bid}.input_layernorm", # llama-hf - "layers.{bid}.attention_norm", # llama-pth - "encoder.layer.{bid}.attention.output.LayerNorm", # bert + "gpt_neox.layers.{bid}.input_layernorm", # gptneox + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact + "transformer.blocks.{bid}.norm_1", # mpt + "transformer.h.{bid}.input_layernorm", # falcon7b + "transformer.h.{bid}.ln_mlp", # falcon40b + "model.layers.{bid}.input_layernorm", # llama-hf + "layers.{bid}.attention_norm", # llama-pth + "encoder.layer.{bid}.attention.output.LayerNorm", # bert + "language_model.encoder.layers.{bid}.input_layernorm", # persimmon ), # Attention norm 2 @@ -349,10 +375,11 @@ class TensorNameMap: # Attention query-key-value MODEL_TENSOR.ATTN_QKV: ( - "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox - "transformer.h.{bid}.attn.c_attn", # gpt2 - "transformer.blocks.{bid}.attn.Wqkv", # mpt - "transformer.h.{bid}.self_attention.query_key_value", # falcon + "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox + "transformer.h.{bid}.attn.c_attn", # gpt2 + "transformer.blocks.{bid}.attn.Wqkv", # mpt + "transformer.h.{bid}.self_attention.query_key_value", # falcon + "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon ), # Attention query @@ -381,14 +408,15 @@ class TensorNameMap: # Attention output MODEL_TENSOR.ATTN_OUT: ( - "gpt_neox.layers.{bid}.attention.dense", # gptneox - "transformer.h.{bid}.attn.c_proj", # gpt2 refact - "transformer.blocks.{bid}.attn.out_proj", # mpt - "transformer.h.{bid}.self_attention.dense", # falcon - "model.layers.{bid}.self_attn.o_proj", # llama-hf - "layers.{bid}.attention.wo", # llama-pth - "encoder.layer.{bid}.attention.output.dense", # bert - "transformer.h.{bid}.attn.out_proj", # gpt-j + "gpt_neox.layers.{bid}.attention.dense", # gptneox + "transformer.h.{bid}.attn.c_proj", # gpt2 refact + "transformer.blocks.{bid}.attn.out_proj", # mpt + "transformer.h.{bid}.self_attention.dense", # falcon + "model.layers.{bid}.self_attn.o_proj", # llama-hf + "layers.{bid}.attention.wo", # llama-pth + "encoder.layer.{bid}.attention.output.dense", # bert + "transformer.h.{bid}.attn.out_proj", # gpt-j + "language_model.encoder.layers.{bid}.self_attention.dense" # persimmon ), # Rotary embeddings @@ -399,24 +427,26 @@ class TensorNameMap: # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( - "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 refact - "transformer.blocks.{bid}.norm_2", # mpt - "model.layers.{bid}.post_attention_layernorm", # llama-hf - "layers.{bid}.ffn_norm", # llama-pth - "encoder.layer.{bid}.output.LayerNorm", # bert + "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox + "transformer.h.{bid}.ln_2", # gpt2 refact + "transformer.blocks.{bid}.norm_2", # mpt + "model.layers.{bid}.post_attention_layernorm", # llama-hf + "layers.{bid}.ffn_norm", # llama-pth + "encoder.layer.{bid}.output.LayerNorm", # bert + "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon ), # Feed-forward up MODEL_TENSOR.FFN_UP: ( - "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox - "transformer.h.{bid}.mlp.c_fc", # gpt2 - "transformer.blocks.{bid}.ffn.up_proj", # mpt - "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon - "model.layers.{bid}.mlp.up_proj", # llama-hf refact - "layers.{bid}.feed_forward.w3", # llama-pth - "encoder.layer.{bid}.intermediate.dense", # bert - "transformer.h.{bid}.mlp.fc_in", # gpt-j + "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox + "transformer.h.{bid}.mlp.c_fc", # gpt2 + "transformer.blocks.{bid}.ffn.up_proj", # mpt + "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon + "model.layers.{bid}.mlp.up_proj", # llama-hf refact + "layers.{bid}.feed_forward.w3", # llama-pth + "encoder.layer.{bid}.intermediate.dense", # bert + "transformer.h.{bid}.mlp.fc_in", # gpt-j + "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon ), # Feed-forward gate @@ -427,15 +457,28 @@ class TensorNameMap: # Feed-forward down MODEL_TENSOR.FFN_DOWN: ( - "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox - "transformer.h.{bid}.mlp.c_proj", # gpt2 refact - "transformer.blocks.{bid}.ffn.down_proj", # mpt - "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon - "model.layers.{bid}.mlp.down_proj", # llama-hf - "layers.{bid}.feed_forward.w2", # llama-pth - "encoder.layer.{bid}.output.dense", # bert - "transformer.h.{bid}.mlp.fc_out", # gpt-j + "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox + "transformer.h.{bid}.mlp.c_proj", # gpt2 refact + "transformer.blocks.{bid}.ffn.down_proj", # mpt + "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon + "model.layers.{bid}.mlp.down_proj", # llama-hf + "layers.{bid}.feed_forward.w2", # llama-pth + "encoder.layer.{bid}.output.dense", # bert + "transformer.h.{bid}.mlp.fc_out", # gpt-j + "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon ), + + MODEL_TENSOR.ATTN_Q_NORM: ( + "language_model.encoder.layers.{bid}.self_attention.q_layernorm", + ), + + MODEL_TENSOR.ATTN_K_NORM: ( + "language_model.encoder.layers.{bid}.self_attention.k_layernorm", + ), + + MODEL_TENSOR.ROPE_FREQS: ( + "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon + ) } mapping: dict[str, tuple[MODEL_TENSOR, str]] diff --git a/llama.cpp b/llama.cpp index 89dc403b9..227cd9d03 100644 --- a/llama.cpp +++ b/llama.cpp @@ -186,6 +186,7 @@ enum llm_arch { LLM_ARCH_GPTNEOX, LLM_ARCH_MPT, LLM_ARCH_STARCODER, + LLM_ARCH_PERSIMMON, LLM_ARCH_REFACT, LLM_ARCH_UNKNOWN, }; @@ -199,6 +200,7 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_MPT, "mpt" }, { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, + { LLM_ARCH_PERSIMMON, "persimmon" }, { LLM_ARCH_REFACT, "refact" }, }; @@ -318,6 +320,8 @@ enum llm_tensor { LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, LLM_TENSOR_FFN_NORM, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, }; static std::map> LLM_TENSOR_NAMES = { @@ -399,6 +403,23 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_PERSIMMON, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd"}, + { LLM_TENSOR_OUTPUT_NORM, "output_norm"}, + { LLM_TENSOR_OUTPUT, "output"}, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"}, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"}, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"}, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"}, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"}, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"}, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"}, + }, + }, { LLM_ARCH_MPT, { @@ -959,6 +980,7 @@ enum e_model { MODEL_1B, MODEL_3B, MODEL_7B, + MODEL_8B, MODEL_13B, MODEL_15B, MODEL_30B, @@ -1041,6 +1063,10 @@ struct llama_layer { struct ggml_tensor * attn_norm_b; struct ggml_tensor * attn_norm_2; struct ggml_tensor * attn_norm_2_b; + struct ggml_tensor * attn_q_norm; + struct ggml_tensor * attn_q_norm_b; + struct ggml_tensor * attn_k_norm; + struct ggml_tensor * attn_k_norm_b; // attention struct ggml_tensor * wq; @@ -1901,6 +1927,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_1B: return "1B"; case MODEL_3B: return "3B"; case MODEL_7B: return "7B"; + case MODEL_8B: return "8B"; case MODEL_13B: return "13B"; case MODEL_15B: return "15B"; case MODEL_30B: return "30B"; @@ -2013,6 +2040,14 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_PERSIMMON: + { + GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); + switch (hparams.n_layer) { + case 36: model.type = e_model::MODEL_8B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } case LLM_ARCH_REFACT: { GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); @@ -2549,6 +2584,67 @@ static void llm_load_tensors( } } } break; + case LLM_ARCH_PERSIMMON: + { + model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + + { + ggml_backend backend_norm; + ggml_backend backend_output; + + if (n_gpu_layers > int(n_layer)) { + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 + + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + vram_weights += ggml_nbytes(model.output_norm_b); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } + } + + const uint32_t n_ff = hparams.n_ff; + const int i_gpu_start = n_layer - n_gpu_layers; + model.layers.resize(n_layer); + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; + auto & layer = model.layers[i]; + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); + layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split); + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split); + layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); + layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split); + layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split); + layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); + layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend); + layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend); + layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend); + layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -2658,8 +2754,8 @@ static bool llama_model_load( } static struct ggml_cgraph * llm_build_llama( - llama_context & lctx, - const llama_batch & batch) { + llama_context & lctx, + const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; @@ -2697,11 +2793,9 @@ static struct ggml_cgraph * llm_build_llama( struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, - /*.no_alloc =*/ false, + /*.no_alloc =*/ true, }; - params.no_alloc = true; - struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); @@ -3085,11 +3179,9 @@ static struct ggml_cgraph * llm_build_baichaun( struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, - /*.no_alloc =*/ false, + /*.no_alloc =*/ true, }; - params.no_alloc = true; - struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); @@ -3486,11 +3578,9 @@ static struct ggml_cgraph * llm_build_refact( struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, - /*.no_alloc =*/ false, + /*.no_alloc =*/ true, }; - params.no_alloc = true; - struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); @@ -3840,11 +3930,9 @@ static struct ggml_cgraph * llm_build_falcon( struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, - /*.no_alloc =*/ false, + /*.no_alloc =*/ true, }; - params.no_alloc = true; - struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); @@ -4200,11 +4288,9 @@ static struct ggml_cgraph * llm_build_starcoder( struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, - /*.no_alloc =*/ false, + /*.no_alloc =*/ true, }; - params.no_alloc = true; - struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); @@ -4415,6 +4501,404 @@ static struct ggml_cgraph * llm_build_starcoder( return gf; } + +static struct ggml_cgraph * llm_build_persimmon( + llama_context & lctx, + const llama_batch & batch) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const auto & cparams = lctx.cparams; + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_head = hparams.n_head; + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + const size_t n_rot = n_embd_head / 2; + + const float freq_base = cparams.rope_freq_base; + const float freq_scale = cparams.rope_freq_scale; + const float norm_eps = hparams.f_norm_eps; + + const int n_gpu_layers = model.n_gpu_layers; + + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift; + + auto & buf_compute = lctx.buf_compute; + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ true, + }; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); + } + ggml_set_name(inp_tokens, "inp_tokens"); + inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + ggml_allocr_alloc(lctx.alloc, inpL); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); + } + } + const int i_gpu_start = n_layer - n_gpu_layers; + (void) i_gpu_start; + offload_func_t offload_func_nr = llama_nop; // nr = non-repeating + offload_func_t offload_func_kq = llama_nop; + offload_func_t offload_func_v = llama_nop; + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head))); + } + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + offload_func_kq(KQ_mask); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + offload_func_kq(KQ_pos); + ggml_set_name(KQ_pos, "KQ_pos"); + ggml_allocr_alloc(lctx.alloc, KQ_pos); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < n_tokens; ++i) { + data[i] = batch.pos[i]; + } + } + if (do_rope_shift) { + struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + offload_func_kq(K_shift); + ggml_set_name(K_shift, "K_shift"); + ggml_allocr_alloc(lctx.alloc, K_shift); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) K_shift->data; + for (int i = 0; i < n_ctx; ++i) { + data[i] = kv_self.cells[i].delta; + } + } + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * tmp = + // we rotate only the first n_rot dimensions. + ggml_rope_custom_inplace(ctx0, + ggml_view_3d(ctx0, kv_self.k, + n_rot, n_head, n_ctx, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*(n_embd_head*n_ctx*il) + ), + K_shift, n_rot, 2, 0, freq_base, freq_scale); + offload_func_kq(tmp); + ggml_build_forward_expand(gf, tmp); + } + } + for (int il=0; il < n_layer; ++il) { + struct ggml_tensor * residual = inpL; + offload_func_t offload_func = llama_nop; + { + cur = ggml_norm(ctx0, inpL, norm_eps); + offload_func(cur); + cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); + offload_func(cur); + cur = ggml_add(ctx0, cur, model.layers[il].attn_norm_b); + offload_func(cur); + ggml_format_name(cur, "input_layernorm_%d", il); + } + // self attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + offload_func_kq(cur); + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + offload_func_kq(cur); + + // split qkv + GGML_ASSERT(n_head_kv == n_head); + ggml_set_name(cur, format("qkv_%d", il).c_str()); + struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens); + offload_func_kq(tmpqkv); + struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2)); + offload_func_kq(tmpqkv_perm); + ggml_format_name(tmpqkv_perm, "tmpqkv_perm_%d", il); + struct ggml_tensor * tmpq = ggml_view_3d( + ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, + ggml_element_size(tmpqkv_perm) * n_embd_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, + 0 + ); + offload_func_kq(tmpq); + struct ggml_tensor * tmpk = ggml_view_3d( + ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, + ggml_element_size(tmpqkv_perm) * n_embd_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens + ); + offload_func_kq(tmpk); + // Q/K Layernorm + tmpq = ggml_norm(ctx0, tmpq, norm_eps); + offload_func_kq(tmpq); + tmpq = ggml_mul(ctx0, tmpq, model.layers[il].attn_q_norm); + offload_func_kq(tmpq); + tmpq = ggml_add(ctx0, tmpq, model.layers[il].attn_q_norm_b); + offload_func_kq(tmpq); + + tmpk = ggml_norm(ctx0, tmpk, norm_eps); + offload_func_v(tmpk); + tmpk = ggml_mul(ctx0, tmpk, model.layers[il].attn_k_norm); + offload_func_v(tmpk); + tmpk = ggml_add(ctx0, tmpk, model.layers[il].attn_k_norm_b); + offload_func_v(tmpk); + + // RoPE the first n_rot of q/k, pass the other half, and concat. + struct ggml_tensor * qrot = ggml_view_3d( + ctx0, tmpq, n_rot, n_head, n_tokens, + ggml_element_size(tmpq) * n_embd_head, + ggml_element_size(tmpq) * n_embd_head * n_head, + 0 + ); + offload_func_kq(qrot); + ggml_format_name(qrot, "qrot_%d", il); + struct ggml_tensor * krot = ggml_view_3d( + ctx0, tmpk, n_rot, n_head, n_tokens, + ggml_element_size(tmpk) * n_embd_head, + ggml_element_size(tmpk) * n_embd_head * n_head, + 0 + ); + offload_func_kq(krot); + ggml_format_name(krot, "krot_%d", il); + + // get the second half of tmpq, e.g tmpq[n_rot:, :, :] + struct ggml_tensor * qpass = ggml_view_3d( + ctx0, tmpq, n_rot, n_head, n_tokens, + ggml_element_size(tmpq) * n_embd_head, + ggml_element_size(tmpq) * n_embd_head * n_head, + ggml_element_size(tmpq) * n_rot + ); + offload_func_kq(qpass); + ggml_format_name(qpass, "qpass_%d", il); + struct ggml_tensor * kpass = ggml_view_3d( + ctx0, tmpk, n_rot, n_head, n_tokens, + ggml_element_size(tmpk) * n_embd_head, + ggml_element_size(tmpk) * n_embd_head * n_head, + ggml_element_size(tmpk) * n_rot + ); + offload_func_kq(kpass); + ggml_format_name(kpass, "kpass_%d", il); + + struct ggml_tensor * qrotated = ggml_rope_custom( + ctx0, qrot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale + ); + offload_func_kq(qrotated); + struct ggml_tensor * krotated = ggml_rope_custom( + ctx0, krot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale + ); + offload_func_kq(krotated); + // ggml currently only supports concatenation on dim=2 + // so we need to permute qrot, qpass, concat, then permute back. + qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3)); + offload_func_kq(qrotated); + krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3)); + offload_func_kq(krotated); + + qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3)); + offload_func_kq(qpass); + kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3)); + offload_func_kq(kpass); + + struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass); + offload_func_kq(Qcur); + struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass); + offload_func_kq(Kcur); + + struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 1, 2, 0, 3)); + offload_func_kq(Q); + + Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3)); + offload_func_kq(Kcur); + { + struct ggml_tensor * tmpv = ggml_view_3d( + ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, + ggml_element_size(tmpqkv_perm) * n_embd_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2 + ); + offload_func_v(tmpv); + // store K, V in cache + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); + offload_func_v(Vcur); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d( + ctx0, kv_self.k, n_tokens*n_embd_gqa, + (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head) + ); + offload_func_kq(k); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + offload_func_v(v); + ggml_set_name(v, "v"); + + // important: storing RoPE-ed version of K in the KV cache! + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + + offload_func_kq(K); + ggml_format_name(K, "K_%d", il); + + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + offload_func_kq(KQ); + ggml_set_name(KQ, "KQ"); + + struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); + offload_func_kq(KQ_scaled); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); + offload_func_kq(KQ_masked); + ggml_set_name(KQ_masked, "KQ_masked"); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + offload_func_kq(KQ_soft_max); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + offload_func_v(V); + ggml_set_name(V, "V"); + + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + offload_func_v(KQV); + ggml_set_name(KQV, "KQV"); + + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + offload_func_v(KQV_merged); + ggml_set_name(KQV_merged, "KQV_merged"); + + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + offload_func_v(cur); + ggml_set_name(cur, "KQV_merged_contiguous"); + + cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); + offload_func(cur); + cur = ggml_add(ctx0, cur, model.layers[il].bo); + offload_func(cur); + ggml_set_name(cur, "result_wo"); + } + + struct ggml_tensor * inpFF = ggml_add(ctx0, residual, cur); + offload_func(inpFF); + ggml_set_name(inpFF, "inpFF"); + { + // MLP + { + // Norm + cur = ggml_norm(ctx0, inpFF, norm_eps); + offload_func(cur); + cur = ggml_add(ctx0, + ggml_mul(ctx0, cur, model.layers[il].ffn_norm), + model.layers[il].ffn_norm_b + ); + ggml_set_name(cur, "ffn_norm"); + offload_func(cur); + } + cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur); + offload_func(cur); + + cur = ggml_add(ctx0, cur, model.layers[il].b3); + offload_func(cur); + ggml_set_name(cur, "result_ffn_up"); + + cur = ggml_sqr(ctx0, ggml_relu(ctx0, cur)); + ggml_set_name(cur, "result_ffn_act"); + offload_func(cur); + offload_func(cur->src[0]); + + cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); + offload_func(cur); + cur = ggml_add(ctx0, + cur, + model.layers[il].b2); + offload_func(cur); + ggml_set_name(cur, "outFF"); + } + cur = ggml_add(ctx0, cur, inpFF); + offload_func(cur); + ggml_set_name(cur, "inpFF_+_outFF"); + inpL = cur; + } + cur = inpL; + { + cur = ggml_norm(ctx0, cur, norm_eps); + offload_func_nr(cur); + cur = ggml_mul(ctx0, cur, model.output_norm); + offload_func_nr(cur); + + cur = ggml_add(ctx0, cur, model.output_norm_b); + // offload_func_nr(cur); + + ggml_set_name(cur, "result_norm"); + } + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + ggml_build_forward_expand(gf, cur); + ggml_free(ctx0); + return gf; +} + static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_batch & batch) { @@ -4439,6 +4923,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm_build_starcoder(lctx, batch); } break; + case LLM_ARCH_PERSIMMON: + { + result = llm_build_persimmon(lctx, batch); + } case LLM_ARCH_REFACT: { result = llm_build_refact(lctx, batch); From c26765a0a148b47e5b541df32438c3ad2a0a8314 Mon Sep 17 00:00:00 2001 From: Jhen-Jie Hong Date: Sat, 7 Oct 2023 03:40:27 -0500 Subject: [PATCH 030/295] metal : support default.metallib load & reuse code for swift package (#3522) * metal : support load default.metallib & reuse code for swift package * metal : use SWIFT_PACKAGE def instead of define GGML_SWIFT --- .gitignore | 1 + Package.swift | 8 +++++-- ggml-metal.m | 66 +++++++++++++++++++++------------------------------ 3 files changed, 34 insertions(+), 41 deletions(-) diff --git a/.gitignore b/.gitignore index 4d5767d22..420e0d6d0 100644 --- a/.gitignore +++ b/.gitignore @@ -10,6 +10,7 @@ *.gcno *.gcda *.dot +*.metallib .DS_Store .build/ .cache/ diff --git a/Package.swift b/Package.swift index 3ee3b2a20..1ea414cc1 100644 --- a/Package.swift +++ b/Package.swift @@ -10,15 +10,18 @@ let platforms: [SupportedPlatform]? = [ .tvOS(.v14) ] let exclude: [String] = [] -let additionalSources: [String] = ["ggml-metal.m", "ggml-metal.metal"] +let resources: [Resource] = [ + .process("ggml-metal.metal") +] +let additionalSources: [String] = ["ggml-metal.m"] let additionalSettings: [CSetting] = [ .unsafeFlags(["-fno-objc-arc"]), - .define("GGML_SWIFT"), .define("GGML_USE_METAL") ] #else let platforms: [SupportedPlatform]? = nil let exclude: [String] = ["ggml-metal.metal"] +let resources: [Resource] = [] let additionalSources: [String] = [] let additionalSettings: [CSetting] = [] #endif @@ -40,6 +43,7 @@ let package = Package( "ggml-alloc.c", "k_quants.c", ] + additionalSources, + resources: resources, publicHeadersPath: "spm-headers", cSettings: [ .unsafeFlags(["-Wno-shorten-64-to-32"]), diff --git a/ggml-metal.m b/ggml-metal.m index c7fb89054..f8fa05dd9 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -185,56 +185,44 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT); -#ifdef GGML_SWIFT - // load the default.metallib file + // load library { - NSError * error = nil; - - NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; - NSString * llamaBundlePath = [bundle pathForResource:@"llama_llama" ofType:@"bundle"]; - NSBundle * llamaBundle = [NSBundle bundleWithPath:llamaBundlePath]; - NSString * libPath = [llamaBundle pathForResource:@"default" ofType:@"metallib"]; - NSURL * libURL = [NSURL fileURLWithPath:libPath]; - - // Load the metallib file into a Metal library - ctx->library = [ctx->device newLibraryWithURL:libURL error:&error]; - - if (error) { - GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); - return NULL; - } - } + NSBundle * bundle = nil; +#ifdef SWIFT_PACKAGE + bundle = SWIFTPM_MODULE_BUNDLE; #else - UNUSED(msl_library_source); - - // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource - { + bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; +#endif NSError * error = nil; + NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"]; + if (libPath != nil) { + NSURL * libURL = [NSURL fileURLWithPath:libPath]; + GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]); + ctx->library = [ctx->device newLibraryWithURL:libURL error:&error]; + } else { + GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__); - //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"]; - NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; - NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; - GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path UTF8String]); - - NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; - if (error) { - GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); - return NULL; - } + NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; + GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]); + NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error]; + if (error) { + GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); + return NULL; + } + MTLCompileOptions* options = nil; #ifdef GGML_QKK_64 - MTLCompileOptions* options = [MTLCompileOptions new]; - options.preprocessorMacros = @{ @"QK_K" : @(64) }; - ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error]; -#else - ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error]; + options = [MTLCompileOptions new]; + options.preprocessorMacros = @{ @"QK_K" : @(64) }; #endif + ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error]; + } + if (error) { GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } -#endif // load kernels { @@ -437,7 +425,7 @@ static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; - //metal_printf("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name); + //GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name); if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { *offs = (size_t) ioffs; From f1782c68de13b64bb5283fc2038f584e47be9fd2 Mon Sep 17 00:00:00 2001 From: cebtenzzre Date: Sat, 7 Oct 2023 04:41:52 -0400 Subject: [PATCH 031/295] quantize : fail fast on write errors (#3521) --- llama.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/llama.cpp b/llama.cpp index 227cd9d03..d10656bb8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -7194,6 +7194,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } std::ofstream fout(fname_out, std::ios::binary); + fout.exceptions(std::ofstream::failbit); // fail fast on write errors const size_t meta_size = gguf_get_meta_size(ctx_out); From c47066d833c6c112e0d23342aa62c3250dd33c81 Mon Sep 17 00:00:00 2001 From: Tom C Date: Sat, 7 Oct 2023 02:56:15 -0700 Subject: [PATCH 032/295] py : change version of numpy requirement to 1.24.4 (#3515) Co-authored-by: Lyjia --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 7dc51edb1..81c909d0b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,3 @@ -numpy==1.24 +numpy==1.24.4 sentencepiece==0.1.98 gguf>=0.1.0 From 4d0383321184aadf91968d9e3c6a45286ed2473b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?M=2E=20Yusuf=20Sar=C4=B1g=C3=B6z?= Date: Sat, 7 Oct 2023 22:14:10 +0300 Subject: [PATCH 033/295] gguf.py : fix CI for publishing GGUF package (#3532) * Fix CI for publishing GGUF package * Bump version * fix * bump version * bump version * bump version --- .github/workflows/gguf-publish.yml | 3 ++- gguf-py/README.md | 1 - gguf-py/pyproject.toml | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/.github/workflows/gguf-publish.yml b/.github/workflows/gguf-publish.yml index e61bfc6c3..57db17512 100644 --- a/.github/workflows/gguf-publish.yml +++ b/.github/workflows/gguf-publish.yml @@ -36,8 +36,9 @@ jobs: poetry install - name: Build package - run: poetry build + run: cd gguf-py && poetry build - name: Publish package uses: pypa/gh-action-pypi-publish@release/v1 with: password: ${{ secrets.PYPI_API_TOKEN }} + packages-dir: gguf-py/dist diff --git a/gguf-py/README.md b/gguf-py/README.md index ffe25c495..a28d8c57a 100644 --- a/gguf-py/README.md +++ b/gguf-py/README.md @@ -69,4 +69,3 @@ python -m twine upload dist/* ## TODO - [ ] Add tests - [ ] Include conversion scripts as command line entry points in this package. -- Add CI workflow for releasing the package. diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 400607ce1..07a7ab4dd 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.4.0" +version = "0.4.4" description = "Write ML models in GGUF for GGML" authors = ["GGML "] packages = [ From a16e89cec83b4bd5f6af8f1ce1400f94c12356f9 Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Sat, 7 Oct 2023 15:31:41 -0600 Subject: [PATCH 034/295] Fix trying to strip newline from empty prompt and cfg prompt file content (#3534) --- common/common.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index 60b00b5fb..0f55c33a7 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -170,7 +170,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { // store the external file name in params params.prompt_file = argv[i]; std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); - if (params.prompt.back() == '\n') { + if (!params.prompt.empty() && params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-n" || arg == "--n-predict") { @@ -295,7 +295,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.cfg_negative_prompt)); - if (params.cfg_negative_prompt.back() == '\n') { + if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') { params.cfg_negative_prompt.pop_back(); } } else if (arg == "--cfg-scale") { From 63d3b06a4318329f92b078e8aa0be7ab6e9f871f Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Sat, 7 Oct 2023 23:22:17 -0600 Subject: [PATCH 035/295] llama : fix missing break in Persimmon arch case statements (#3535) --- llama.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/llama.cpp b/llama.cpp index d10656bb8..a4312ab72 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2047,7 +2047,7 @@ static void llm_load_hparams( case 36: model.type = e_model::MODEL_8B; break; default: model.type = e_model::MODEL_UNKNOWN; } - } + } break; case LLM_ARCH_REFACT: { GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); @@ -4926,7 +4926,7 @@ static struct ggml_cgraph * llama_build_graph( case LLM_ARCH_PERSIMMON: { result = llm_build_persimmon(lctx, batch); - } + } break; case LLM_ARCH_REFACT: { result = llm_build_refact(lctx, batch); From b0ec5218c3d24755786b80ecce9cf4ffc07583f8 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 8 Oct 2023 10:01:53 +0300 Subject: [PATCH 036/295] metal : support MTLGPUFamily < Apple7, formatting, style (#3524) * metal : improve decoding speed for batches of 2-16 * metal : rename kernels mul_mat_ to mul_mv_ * metal : indentations * minor * metal : print more GPU info + disable mul_mm for MTLGPUFamiliy < Apple7 --- ggml-metal.m | 202 +++++++++++++++++++++++++++++------------------ ggml-metal.metal | 92 ++++++++++++--------- 2 files changed, 176 insertions(+), 118 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index f8fa05dd9..57c238dda 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -81,18 +81,18 @@ struct ggml_metal_context { GGML_METAL_DECL_KERNEL(get_rows_q6_K); GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(norm); - GGML_METAL_DECL_KERNEL(mul_mat_f32_f32); - GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); - GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row); - GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4); - GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32); + GGML_METAL_DECL_KERNEL(mul_mv_f32_f32); + GGML_METAL_DECL_KERNEL(mul_mv_f16_f32); + GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row); + GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4); + GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32); + GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32); + GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32); + GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32); + GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32); + GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32); + GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32); + GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_f32_f32); GGML_METAL_DECL_KERNEL(mul_mm_f16_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32); @@ -262,28 +262,30 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(get_rows_q6_K); GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(norm); - GGML_METAL_ADD_KERNEL(mul_mat_f32_f32); - GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); - GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row); - GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4); - GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32); - GGML_METAL_ADD_KERNEL(mul_mm_f32_f32); - GGML_METAL_ADD_KERNEL(mul_mm_f16_f32); - GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32); - GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32); - GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32); - GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32); - GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32); - GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32); - GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32); - GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32); + GGML_METAL_ADD_KERNEL(mul_mv_f32_f32); + GGML_METAL_ADD_KERNEL(mul_mv_f16_f32); + GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row); + GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4); + GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32); + GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32); + GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32); + GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32); + GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32); + GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32); + GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32); + GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32); + if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) { + GGML_METAL_ADD_KERNEL(mul_mm_f32_f32); + GGML_METAL_ADD_KERNEL(mul_mm_f16_f32); + GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32); + GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32); + GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32); + GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32); + GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32); + GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32); + GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32); + GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32); + } GGML_METAL_ADD_KERNEL(rope_f32); GGML_METAL_ADD_KERNEL(rope_f16); GGML_METAL_ADD_KERNEL(alibi_f32); @@ -296,8 +298,22 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { #undef GGML_METAL_ADD_KERNEL } - GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); #if TARGET_OS_OSX + // print MTL GPU family: + GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]); + GGML_METAL_LOG_INFO("%s: GPU arch: %s\n", __func__, [[ctx->device architecture].name UTF8String]); + + // determine max supported GPU family + // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf + // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf + for (int i = MTLGPUFamilyApple9 + 10; i >= MTLGPUFamilyApple1; --i) { + if ([ctx->device supportsFamily:i]) { + GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i); + break; + } + } + + GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (ctx->device.maxTransferRate != 0) { GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); @@ -339,28 +355,30 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { GGML_METAL_DEL_KERNEL(get_rows_q6_K); GGML_METAL_DEL_KERNEL(rms_norm); GGML_METAL_DEL_KERNEL(norm); - GGML_METAL_DEL_KERNEL(mul_mat_f32_f32); - GGML_METAL_DEL_KERNEL(mul_mat_f16_f32); - GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row); - GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4); - GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32); - GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32); - GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32); - GGML_METAL_DEL_KERNEL(mul_mat_q2_K_f32); - GGML_METAL_DEL_KERNEL(mul_mat_q3_K_f32); - GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32); - GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32); - GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32); - GGML_METAL_DEL_KERNEL(mul_mm_f32_f32); - GGML_METAL_DEL_KERNEL(mul_mm_f16_f32); - GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32); - GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32); - GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32); - GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32); - GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32); - GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32); - GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32); - GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32); + GGML_METAL_DEL_KERNEL(mul_mv_f32_f32); + GGML_METAL_DEL_KERNEL(mul_mv_f16_f32); + GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row); + GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4); + GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32); + GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32); + GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32); + GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32); + GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32); + GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32); + GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32); + GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32); + if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) { + GGML_METAL_DEL_KERNEL(mul_mm_f32_f32); + GGML_METAL_DEL_KERNEL(mul_mm_f16_f32); + GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32); + GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32); + GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32); + GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32); + GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32); + GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32); + GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32); + GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32); + } GGML_METAL_DEL_KERNEL(rope_f32); GGML_METAL_DEL_KERNEL(rope_f16); GGML_METAL_DEL_KERNEL(alibi_f32); @@ -986,21 +1004,46 @@ void ggml_metal_graph_compute( } break; case GGML_OP_MUL_MAT: { - // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224 - GGML_ASSERT(ne00 == ne10); - // GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere - uint gqa = ne12/ne02; GGML_ASSERT(ne03 == ne13); + const uint gqa = ne12/ne02; + + // find the break-even point where the matrix-matrix kernel becomes more efficient compared + // to the matrix-vector kernel + int ne11_mm_min = 1; + +#if 0 + // the numbers below are measured on M2 Ultra for 7B and 13B models + // these numbers do not translate to other devices or model sizes + // TODO: need to find a better approach + if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) { + switch (src0t) { + case GGML_TYPE_F16: ne11_mm_min = 2; break; + case GGML_TYPE_Q8_0: ne11_mm_min = 7; break; + case GGML_TYPE_Q2_K: ne11_mm_min = 15; break; + case GGML_TYPE_Q3_K: ne11_mm_min = 7; break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: ne11_mm_min = 15; break; + case GGML_TYPE_Q4_K: ne11_mm_min = 11; break; + case GGML_TYPE_Q5_0: // not tested yet + case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet + case GGML_TYPE_Q5_K: ne11_mm_min = 7; break; + case GGML_TYPE_Q6_K: ne11_mm_min = 7; break; + default: ne11_mm_min = 1; break; + } + } +#endif + // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel - if (!ggml_is_transposed(src0) && + if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && + !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1t == GGML_TYPE_F32 && - [ctx->device supportsFamily:MTLGPUFamilyApple7] && - ne00%32 == 0 && - ne11 > 2) { + ne00 % 32 == 0 && + ne11 > ne11_mm_min) { + //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); switch (src0->type) { case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break; @@ -1029,17 +1072,18 @@ void ggml_metal_graph_compute( [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12]; [encoder setBytes:&gqa length:sizeof(gqa) atIndex:13]; [encoder setThreadgroupMemoryLength:8192 atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; } else { int nth0 = 32; int nth1 = 1; int nrows = 1; + //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); // use custom matrix x vector kernel switch (src0t) { case GGML_TYPE_F32: { - [encoder setComputePipelineState:ctx->pipeline_mul_mat_f32_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32]; nrows = 4; } break; case GGML_TYPE_F16: @@ -1047,12 +1091,12 @@ void ggml_metal_graph_compute( nth0 = 32; nth1 = 1; if (ne11 * ne12 < 4) { - [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row]; } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { - [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4]; nrows = ne11; } else { - [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32]; nrows = 4; } } break; @@ -1063,7 +1107,7 @@ void ggml_metal_graph_compute( nth0 = 8; nth1 = 8; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32]; } break; case GGML_TYPE_Q4_1: { @@ -1072,7 +1116,7 @@ void ggml_metal_graph_compute( nth0 = 8; nth1 = 8; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32]; } break; case GGML_TYPE_Q8_0: { @@ -1081,7 +1125,7 @@ void ggml_metal_graph_compute( nth0 = 8; nth1 = 8; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32]; } break; case GGML_TYPE_Q2_K: { @@ -1090,7 +1134,7 @@ void ggml_metal_graph_compute( nth0 = 2; nth1 = 32; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32]; } break; case GGML_TYPE_Q3_K: { @@ -1099,7 +1143,7 @@ void ggml_metal_graph_compute( nth0 = 2; nth1 = 32; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32]; } break; case GGML_TYPE_Q4_K: { @@ -1108,7 +1152,7 @@ void ggml_metal_graph_compute( nth0 = 4; //1; nth1 = 8; //32; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32]; } break; case GGML_TYPE_Q5_K: { @@ -1117,7 +1161,7 @@ void ggml_metal_graph_compute( nth0 = 2; nth1 = 32; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32]; } break; case GGML_TYPE_Q6_K: { @@ -1126,7 +1170,7 @@ void ggml_metal_graph_compute( nth0 = 2; nth1 = 32; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32]; } break; default: { @@ -1155,7 +1199,7 @@ void ggml_metal_graph_compute( [encoder setBytes:&gqa length:sizeof(gqa) atIndex:17]; if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 || - src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) { + src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q4_K) { diff --git a/ggml-metal.metal b/ggml-metal.metal index 9bd94e82b..b6288db28 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -13,8 +13,8 @@ typedef struct { #define QK4_1 32 typedef struct { - half d; // delta - half m; // min + half d; // delta + half m; // min uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; @@ -423,8 +423,8 @@ inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thre } // putting them in the kernel cause a significant performance penalty -#define N_DST 4 // each SIMD group works on 4 rows -#define N_SIMDGROUP 2 // number of SIMD groups in a thread group +#define N_DST 4 // each SIMD group works on 4 rows +#define N_SIMDGROUP 2 // number of SIMD groups in a thread group #define N_SIMDWIDTH 32 // assuming SIMD group size is 32 //Note: This is a template, but strictly speaking it only applies to // quantizations where the block size is 32. It also does not @@ -435,18 +435,23 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne10, int64_t ne12, int64_t ne0, int64_t ne1, uint gqa, uint3 tgpig, uint tiisg, uint sgitg) { const int nb = ne00/QK4_0; + const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; + const int first_row = (r0 * nsg + sgitg) * nr; + const uint offset0 = first_row * nb + im/gqa*(nb*ne0); + device const block_q_type * x = (device const block_q_type *) src0 + offset0; device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; - float yl[16]; // src1 vector cache - float sumf[nr]={0.f}; - const int ix = tiisg/2; - const int il = 8*(tiisg%2); + float yl[16]; // src1 vector cache + float sumf[nr] = {0.f}; + + const int ix = (tiisg/2); + const int il = (tiisg%2)*8; device const float * yb = y + ix * QK4_0 + il; @@ -457,6 +462,7 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device sumy += yb[i] + yb[i+1]; yl[i+0] = yb[i+ 0]; yl[i+1] = yb[i+ 1]/256.f; + sumy += yb[i+16] + yb[i+17]; yl[i+8] = yb[i+16]/16.f; yl[i+9] = yb[i+17]/4096.f; @@ -472,12 +478,12 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device for (int row = 0; row < nr; ++row) { const float tot = simd_sum(sumf[row]); if (tiisg == 0 && first_row + row < ne01) { - dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot; + dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot; } } } -kernel void kernel_mul_mat_q4_0_f32( +kernel void kernel_mul_mv_q4_0_f32( device const void * src0, device const float * src1, device float * dst, @@ -490,12 +496,12 @@ kernel void kernel_mul_mat_q4_0_f32( constant int64_t & ne1[[buffer(16)]], constant uint & gqa[[buffer(17)]], uint3 tgpig[[threadgroup_position_in_grid]], - uint tiisg[[thread_index_in_simdgroup]], - uint sgitg[[simdgroup_index_in_threadgroup]]) { + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { mul_vec_q_n_f32(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg); } -kernel void kernel_mul_mat_q4_1_f32( +kernel void kernel_mul_mv_q4_1_f32( device const void * src0, device const float * src1, device float * dst, @@ -515,7 +521,7 @@ kernel void kernel_mul_mat_q4_1_f32( #define NB_Q8_0 8 -kernel void kernel_mul_mat_q8_0_f32( +kernel void kernel_mul_mv_q8_0_f32( device const void * src0, device const float * src1, device float * dst, @@ -579,7 +585,7 @@ kernel void kernel_mul_mat_q8_0_f32( #define N_F32_F32 4 -kernel void kernel_mul_mat_f32_f32( +kernel void kernel_mul_mv_f32_f32( device const char * src0, device const char * src1, device float * dst, @@ -650,7 +656,7 @@ kernel void kernel_mul_mat_f32_f32( } } -kernel void kernel_mul_mat_f16_f32_1row( +kernel void kernel_mul_mv_f16_f32_1row( device const char * src0, device const char * src1, device float * dst, @@ -669,7 +675,7 @@ kernel void kernel_mul_mat_f16_f32_1row( constant int64_t & ne0, constant int64_t & ne1, uint3 tgpig[[threadgroup_position_in_grid]], - uint tiisg[[thread_index_in_simdgroup]]) { + uint tiisg[[thread_index_in_simdgroup]]) { const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; @@ -704,7 +710,7 @@ kernel void kernel_mul_mat_f16_f32_1row( #define N_F16_F32 4 -kernel void kernel_mul_mat_f16_f32( +kernel void kernel_mul_mv_f16_f32( device const char * src0, device const char * src1, device float * dst, @@ -776,7 +782,7 @@ kernel void kernel_mul_mat_f16_f32( } // Assumes row size (ne00) is a multiple of 4 -kernel void kernel_mul_mat_f16_f32_l4( +kernel void kernel_mul_mv_f16_f32_l4( device const char * src0, device const char * src1, device float * dst, @@ -1253,7 +1259,7 @@ static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) { //====================================== dot products ========================= -kernel void kernel_mul_mat_q2_K_f32( +kernel void kernel_mul_mv_q2_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1397,7 +1403,7 @@ kernel void kernel_mul_mat_q2_K_f32( } #if QK_K == 256 -kernel void kernel_mul_mat_q3_K_f32( +kernel void kernel_mul_mv_q3_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1549,7 +1555,7 @@ kernel void kernel_mul_mat_q3_K_f32( } } #else -kernel void kernel_mul_mat_q3_K_f32( +kernel void kernel_mul_mv_q3_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1620,7 +1626,7 @@ kernel void kernel_mul_mat_q3_K_f32( #endif #if QK_K == 256 -kernel void kernel_mul_mat_q4_K_f32( +kernel void kernel_mul_mv_q4_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1726,7 +1732,7 @@ kernel void kernel_mul_mat_q4_K_f32( } } #else -kernel void kernel_mul_mat_q4_K_f32( +kernel void kernel_mul_mv_q4_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1815,7 +1821,7 @@ kernel void kernel_mul_mat_q4_K_f32( } #endif -kernel void kernel_mul_mat_q5_K_f32( +kernel void kernel_mul_mv_q5_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1988,7 +1994,7 @@ kernel void kernel_mul_mat_q5_K_f32( } -kernel void kernel_mul_mat_q6_K_f32( +kernel void kernel_mul_mv_q6_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -2326,7 +2332,7 @@ kernel void kernel_get_rows( } #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A -#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix A +#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B #define BLOCK_SIZE_K 32 #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B @@ -2363,9 +2369,11 @@ kernel void kernel_mul_mm(device const uchar * src0, const uint r0 = tgpig.y; const uint r1 = tgpig.x; const uint im = tgpig.z; + // if this block is of 64x32 shape or smaller short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; + // a thread shouldn't load data outside of the matrix short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; @@ -2389,26 +2397,30 @@ kernel void kernel_mul_mm(device const uchar * src0, + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { - //load data and store to threadgroup memory + // load data and store to threadgroup memory half4x4 temp_a; dequantize_func(x, il, temp_a); threadgroup_barrier(mem_flags::mem_threadgroup); + #pragma unroll(16) for (int i = 0; i < 16; i++) { *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ - + 16 * (tiitg % THREAD_PER_ROW) + 8 * (i / 8)) \ - + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; + + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \ + + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; } - *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) \ - = *((device float2x4 *)y); + + *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); + il = (il + 2 < nl) ? il + 2 : il % 2; x = (il < 2) ? x + (2+nl-1)/nl : x; y += BLOCK_SIZE_K; threadgroup_barrier(mem_flags::mem_threadgroup); - //load matrices from threadgroup memory and conduct outer products + + // load matrices from threadgroup memory and conduct outer products threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); + #pragma unroll(4) for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { #pragma unroll(4) @@ -2423,6 +2435,7 @@ kernel void kernel_mul_mm(device const uchar * src0, lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE; lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE; + #pragma unroll(8) for (int i = 0; i < 8; i++){ simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]); @@ -2431,25 +2444,26 @@ kernel void kernel_mul_mm(device const uchar * src0, } if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) { - device float *C = dst + BLOCK_SIZE_M * r0 + 32 * (sgitg&1) \ - + (BLOCK_SIZE_N * r1 + 16 * (sgitg>>1)) * ne0 + im*ne1*ne0; + device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \ + + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0; for (int i = 0; i < 8; i++) { simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0); } } else { // block is smaller than 64x32, we should avoid writing data outside of the matrix threadgroup_barrier(mem_flags::mem_threadgroup); - threadgroup float *temp_str = ((threadgroup float *)shared_memory) \ + threadgroup float * temp_str = ((threadgroup float *)shared_memory) \ + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; for (int i = 0; i < 8; i++) { simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); } threadgroup_barrier(mem_flags::mem_threadgroup); - device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0; - if (sgitg==0) { + + device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0; + if (sgitg == 0) { for (int i = 0; i < n_rows; i++) { - for (int j = tiitg; j< n_cols; j += BLOCK_SIZE_N) { + for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M); } } From 7d8b24932fe788a4cda76459a0c5df3e0073cb98 Mon Sep 17 00:00:00 2001 From: Luo Tian Date: Sun, 8 Oct 2023 16:24:01 +0800 Subject: [PATCH 037/295] zig : fix build by introducing train.cpp (#3539) --- build.zig | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/build.zig b/build.zig index 3a8978bc3..b95491e03 100644 --- a/build.zig +++ b/build.zig @@ -111,12 +111,14 @@ pub fn build(b: *std.build.Builder) !void { const common = make.obj("common", "common/common.cpp"); const console = make.obj("common", "common/console.cpp"); const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); + const train = make.obj("train", "common/train.cpp"); _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser }); _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama, common }); _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common }); _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common }); - _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama, common }); + _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, llama, common, train }); + _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama, common, train }); const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser }); if (server.target.isWindows()) { From 94e502dfb79430870b42b8e8ee132b4aaa93e4a8 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 8 Oct 2023 11:24:50 +0300 Subject: [PATCH 038/295] ci : enable on obj-c changes + fix metal build (#3540) --- .github/workflows/build.yml | 4 ++-- ggml-metal.m | 3 +-- 2 files changed, 3 insertions(+), 4 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index c1e36ee28..e41be76db 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -10,10 +10,10 @@ on: push: branches: - master - paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift'] + paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m'] pull_request: types: [opened, synchronize, reopened] - paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift'] + paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m'] env: BRANCH_NAME: ${{ github.head_ref || github.ref_name }} diff --git a/ggml-metal.m b/ggml-metal.m index 57c238dda..92956ed97 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -301,12 +301,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { #if TARGET_OS_OSX // print MTL GPU family: GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]); - GGML_METAL_LOG_INFO("%s: GPU arch: %s\n", __func__, [[ctx->device architecture].name UTF8String]); // determine max supported GPU family // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf - for (int i = MTLGPUFamilyApple9 + 10; i >= MTLGPUFamilyApple1; --i) { + for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) { if ([ctx->device supportsFamily:i]) { GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i); break; From a1202a31ed8c35705bd09fe91c3e7410c619bd70 Mon Sep 17 00:00:00 2001 From: Johannes Rudolph Date: Sun, 8 Oct 2023 12:21:19 +0200 Subject: [PATCH 039/295] k-quants : fix comments about block sizing (#3499) --- k_quants.h | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/k_quants.h b/k_quants.h index adc6a3913..9de089e7a 100644 --- a/k_quants.h +++ b/k_quants.h @@ -29,7 +29,7 @@ // 2-bit quantization // weight is represented as x = a * q + b -// 16 blocks of 16 elemenets each +// 16 blocks of 16 elements each // Effectively 2.5625 bits per weight typedef struct { uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits @@ -41,7 +41,7 @@ static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "w // 3-bit quantization // weight is represented as x = a * q -// 16 blocks of 16 elemenets each +// 16 blocks of 16 elements each // Effectively 3.4375 bits per weight #ifdef GGML_QKK_64 typedef struct { @@ -62,7 +62,7 @@ static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + #endif // 4-bit quantization -// 16 blocks of 32 elements each +// 8 blocks of 32 elements each // weight is represented as x = a * q + b // Effectively 4.5 bits per weight #ifdef GGML_QKK_64 @@ -83,7 +83,7 @@ static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/ #endif // 5-bit quantization -// 16 blocks of 32 elements each +// 8 blocks of 32 elements each // weight is represented as x = a * q + b // Effectively 5.5 bits per weight #ifdef GGML_QKK_64 @@ -107,7 +107,7 @@ static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/ // 6-bit quantization // weight is represented as x = a * q -// 16 blocks of 16 elemenets each +// 16 blocks of 16 elements each // Effectively 6.5625 bits per weight typedef struct { uint8_t ql[QK_K/2]; // quants, lower 4 bits From 9c38d181d40b9d27f8f42152c18e7c70bfffcf37 Mon Sep 17 00:00:00 2001 From: arcrank Date: Sun, 8 Oct 2023 06:52:57 -0400 Subject: [PATCH 040/295] api_like_OAI.py : simplify function (#2796) Simplify function --- examples/server/api_like_OAI.py | 8 +------- 1 file changed, 1 insertion(+), 7 deletions(-) diff --git a/examples/server/api_like_OAI.py b/examples/server/api_like_OAI.py index ed19237b0..1b0bf5757 100755 --- a/examples/server/api_like_OAI.py +++ b/examples/server/api_like_OAI.py @@ -23,13 +23,7 @@ parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8 args = parser.parse_args() def is_present(json, key): - try: - buf = json[key] - except KeyError: - return False - return True - - + return key in json #convert chat to prompt def convert_chat(messages): From 8e6716a102e390e930594d51302730184dac83cc Mon Sep 17 00:00:00 2001 From: Ryder Wishart Date: Sun, 8 Oct 2023 03:55:58 -0700 Subject: [PATCH 041/295] api_like_OAI.py : compat with Microsoft Guidance (#2746) Check for None in addition to empty string check in all request params Co-authored-by: Georgi Gerganov --- examples/server/api_like_OAI.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/examples/server/api_like_OAI.py b/examples/server/api_like_OAI.py index 1b0bf5757..14d2dcf65 100755 --- a/examples/server/api_like_OAI.py +++ b/examples/server/api_like_OAI.py @@ -23,7 +23,13 @@ parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8 args = parser.parse_args() def is_present(json, key): - return key in json + try: + buf = json[key] + except KeyError: + return False + if json[key] == None: + return False + return True #convert chat to prompt def convert_chat(messages): From eee42c670e6fa6df9cf17e7ffc319f74cbd81354 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Matheus=20C=2E=20Fran=C3=A7a?= Date: Sun, 8 Oct 2023 10:59:20 -0300 Subject: [PATCH 042/295] ci : add Zig CI/CD and fix build (#2996) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * zig CI/CD and fix build Signed-off-by: Matheus Catarino França * fix build_compiler * ci : remove trailing whitespace --------- Signed-off-by: Matheus Catarino França Co-authored-by: Georgi Gerganov --- .github/workflows/zig-build.yml | 25 +++++++++++++++++++++++++ build.zig | 31 ++++++++++++++++++++++++------- 2 files changed, 49 insertions(+), 7 deletions(-) create mode 100644 .github/workflows/zig-build.yml diff --git a/.github/workflows/zig-build.yml b/.github/workflows/zig-build.yml new file mode 100644 index 000000000..68a698ab9 --- /dev/null +++ b/.github/workflows/zig-build.yml @@ -0,0 +1,25 @@ +name: Zig CI + +on: + pull_request: + push: + branches: + - master + +jobs: + build: + strategy: + fail-fast: false + matrix: + runs-on: [ubuntu-latest, macos-latest, windows-latest] + runs-on: ${{ matrix.runs-on }} + steps: + - uses: actions/checkout@v3 + with: + submodules: recursive + fetch-depth: 0 + - uses: goto-bus-stop/setup-zig@v2 + with: + version: 0.11.0 + - name: Build Summary + run: zig build --summary all -freference-trace diff --git a/build.zig b/build.zig index b95491e03..c86e4c667 100644 --- a/build.zig +++ b/build.zig @@ -36,14 +36,17 @@ const Maker = struct { } fn init(builder: *std.build.Builder) !Maker { - // const commit_hash = @embedFile(".git/refs/heads/master"); const target = builder.standardTargetOptions(.{}); + const zig_version = @import("builtin").zig_version_string; + const commit_hash = try std.ChildProcess.exec( + .{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } }, + ); const config_header = builder.addConfigHeader( .{ .style = .blank, .include_path = "build-info.h" }, .{ .BUILD_NUMBER = 0, - .BUILD_COMMIT = "12345", // omit newline - .BUILD_COMPILER = "Zig 0.11.0", + .BUILD_COMMIT = commit_hash.stdout[0 .. commit_hash.stdout.len - 1], // omit newline + .BUILD_COMPILER = builder.fmt("Zig {s}", .{zig_version}), .BUILD_TARGET = try target.allocDescription(builder.allocator), }, ); @@ -67,12 +70,20 @@ const Maker = struct { fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile { const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize }); + if (o.target.getAbi() != .msvc) + o.defineCMacro("_GNU_SOURCE", null); + o.addConfigHeader(m.config_header); if (std.mem.endsWith(u8, src, ".c")) { o.addCSourceFiles(&.{src}, m.cflags.items); o.linkLibC(); } else { o.addCSourceFiles(&.{src}, m.cxxflags.items); - o.linkLibCpp(); + if (o.target.getAbi() == .msvc) { + o.linkLibC(); // need winsdk + crt + } else { + // linkLibCpp already add (libc++ + libunwind + libc) + o.linkLibCpp(); + } } o.addConfigHeader(m.config_header); for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i }); @@ -86,8 +97,14 @@ const Maker = struct { for (deps) |d| e.addObject(d); for (m.objs.items) |o| e.addObject(o); for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i }); - e.linkLibC(); - e.linkLibCpp(); + + // https://github.com/ziglang/zig/issues/15448 + if (e.target.getAbi() == .msvc) { + e.linkLibC(); // need winsdk + crt + } else { + // linkLibCpp already add (libc++ + libunwind + libc) + e.linkLibCpp(); + } e.addConfigHeader(m.config_header); m.builder.installArtifact(e); e.want_lto = m.enable_lto; @@ -109,7 +126,7 @@ pub fn build(b: *std.build.Builder) !void { const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c"); const llama = make.obj("llama", "llama.cpp"); const common = make.obj("common", "common/common.cpp"); - const console = make.obj("common", "common/console.cpp"); + const console = make.obj("console", "common/console.cpp"); const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); const train = make.obj("train", "common/train.cpp"); From db3abcc114d5d1790ba814aa1a80ac673d4ccc3e Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 8 Oct 2023 20:19:14 +0300 Subject: [PATCH 043/295] sync : ggml (ggml-backend) (#3548) * sync : ggml (ggml-backend) ggml-ci * zig : add ggml-backend to the build --- CMakeLists.txt | 2 + Makefile | 7 +- build.zig | 15 +- ggml-alloc.c | 169 +++++--------- ggml-alloc.h | 16 +- ggml-backend.c | 385 +++++++++++++++++++++++++++++++ ggml-backend.h | 143 ++++++++++++ ggml-cuda.cu | 535 ++++++++++++++++++++++++++++++++++++------- ggml-cuda.h | 4 + ggml-metal.h | 19 +- ggml-metal.m | 137 +++++++++++ ggml.c | 37 +-- ggml.h | 16 +- llama.cpp | 44 ++-- scripts/sync-ggml.sh | 24 +- 15 files changed, 1285 insertions(+), 268 deletions(-) create mode 100644 ggml-backend.c create mode 100644 ggml-backend.h diff --git a/CMakeLists.txt b/CMakeLists.txt index 7c79ec486..9184eda8f 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -663,6 +663,8 @@ add_library(ggml OBJECT ggml.h ggml-alloc.c ggml-alloc.h + ggml-backend.c + ggml-backend.h ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} diff --git a/Makefile b/Makefile index b8b0d4b56..40187c4a2 100644 --- a/Makefile +++ b/Makefile @@ -512,9 +512,12 @@ ggml.o: ggml.c ggml.h ggml-cuda.h ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h $(CC) $(CFLAGS) -c $< -o $@ -OBJS += ggml-alloc.o +ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h + $(CC) $(CFLAGS) -c $< -o $@ -llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h +OBJS += ggml-alloc.o ggml-backend.o + +llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h $(CXX) $(CXXFLAGS) -c $< -o $@ common.o: common/common.cpp common/common.h build-info.h common/log.h diff --git a/build.zig b/build.zig index c86e4c667..fdc5bc084 100644 --- a/build.zig +++ b/build.zig @@ -124,20 +124,21 @@ pub fn build(b: *std.build.Builder) !void { const ggml = make.obj("ggml", "ggml.c"); const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c"); + const ggml_backend = make.obj("ggml-backend", "ggml-backend.c"); const llama = make.obj("llama", "llama.cpp"); const common = make.obj("common", "common/common.cpp"); const console = make.obj("console", "common/console.cpp"); const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); const train = make.obj("train", "common/train.cpp"); - _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser }); - _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama, common }); - _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common }); - _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common }); - _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, llama, common, train }); - _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama, common, train }); + _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser }); + _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); + _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); + _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); + _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train }); + _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train }); - const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser }); + const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser }); if (server.target.isWindows()) { server.linkSystemLibrary("ws2_32"); } diff --git a/ggml-alloc.c b/ggml-alloc.c index 805759db7..3321f05e2 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -1,4 +1,5 @@ #include "ggml-alloc.h" +#include "ggml-backend.h" #include "ggml.h" #include #include @@ -6,25 +7,6 @@ #include #include -#ifdef __has_include - #if __has_include() - #include - #if defined(_POSIX_MAPPED_FILES) - #include - #include - #endif - #endif -#endif - -#if defined(_WIN32) - #define WIN32_LEAN_AND_MEAN - #ifndef NOMINMAX - #define NOMINMAX - #endif - #include - #include -#endif - #define UNUSED(x) (void)(x) #define MAX(a, b) ((a) > (b) ? (a) : (b)) @@ -80,8 +62,9 @@ struct free_block { #define MAX_FREE_BLOCKS 256 struct ggml_allocr { + struct ggml_backend_buffer * buffer; + bool buffer_owned; void * data; - size_t size; size_t alignment; int n_free_blocks; struct free_block free_blocks[MAX_FREE_BLOCKS]; @@ -119,16 +102,9 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens } #endif -static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { - return ggml_nbytes(tensor); - - UNUSED(alloc); -} - // check if a tensor is allocated by this buffer static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) { - void * ptr = tensor->data; - return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size; + return tensor->buffer == alloc->buffer; } static bool ggml_is_view(struct ggml_tensor * t) { @@ -136,11 +112,10 @@ static bool ggml_is_view(struct ggml_tensor * t) { } void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { -#ifdef GGML_ALLOCATOR_DEBUG GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated -#endif - size_t size = ggml_allocr_get_alloc_size(alloc, tensor); + + size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); @@ -188,6 +163,8 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) tensor->data = addr; AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data); + tensor->buffer = alloc->buffer; + ggml_backend_buffer_init_tensor(alloc->buffer, tensor); #ifdef GGML_ALLOCATOR_DEBUG add_allocated_tensor(alloc, tensor); @@ -208,19 +185,21 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) // this is a very naive implementation, but for our case the number of free blocks should be very small static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { - void * ptr = tensor->data; - if (ggml_allocr_is_own(alloc, tensor) == false) { // the tensor was not allocated in this buffer // this can happen because the graph allocator will try to free weights and other tensors from different buffers // the easiest way to deal with this is just to ignore it + AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer); return; } - size_t size = ggml_allocr_get_alloc_size(alloc, tensor); + void * ptr = tensor->data; + + size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks); - AT_PRINTF("%s: alloc->data = %p alloc->data+alloc->size = %p alloc->data+alloc->max_size = %p\n", __func__, alloc->data, (char*)alloc->data + alloc->size, (char*)alloc->data + alloc->max_size); + + ggml_backend_buffer_free_tensor(alloc->buffer, tensor); #ifdef GGML_ALLOCATOR_DEBUG remove_allocated_tensor(alloc, tensor); @@ -285,15 +264,18 @@ void ggml_allocr_reset(struct ggml_allocr * alloc) { alloc->n_free_blocks = 1; size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment); alloc->free_blocks[0].addr = (char *)alloc->data + align_offset; - alloc->free_blocks[0].size = alloc->size - align_offset; + alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset; } struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) { - struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); + struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size); + + struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr)); *alloc = (struct ggml_allocr){ - /*.data = */ data, - /*.size = */ size, + /*.buffer = */ buffer, + /*.buffer_owned = */ true, + /*.base = */ ggml_backend_buffer_get_base(buffer), /*.alignment = */ alignment, /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, @@ -312,74 +294,26 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) return alloc; } -// OS specific functions to allocate and free uncommitted virtual memory -static void * alloc_vmem(size_t size) { -#if defined(_WIN32) - return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); -#elif defined(_POSIX_MAPPED_FILES) - void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); - if (ptr == MAP_FAILED) { - return NULL; - } - return ptr; -#else - // use a fixed address for other platforms - uintptr_t base_addr = (uintptr_t)-size - 0x100; - return (void *)base_addr; -#endif -} - -static void free_vmem(void * base_addr, size_t size) { -#if defined(_WIN32) - VirtualFree(base_addr, 0, MEM_RELEASE); - UNUSED(size); -#elif defined(_POSIX_MAPPED_FILES) - munmap(base_addr, size); -#else - // nothing to do - UNUSED(base_addr); - UNUSED(size); -#endif -} - -// allocate uncommitted virtual memory to measure the size of the graph -static void alloc_measure_vmem(void ** base_addr, size_t * size) { - // 128GB for 64-bit, 1GB for 32-bit - *size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37; - do { - *base_addr = alloc_vmem(*size); - if (*base_addr != NULL) { - AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr); - return; - } - // try again with half the size - *size /= 2; - } while (*size > 0); - - GGML_ASSERT(!"failed to allocate virtual memory for measure buffer"); -} - -static void free_measure_vmem(void * base_addr, size_t size) { - free_vmem(base_addr, size); -} - struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { - struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); + struct ggml_allocr * alloc = ggml_allocr_new((void *)0x1000, (size_t)-0x1001, alignment); + alloc->measure = true; - void * base_addr; - size_t size; + return alloc; +} - alloc_measure_vmem(&base_addr, &size); +struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) { + struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr)); *alloc = (struct ggml_allocr){ - /*.data = */ base_addr, - /*.size = */ size, - /*.alignment = */ alignment, + /*.buffer = */ buffer, + /*.buffer_owned = */ false, + /*.base = */ ggml_backend_buffer_get_base(buffer), + /*.alignment = */ ggml_backend_buffer_get_alignment(buffer), /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, /*.hash_table = */ {{0}}, /*.max_size = */ 0, - /*.measure = */ true, + /*.measure = */ false, /*.parse_seq = */ {0}, /*.parse_seq_len = */ 0, #ifdef GGML_ALLOCATOR_DEBUG @@ -393,8 +327,8 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { } void ggml_allocr_free(struct ggml_allocr * alloc) { - if (alloc->measure) { - free_measure_vmem(alloc->data, alloc->size); + if (alloc->buffer_owned) { + ggml_backend_buffer_free(alloc->buffer); } free(alloc); } @@ -437,7 +371,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) { case GGML_OP_ROPE: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: - case GGML_OP_CONT: return true; default: @@ -445,12 +378,23 @@ static bool ggml_op_can_inplace(enum ggml_op op) { } } +static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) { + assert(view->view_src != NULL && view->view_src->data != NULL); + view->backend = view->view_src->backend; + view->buffer = view->view_src->buffer; + view->data = (char *)view->view_src->data + view->view_offs; + + // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend + // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras + assert(ggml_allocr_is_measure(alloc) || view->buffer->backend == alloc->buffer->backend); + ggml_backend_buffer_init_tensor(alloc->buffer, view); +} + static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) { struct hash_node * ht = alloc->hash_table; if (node->data == NULL) { if (ggml_is_view(node)) { - assert(node->view_src->data != NULL); - node->data = (char *)node->view_src->data + node->view_offs; + init_view(alloc, node); } else { // see if we can reuse a parent's buffer (inplace) if (ggml_op_can_inplace(node->op)) { @@ -478,13 +422,17 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); - node->data = parent->data; + node->view_src = view_src; + view_src_hn->n_views += 1; + init_view(alloc, node); return; } } else { AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); - node->data = parent->data; + node->view_src = parent; + p_hn->n_views += 1; + init_view(alloc, node); return; } } @@ -495,7 +443,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) } } -static size_t ggml_allocr_alloc_graph_tensors_n( +size_t ggml_allocr_alloc_graph_n( struct ggml_allocr * alloc, struct ggml_cgraph ** graphs, int n_graphs, struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) { @@ -513,6 +461,10 @@ static size_t ggml_allocr_alloc_graph_tensors_n( if (ggml_is_view(node)) { struct ggml_tensor * view_src = node->view_src; hash_get(ht, view_src)->n_views += 1; + if (node->buffer == NULL && node->data != NULL) { + // view of a pre-allocated tensor, didn't call init_view() yet + init_view(alloc, node); + } } for (int j = 0; j < GGML_MAX_SRC; j++) { @@ -521,6 +473,9 @@ static size_t ggml_allocr_alloc_graph_tensors_n( break; } hash_get(ht, parent)->n_children += 1; + if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) { + init_view(alloc, parent); + } } } } @@ -631,7 +586,7 @@ static size_t ggml_allocr_alloc_graph_tensors_n( } size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { - return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); + return ggml_allocr_alloc_graph_n(alloc, &graph, 1, NULL, NULL); } size_t ggml_allocr_max_size(struct ggml_allocr * alloc) { diff --git a/ggml-alloc.h b/ggml-alloc.h index 0c224f174..e38758878 100644 --- a/ggml-alloc.h +++ b/ggml-alloc.h @@ -6,21 +6,27 @@ extern "C" { #endif +struct ggml_backend_buffer; GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment); GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment); +GGML_API struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer); // tell the allocator to parse nodes following the order described in the list // you should call this if your graph are optimized to execute out-of-order GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n); -GGML_API void ggml_allocr_free(struct ggml_allocr * alloc); -GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc); -GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc); -GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor); +GGML_API void ggml_allocr_free (struct ggml_allocr * alloc); +GGML_API bool ggml_allocr_is_measure (struct ggml_allocr * alloc); +GGML_API void ggml_allocr_reset (struct ggml_allocr * alloc); +GGML_API void ggml_allocr_alloc (struct ggml_allocr * alloc, struct ggml_tensor * tensor); GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph); -GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc); +GGML_API size_t ggml_allocr_max_size (struct ggml_allocr * alloc); +GGML_API size_t ggml_allocr_alloc_graph_n( + struct ggml_allocr * alloc, + struct ggml_cgraph ** graphs, int n_graphs, + struct ggml_tensor *** inputs, struct ggml_tensor *** outputs); #ifdef __cplusplus } diff --git a/ggml-backend.c b/ggml-backend.c new file mode 100644 index 000000000..ca8d83daf --- /dev/null +++ b/ggml-backend.c @@ -0,0 +1,385 @@ +#include "ggml-backend.h" +#include "ggml-alloc.h" + +#include +#include +#include +#include +#include + +#define UNUSED GGML_UNUSED + +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +// backend buffer + +ggml_backend_buffer_t ggml_backend_buffer_init( + struct ggml_backend * backend, + struct ggml_backend_buffer_i iface, + ggml_backend_buffer_context_t context, + size_t size) { + ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer)); + + GGML_ASSERT(iface.get_base != NULL); + + (*buffer) = (struct ggml_backend_buffer) { + /* .interface = */ iface, + /* .backend = */ backend, + /* .context = */ context, + /* .size = */ size, + }; + + return buffer; +} + +void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { + if (buffer->iface.free_buffer != NULL) { + buffer->iface.free_buffer(buffer); + } + free(buffer); +} + +size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) { + return ggml_backend_get_alignment(buffer->backend); +} + +void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { + return buffer->iface.get_base(buffer); +} + +size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { + return buffer->size; +} + +size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.get_alloc_size) { + return buffer->iface.get_alloc_size(buffer, tensor); + } + return ggml_nbytes(tensor); +} + +void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.init_tensor) { + buffer->iface.init_tensor(buffer, tensor); + } +} + +void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.free_tensor) { + buffer->iface.free_tensor(buffer, tensor); + } +} + +// backend + +ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) { + return tensor->buffer->backend; +} + +const char * ggml_backend_name(ggml_backend_t backend) { + return backend->iface.get_name(backend); +} + +void ggml_backend_free(ggml_backend_t backend) { + backend->iface.free(backend); +} + +ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) { + return backend->iface.alloc_buffer(backend, size); +} + +size_t ggml_backend_get_alignment(ggml_backend_t backend) { + return backend->iface.get_alignment(backend); +} + +void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); +} + +void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); +} + +void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); + ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor)); +} + +void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); + ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor)); +} + +void ggml_backend_synchronize(ggml_backend_t backend) { + backend->iface.synchronize(backend); +} + +ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + return backend->iface.graph_plan_create(backend, cgraph); +} + +void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + backend->iface.graph_plan_free(backend, plan); +} + +void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + backend->iface.graph_plan_compute(backend, plan); +} + +void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + backend->iface.graph_compute(backend, cgraph); +} + +bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return backend->iface.supports_op(backend, op); +} + +// backend copy + +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + +void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { + //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]); + //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); + GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); + + // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); + + if (src == dst) { + return; + } + + // TODO: allow backends to support copy to/from same backend + + if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) { + ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst); + } else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) { + ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst); + } else { + // shouldn't be hit when copying from/to CPU + #ifndef NDEBUG + fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend)); + #endif + size_t nbytes = ggml_nbytes(src); + void * data = malloc(nbytes); + ggml_backend_tensor_get(src, data, 0, nbytes); + ggml_backend_tensor_set(dst, data, 0, nbytes); + free(data); + } +} + +// backend CPU + +struct ggml_backend_cpu_context { + int n_threads; + void * work_data; + size_t work_size; +}; + +static const char * ggml_backend_cpu_name(ggml_backend_t backend) { + return "CPU"; + + UNUSED(backend); +} + +static void ggml_backend_cpu_free(ggml_backend_t backend) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + free(cpu_ctx->work_data); + free(cpu_ctx); + free(backend); +} + +static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { + return (void *)buffer->context; +} + +static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { + free(buffer->context); + UNUSED(buffer); +} + +static struct ggml_backend_buffer_i cpu_backend_buffer_i = { + /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, + /* .get_base = */ ggml_backend_cpu_buffer_get_base, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .init_tensor = */ NULL, // no initialization required + /* .free_tensor = */ NULL, // no cleanup required +}; + +// for buffers from ptr, free is not called +static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { + /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed + /* .get_base = */ ggml_backend_cpu_buffer_get_base, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .init_tensor = */ NULL, + /* .free_tensor = */ NULL, +}; + +static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 + +static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) { + size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned + void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC? + + return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size); +} + +static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) { + return TENSOR_ALIGNMENT; + UNUSED(backend); +} + +static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy((char *)tensor->data + offset, data, size); + + UNUSED(backend); +} + +static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy(data, (const char *)tensor->data + offset, size); + + UNUSED(backend); +} + +static void ggml_backend_cpu_synchronize(ggml_backend_t backend) { + UNUSED(backend); +} + +static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + // for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends + ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +struct ggml_backend_plan_cpu { + struct ggml_cplan cplan; + struct ggml_cgraph cgraph; +}; + +static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + + struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); + + cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + cpu_plan->cgraph = *cgraph; + + if (cpu_plan->cplan.work_size > 0) { + cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); + } + + return cpu_plan; +} + +static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; + + free(cpu_plan->cplan.work_data); + free(cpu_plan); + + UNUSED(backend); +} + +static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; + + ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); + + UNUSED(backend); +} + +static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + + struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + + if (cpu_ctx->work_size < cplan.work_size) { + // TODO: may be faster to free and use malloc to avoid the copy + cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); + cpu_ctx->work_size = cplan.work_size; + } + + cplan.work_data = cpu_ctx->work_data; + + ggml_graph_compute(cgraph, &cplan); +} + +static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return true; + UNUSED(backend); + UNUSED(op); +} + +static struct ggml_backend_i cpu_backend_i = { + /* .get_name = */ ggml_backend_cpu_name, + /* .free = */ ggml_backend_cpu_free, + /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer, + /* .get_alignment = */ ggml_backend_cpu_get_alignment, + /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async, + /* .synchronize = */ ggml_backend_cpu_synchronize, + /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from, + /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to, + /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, + /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, + /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, + /* .graph_compute = */ ggml_backend_cpu_graph_compute, + /* .supports_op = */ ggml_backend_cpu_supports_op, +}; + +ggml_backend_t ggml_backend_cpu_init(void) { + struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); + + ctx->n_threads = GGML_DEFAULT_N_THREADS; + ctx->work_data = NULL; + ctx->work_size = 0; + + ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); + + *cpu_backend = (struct ggml_backend) { + /* .interface = */ cpu_backend_i, + /* .context = */ ctx + }; + return cpu_backend; +} + +bool ggml_backend_is_cpu(ggml_backend_t backend) { + return backend->iface.get_name == ggml_backend_cpu_name; +} + +void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { + GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); + + struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; + ctx->n_threads = n_threads; +} + +ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) { + return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size); +} diff --git a/ggml-backend.h b/ggml-backend.h new file mode 100644 index 000000000..da134b0db --- /dev/null +++ b/ggml-backend.h @@ -0,0 +1,143 @@ +#pragma once + +#include "ggml.h" + +#ifdef __cplusplus +extern "C" { +#endif + struct ggml_backend; + struct ggml_backend_buffer; + + // type-erased backend-specific types / wrappers + typedef void * ggml_backend_context_t; + typedef void * ggml_backend_graph_plan_t; + typedef void * ggml_backend_buffer_context_t; + + // avoid accessing internals of these types + typedef struct ggml_backend * ggml_backend_t; + typedef struct ggml_backend_buffer * ggml_backend_buffer_t; + + // + // backend buffer + // + + struct ggml_backend_buffer_i { + void (*free_buffer) (ggml_backend_buffer_t buffer); + void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer + size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback + void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback + void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback + }; + + // TODO: hide behind API + struct ggml_backend_buffer { + struct ggml_backend_buffer_i iface; + + ggml_backend_t backend; + ggml_backend_buffer_context_t context; + + size_t size; + }; + + // backend buffer functions + GGML_API ggml_backend_buffer_t ggml_backend_buffer_init( + struct ggml_backend * backend, + struct ggml_backend_buffer_i iface, + ggml_backend_buffer_context_t context, + size_t size); + + GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); + GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + + // + // backend + // + + struct ggml_backend_i { + const char * (*get_name)(ggml_backend_t backend); + + void (*free)(ggml_backend_t backend); + + // buffer allocation + ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size); + + // get buffer alignment + size_t (*get_alignment)(ggml_backend_t backend); + + // tensor data access + // these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize + void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + void (*synchronize) (ggml_backend_t backend); + + // (optional) copy tensor between different backends, allow for single-copy tranfers + void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); + void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); + + // compute graph with a plan + ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph); + void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); + + // compute graph without a plan + void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph); + + // check if the backend supports an operation + bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); + }; + + // TODO: hide behind API + struct ggml_backend { + struct ggml_backend_i iface; + + ggml_backend_context_t context; + }; + + // backend helper functions + GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor); + + GGML_API const char * ggml_backend_name(ggml_backend_t backend); + GGML_API void ggml_backend_free(ggml_backend_t backend); + + GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size); + + GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend); + + GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + + GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + + GGML_API void ggml_backend_synchronize(ggml_backend_t backend); + + GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph); + + GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan); + GGML_API void ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op); + + // tensor copy between different backends + GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); + + // + // CPU backend + // + + GGML_API ggml_backend_t ggml_backend_cpu_init(void); + + GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend); + + GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads); + + GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size); + +#ifdef __cplusplus +} +#endif diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 989c419cd..7e92c5197 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -62,6 +62,7 @@ #define cudaMemcpyHostToDevice hipMemcpyHostToDevice #define cudaMemcpyKind hipMemcpyKind #define cudaMemset hipMemset +#define cudaMemsetAsync hipMemsetAsync #define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize #define cudaSetDevice hipSetDevice #define cudaStreamCreateWithFlags hipStreamCreateWithFlags @@ -419,6 +420,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 #define CUDA_QUANTIZE_BLOCK_SIZE 256 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 +#define CUDA_GET_ROWS_BLOCK_SIZE 256 // dmmv = dequantize_mul_mat_vec #ifndef GGML_CUDA_DMMV_X @@ -1574,6 +1576,34 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest reinterpret_cast(y[ib].ds.y) = sum; } +template +static __global__ void k_get_rows(const void * x, const int32_t * y, dst_t * dst, const int ncols) { + const int col = (blockIdx.x*blockDim.x + threadIdx.x)*2; + const int row = blockDim.y*blockIdx.y + threadIdx.y; + + if (col >= ncols) { + return; + } + + const int r = y[row]; + + // copy x[r*ncols + col] to dst[row*ncols + col] + const int xi = r*ncols + col; + const int di = row*ncols + col; + + const int ib = xi/qk; // block index + const int iqs = (xi%qk)/qr; // quant index + const int iybs = di - di%qk; // y block start index + const int y_offset = qr == 1 ? 1 : qk/2; + + // dequantize + dfloat2 v; + dequantize_kernel(x, ib, iqs, v); + + dst[iybs + iqs + 0] = v.x; + dst[iybs + iqs + y_offset] = v.y; +} + template static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) { const int i = blockDim.x*blockIdx.x + 2*threadIdx.x; @@ -4555,6 +4585,15 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale dst[i] = scale * x[i]; } + +template +static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) { + const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); + const int block_num_x = (ncols + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE); + const dim3 block_nums(block_num_x, nrows, 1); + k_get_rows<<>>(x, y, dst, ncols); +} + static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) { const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE; add_f32<<>>(x, y, dst, kx, ky); @@ -5703,7 +5742,7 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) { GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); kind = cudaMemcpyDeviceToDevice; - struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; int id; CUDA_CHECK(cudaGetDevice(&id)); src_ptr = (char *) extra->data_device[id]; @@ -5739,6 +5778,107 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( } } +static void ggml_cuda_op_repeat( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & stream) { + // guaranteed to be an integer due to the check in ggml_can_repeat + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const int nr0 = (int)(ne0/ne00); + const int nr1 = (int)(ne1/ne01); + const int nr2 = (int)(ne2/ne02); + const int nr3 = (int)(ne3/ne03); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + // TODO: very inefficient, implement in a kernel, or fewer cudaMemcpyAsync calls for contiguous tensors + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne03; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne02; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne01; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + CUDA_CHECK(cudaMemcpyAsync( + (char *) dst_d + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0, + (const char *) src0_d + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01, + ne00*nb0, cudaMemcpyDeviceToDevice, stream)); + } + } + } + } + } + } + } + + (void) src1; + (void) src1_d; +} + +static void ggml_cuda_op_get_rows( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & stream) { + + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_contiguous(dst)); + + const int ncols = src0->ne[0]; + const int nrows = ggml_nelements(src1); + + const int32_t * src1_i32 = (const int32_t *) src1_d; + + switch (src0->type) { + case GGML_TYPE_F16: + get_rows_cuda<1, 1, convert_f16>(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_F32: + get_rows_cuda<1, 1, convert_f32>(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q4_0: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q4_1: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q5_0: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q5_1: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q8_0: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + default: + // TODO: k-quants + GGML_ASSERT(false); + break; + } +} + inline void ggml_cuda_op_add( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { @@ -6343,7 +6483,14 @@ inline void ggml_cuda_op_scale( GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); - const float scale = ((float *) src1->data)[0]; + float scale; + // HACK: support for ggml backend interface + if (src1->backend == GGML_BACKEND_CPU) { + scale = ((float *) src1->data)[0]; + } else { + // TODO: pass pointer to kernel instead of copying to host + CUDA_CHECK(cudaMemcpy(&scale, src1->data, sizeof(float), cudaMemcpyDeviceToHost)); + } scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream); CUDA_CHECK(cudaGetLastError()); @@ -6362,9 +6509,9 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT); - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU; @@ -6505,9 +6652,9 @@ static void ggml_cuda_op_mul_mat( const size_t q8_1_ts = sizeof(block_q8_1); const size_t q8_1_bs = QK8_1; - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; const bool src0_is_contiguous = ggml_is_contiguous(src0); @@ -6585,7 +6732,7 @@ static void ggml_cuda_op_mul_mat( if (convert_src1_to_q8_1) { src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]); - if (split && src1_on_device && src1_is_contiguous) { + if (src1_on_device && src1_is_contiguous) { quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } @@ -6667,7 +6814,7 @@ static void ggml_cuda_op_mul_mat( GGML_ASSERT(false); } - if (convert_src1_to_q8_1 && src1->backend == GGML_BACKEND_CPU) { + if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) { quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } @@ -6758,6 +6905,14 @@ static void ggml_cuda_op_mul_mat( } } +static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_repeat); +} + +static void ggml_cuda_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_get_rows); +} + static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add); } @@ -6812,13 +6967,13 @@ static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tens CUDA_CHECK(ggml_cuda_set_device(g_main_device)); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; - struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream); @@ -6843,13 +6998,13 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor CUDA_CHECK(ggml_cuda_set_device(g_main_device)); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; - struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; const int64_t row_stride_x = nb01 / sizeof(half); @@ -6870,11 +7025,11 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 } } - if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { + if (all_on_device && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { ggml_cuda_mul_mat_vec_p021(src0, src1, dst); } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) { ggml_cuda_mul_mat_vec_nc(src0, src1, dst); - }else if (src0->type == GGML_TYPE_F32) { + } else if (src0->type == GGML_TYPE_F32) { ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) { @@ -6935,8 +7090,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg CUDA_CHECK(ggml_cuda_set_device(g_main_device)); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; char * src1_ddc = (char *) src1_extra->data_device[g_main_device]; @@ -6991,8 +7146,8 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { const size_t nb1 = tensor->nb[1]; - ggml_backend backend = tensor->backend; - struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; + ggml_backend_type backend = tensor->backend; + ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; memset(extra, 0, sizeof(*extra)); for (int64_t id = 0; id < g_device_count; ++id) { @@ -7046,7 +7201,6 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size)); } - CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice)); extra->data_device[id] = buf; @@ -7085,17 +7239,17 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) { delete extra; } -static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr; +static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr; static size_t g_temp_tensor_extra_index = 0; -static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { +static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { if (g_temp_tensor_extras == nullptr) { g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES]; } size_t alloc_index = g_temp_tensor_extra_index; g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES; - struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index]; + ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index]; memset(extra, 0, sizeof(*extra)); return extra; @@ -7123,7 +7277,7 @@ static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scra return; } - struct ggml_tensor_extra_gpu * extra; + ggml_tensor_extra_gpu * extra; const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) || tensor->op == GGML_OP_VIEW || @@ -7132,7 +7286,7 @@ static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scra CUDA_CHECK(ggml_cuda_set_device(g_main_device)); if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; size_t offset = 0; if (tensor->op == GGML_OP_VIEW) { @@ -7141,7 +7295,7 @@ static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scra extra = ggml_cuda_alloc_temp_tensor_extra(); extra->data_device[g_main_device] = src0_ddc + offset; } else if (tensor->op == GGML_OP_CPY) { - struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra; void * src1_ddv = src1_extra->data_device[g_main_device]; extra = ggml_cuda_alloc_temp_tensor_extra(); extra->data_device[g_main_device] = src1_ddv; @@ -7183,13 +7337,13 @@ void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) CUDA_CHECK(cudaMalloc(&g_scratch_buffer, g_scratch_size)); } - struct ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra(); + ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra(); const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) || tensor->op == GGML_OP_VIEW; if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; size_t view_offset = 0; if (tensor->op == GGML_OP_VIEW) { @@ -7207,7 +7361,7 @@ void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) { GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(ggml_is_contiguous(tensor)); - struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; CUDA_CHECK(ggml_cuda_set_device(g_main_device)); CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice)); } @@ -7264,58 +7418,47 @@ void ggml_cuda_free_scratch() { g_scratch_buffer = nullptr; } -bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){ +bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { ggml_cuda_func_t func; const bool any_on_device = tensor->backend == GGML_BACKEND_GPU || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU); + if (!any_on_device && tensor->op != GGML_OP_MUL_MAT) { + return false; + } + switch (tensor->op) { + case GGML_OP_REPEAT: + func = ggml_cuda_repeat; + break; + case GGML_OP_GET_ROWS: + func = ggml_cuda_get_rows; + break; case GGML_OP_DUP: - if (!any_on_device) { - return false; - } func = ggml_cuda_dup; break; case GGML_OP_ADD: - if (!any_on_device) { - return false; - } func = ggml_cuda_add; break; case GGML_OP_MUL: - if (!any_on_device) { - return false; - } func = ggml_cuda_mul; break; case GGML_OP_UNARY: switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_GELU: - if (!any_on_device) { - return false; - } func = ggml_cuda_gelu; break; case GGML_UNARY_OP_SILU: - if (!any_on_device) { - return false; - } func = ggml_cuda_silu; break; default: return false; } break; case GGML_OP_NORM: - if (!any_on_device) { - return false; - } func = ggml_cuda_norm; break; case GGML_OP_RMS_NORM: - if (!any_on_device) { - return false; - } func = ggml_cuda_rms_norm; break; case GGML_OP_MUL_MAT: @@ -7325,54 +7468,30 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ func = ggml_cuda_mul_mat; break; case GGML_OP_SCALE: - if (!any_on_device) { - return false; - } func = ggml_cuda_scale; break; case GGML_OP_CPY: - if (!any_on_device) { - return false; - } func = ggml_cuda_cpy; break; case GGML_OP_CONT: - if (!any_on_device) { - return false; - } func = ggml_cuda_dup; break; case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: - if (!any_on_device) { - return false; - } func = ggml_cuda_nop; break; case GGML_OP_DIAG_MASK_INF: - if (!any_on_device) { - return false; - } func = ggml_cuda_diag_mask_inf; break; case GGML_OP_SOFT_MAX: - if (!any_on_device) { - return false; - } func = ggml_cuda_soft_max; break; case GGML_OP_ROPE: - if (!any_on_device) { - return false; - } func = ggml_cuda_rope; break; case GGML_OP_ALIBI: - if (!any_on_device) { - return false; - } func = ggml_cuda_alibi; break; default: @@ -7400,3 +7519,263 @@ void ggml_cuda_get_device_description(int device, char * description, size_t des CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); snprintf(description, description_size, "%s", prop.name); } + +//////////////////////////////////////////////////////////////////////////////// + +// backend interface + +#define UNUSED GGML_UNUSED + +struct ggml_backend_context_cuda { +}; + +static const char * ggml_backend_cuda_name(ggml_backend_t backend) { + return GGML_CUDA_NAME; + + UNUSED(backend); +} + +static void ggml_backend_cuda_free(ggml_backend_t backend) { + ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context; + delete cuda_ctx; + delete backend; +} + +struct ggml_backend_buffer_context_cuda { + void * device; + + ggml_tensor_extra_gpu * temp_tensor_extras = nullptr; + size_t temp_tensor_extra_index = 0; + + ~ggml_backend_buffer_context_cuda() { + delete[] temp_tensor_extras; + } + + ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { + if (temp_tensor_extras == nullptr) { + temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES]; + } + + size_t alloc_index = temp_tensor_extra_index; + temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_MAX_NODES; + ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index]; + memset(extra, 0, sizeof(*extra)); + + return extra; + } +}; + +static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context; + CUDA_CHECK(cudaFree(ctx->device)); + delete ctx; +} + +static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { + ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context; + return ctx->device; +} + +static size_t ggml_backend_cuda_buffer_get_alloc_size(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + int64_t row_low = 0; + int64_t row_high = ggml_nrows(tensor); + int64_t nrows_split = row_high - row_low; + + size_t size = ggml_nbytes_split(tensor, nrows_split); + + int64_t ne0 = tensor->ne[0]; + + if (ggml_is_quantized(tensor->type)) { + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING) + * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type); + } + } + + return size; + + UNUSED(buffer); +} + +static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context; + + if (tensor->view_src != NULL && tensor->view_offs == 0) { + assert(tensor->view_src->buffer->backend == buffer->backend); + tensor->backend = tensor->view_src->backend; + tensor->extra = tensor->view_src->extra; + return; + } + + ggml_tensor_extra_gpu * extra = ctx->ggml_cuda_alloc_temp_tensor_extra(); + + extra->data_device[g_main_device] = tensor->data; + + tensor->backend = GGML_BACKEND_GPU; + tensor->extra = extra; + + if (ggml_is_quantized(tensor->type)) { + // initialize padding to 0 to avoid possible NaN values + int64_t row_low = 0; + int64_t row_high = ggml_nrows(tensor); + int64_t nrows_split = row_high - row_low; + + size_t original_size = ggml_nbytes_split(tensor, nrows_split); + size_t padded_size = ggml_backend_cuda_buffer_get_alloc_size(tensor->buffer, tensor); + + if (padded_size > original_size && tensor->view_src == nullptr) { + CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + original_size, 0, padded_size - original_size, g_cudaStreams[g_main_device][0])); + } + } + + UNUSED(buffer); +} + +static struct ggml_backend_buffer_i cuda_backend_buffer_interface = { + /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer, + /* .get_base = */ ggml_backend_cuda_buffer_get_base, + /* .get_alloc_size = */ ggml_backend_cuda_buffer_get_alloc_size, + /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor, + /* .free_tensor = */ NULL, +}; + +static ggml_backend_buffer_t ggml_backend_cuda_alloc_buffer(ggml_backend_t backend, size_t size) { + ggml_cuda_set_device(g_main_device); + + ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda; + CUDA_CHECK(cudaMalloc(&ctx->device, size)); + return ggml_backend_buffer_init(backend, cuda_backend_buffer_interface, ctx, size); +} + +static size_t ggml_backend_cuda_get_alignment(ggml_backend_t backend) { + return 128; + UNUSED(backend); +} + +static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + + CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[g_main_device][0])); + + UNUSED(backend); +} + +static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + + CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0])); + + UNUSED(backend); +} + +static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { + CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0])); + + UNUSED(backend); +} + +static ggml_backend_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backend_t backend, ggml_cgraph * cgraph) { + GGML_ASSERT(!"not implemented"); + + return nullptr; + + UNUSED(backend); + UNUSED(cgraph); +} + +static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(!"not implemented"); + + UNUSED(backend); + UNUSED(plan); +} + +static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(!"not implemented"); + + UNUSED(backend); + UNUSED(plan); +} + +static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + ggml_cuda_set_device(g_main_device); + + ggml_compute_params params = {}; + params.type = GGML_TASK_COMPUTE; + params.ith = 0; + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_tensor * node = cgraph->nodes[i]; + + assert(node->backend == GGML_BACKEND_GPU); + for (int j = 0; j < GGML_MAX_SRC; j++) { + if (node->src[j] != nullptr) { + assert(node->src[j]->backend == GGML_BACKEND_GPU); + } + } + + bool ok = ggml_cuda_compute_forward(¶ms, node); + if (!ok) { + fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); + } + GGML_ASSERT(ok); + +#if 0 + if (node->type == GGML_TYPE_F32) { + cudaDeviceSynchronize(); + std::vector tmp(ggml_nelements(node), 0.0f); + cudaMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), cudaMemcpyDeviceToHost); + printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op), + ggml_type_name(node->src[0]->type), + node->src[1] ? ggml_type_name(node->src[1]->type) : "none", + node->src[0]->name, + node->src[1] ? node->src[1]->name : "none"); + double sum = 0.0; + double sq_sum = 0.0; + for (int i = 0; i < ggml_nelements(node); i++) { + printf("%f ", tmp[i]); + sum += tmp[i]; + sq_sum += tmp[i]*tmp[i]; + } + printf("\n"); + printf("sum: %f, ", sum); + printf("sq_sum: %f\n", sq_sum); + } +#endif + } + + UNUSED(backend); +} + +static ggml_backend_i cuda_backend_i = { + /* .get_name = */ ggml_backend_cuda_name, + /* .free = */ ggml_backend_cuda_free, + /* .alloc_buffer = */ ggml_backend_cuda_alloc_buffer, + /* .get_alignment = */ ggml_backend_cuda_get_alignment, + /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async, + /* .synchronize = */ ggml_backend_cuda_synchronize, + /* .cpy_tensor_from = */ nullptr, + /* .cpy_tensor_to = */ nullptr, + /* .graph_plan_create = */ ggml_backend_cuda_graph_plan_create, + /* .graph_plan_free = */ ggml_backend_cuda_graph_plan_free, + /* .graph_plan_compute = */ ggml_backend_cuda_graph_plan_compute, + /* .graph_compute = */ ggml_backend_cuda_graph_compute, + /* .supports_op = */ nullptr, +}; + +ggml_backend_t ggml_backend_cuda_init() { + ggml_init_cublas(); // TODO: remove from ggml.c + + ggml_backend_context_cuda * ctx = new ggml_backend_context_cuda; + + ggml_backend_t cuda_backend = new ggml_backend { + /* .interface = */ cuda_backend_i, + /* .context = */ ctx + }; + + return cuda_backend; +} diff --git a/ggml-cuda.h b/ggml-cuda.h index fda704b66..57adc9cf3 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -1,6 +1,7 @@ #pragma once #include "ggml.h" +#include "ggml-backend.h" #ifdef GGML_USE_HIPBLAS #define GGML_CUDA_NAME "ROCm" @@ -42,6 +43,9 @@ GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, s GGML_API int ggml_cuda_get_device_count(void); GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size); +// backend API +GGML_API ggml_backend_t ggml_backend_cuda_init(void); // TODO: take a list of devices to use + #ifdef __cplusplus } #endif diff --git a/ggml-metal.h b/ggml-metal.h index 790cf0bf7..096b844e3 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -20,6 +20,7 @@ #pragma once #include "ggml.h" +#include "ggml-backend.h" #include #include @@ -35,10 +36,15 @@ struct ggml_cgraph; extern "C" { #endif -void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); +// +// internal API +// temporary exposed to user-code +// struct ggml_metal_context; +void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); + // number of command buffers to use struct ggml_metal_context * ggml_metal_init(int n_cb); void ggml_metal_free(struct ggml_metal_context * ctx); @@ -83,6 +89,17 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx); // creates gf->n_threads command buffers in parallel void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf); +// +// backend API +// user-code should use only these functions +// + +GGML_API ggml_backend_t ggml_backend_metal_init(void); + +GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); + +GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb); + #ifdef __cplusplus } #endif diff --git a/ggml-metal.m b/ggml-metal.m index 92956ed97..29cb3c922 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1456,3 +1456,140 @@ void ggml_metal_graph_compute( } } + +//////////////////////////////////////////////////////////////////////////////// + +// backend interface + +static const char * ggml_backend_metal_name(ggml_backend_t backend) { + return "Metal"; + + UNUSED(backend); +} + +static void ggml_backend_metal_free(ggml_backend_t backend) { + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + ggml_metal_free(ctx); + free(backend); +} + +static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { + return (void *)buffer->context; +} + +static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { + free(buffer->context); + UNUSED(buffer); +} + +static struct ggml_backend_buffer_i metal_backend_buffer_i = { + /* .free_buffer = */ ggml_backend_metal_buffer_free_buffer, + /* .get_base = */ ggml_backend_metal_buffer_get_base, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .init_tensor = */ NULL, // no initialization required + /* .free_tensor = */ NULL, // no cleanup required +}; + +static ggml_backend_buffer_t ggml_backend_metal_alloc_buffer(ggml_backend_t backend, size_t size) { + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + + void * data = ggml_metal_host_malloc(size); + + // TODO: set proper name of the buffers + ggml_metal_add_buffer(ctx, "backend", data, size, 0); + + return ggml_backend_buffer_init(backend, metal_backend_buffer_i, data, size); +} + +static size_t ggml_backend_metal_get_alignment(ggml_backend_t backend) { + return 32; + UNUSED(backend); +} + +static void ggml_backend_metal_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy((char *)tensor->data + offset, data, size); + + UNUSED(backend); +} + +static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy(data, (const char *)tensor->data + offset, size); + + UNUSED(backend); +} + +static void ggml_backend_metal_synchronize(ggml_backend_t backend) { + UNUSED(backend); +} + +static void ggml_backend_metal_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +static void ggml_backend_metal_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +static void ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; + + ggml_metal_graph_compute(metal_ctx, cgraph); +} + +static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return true; + UNUSED(backend); + UNUSED(op); +} + +static struct ggml_backend_i metal_backend_i = { + /* .get_name = */ ggml_backend_metal_name, + /* .free = */ ggml_backend_metal_free, + /* .alloc_buffer = */ ggml_backend_metal_alloc_buffer, + /* .get_alignment = */ ggml_backend_metal_get_alignment, + /* .set_tensor_async = */ ggml_backend_metal_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_metal_get_tensor_async, + /* .synchronize = */ ggml_backend_metal_synchronize, + /* .cpy_tensor_from = */ ggml_backend_metal_cpy_tensor_from, + /* .cpy_tensor_to = */ ggml_backend_metal_cpy_tensor_to, + /* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm + /* .graph_plan_free = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_metal_graph_compute, + /* .supports_op = */ ggml_backend_metal_supports_op, +}; + +ggml_backend_t ggml_backend_metal_init(void) { + struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); + + ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); + + ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend)); + + *metal_backend = (struct ggml_backend) { + /* .interface = */ metal_backend_i, + /* .context = */ ctx, + }; + + return metal_backend; +} + +bool ggml_backend_is_metal(ggml_backend_t backend) { + return backend->iface.get_name == ggml_backend_metal_name; +} + +void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + + ggml_metal_set_n_cb(ctx, n_cb); +} diff --git a/ggml.c b/ggml.c index 911a63988..6d1776ca4 100644 --- a/ggml.c +++ b/ggml.c @@ -162,40 +162,16 @@ typedef void * thread_ret_t; #define GGML_PRINT(...) printf(__VA_ARGS__) +// +// end of logging block +// + #ifdef GGML_USE_ACCELERATE // uncomment to use vDSP for soft max computation // note: not sure if it is actually faster //#define GGML_SOFT_MAX_ACCELERATE #endif -// -// logging -// - -#if (GGML_DEBUG >= 1) -#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG(...) -#endif - -#if (GGML_DEBUG >= 5) -#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG_5(...) -#endif - -#if (GGML_DEBUG >= 10) -#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG_10(...) -#endif - -#define GGML_PRINT(...) printf(__VA_ARGS__) - -// -// end of logging block -// - #if defined(_MSC_VER) || defined(__MINGW32__) #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) @@ -4951,6 +4927,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( *result = (struct ggml_tensor) { /*.type =*/ type, /*.backend =*/ GGML_BACKEND_CPU, + /*.buffer =*/ NULL, /*.n_dims =*/ n_dims, /*.ne =*/ { 1, 1, 1, 1 }, /*.nb =*/ { 0, 0, 0, 0 }, @@ -20203,6 +20180,10 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_vec_cpy_f32(nx, xp, x); ggml_vec_cpy_f32(nx, gp, g); + // TODO: instead of passing &cancel here, use the return code of the linesearch + // to determine if the optimization should be cancelled + // this is a simple change, but not doing this atm, since I don't have a nice + // way to test and don't want to break something with so many changes lined up ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data); if (cancel) { return GGML_OPT_CANCEL; diff --git a/ggml.h b/ggml.h index a9d4e33d9..3eddc44b9 100644 --- a/ggml.h +++ b/ggml.h @@ -326,7 +326,7 @@ extern "C" { GGML_TYPE_COUNT, }; - enum ggml_backend { + enum ggml_backend_type { GGML_BACKEND_CPU = 0, GGML_BACKEND_GPU = 10, GGML_BACKEND_GPU_SPLIT = 20, @@ -479,8 +479,10 @@ extern "C" { // n-dimensional tensor struct ggml_tensor { - enum ggml_type type; - enum ggml_backend backend; + enum ggml_type type; + enum ggml_backend_type backend; + + struct ggml_backend_buffer * buffer; int n_dims; int64_t ne[GGML_MAX_DIMS]; // number of elements @@ -514,7 +516,7 @@ extern "C" { void * extra; // extra things e.g. for ggml-cuda.cu - char padding[4]; + char padding[12]; }; static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); @@ -1358,7 +1360,7 @@ extern "C" { // alibi position embedding // in-place, returns view(a) - struct ggml_tensor * ggml_alibi( + GGML_API struct ggml_tensor * ggml_alibi( struct ggml_context * ctx, struct ggml_tensor * a, int n_past, @@ -1367,7 +1369,7 @@ extern "C" { // clamp // in-place, returns view(a) - struct ggml_tensor * ggml_clamp( + GGML_API struct ggml_tensor * ggml_clamp( struct ggml_context * ctx, struct ggml_tensor * a, float min, @@ -2102,7 +2104,7 @@ extern "C" { enum ggml_type vec_dot_type; } ggml_type_traits_t; - ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type); + GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type); #ifdef __cplusplus } diff --git a/llama.cpp b/llama.cpp index a4312ab72..77f7fa7c1 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1730,7 +1730,7 @@ struct llama_model_loader { } } - struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend backend) { + struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) { if (backend != GGML_BACKEND_CPU) { ggml_set_no_alloc(ctx, true); } @@ -1748,7 +1748,7 @@ struct llama_model_loader { return tensor; } - struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, ggml_backend backend) { + struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, ggml_backend_type backend) { struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str()); if (cur == NULL) { @@ -2299,8 +2299,8 @@ static void llm_load_tensors( // output { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2335,8 +2335,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -2365,8 +2365,8 @@ static void llm_load_tensors( { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2401,8 +2401,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -2435,8 +2435,8 @@ static void llm_load_tensors( // output { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2473,8 +2473,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -2512,8 +2512,8 @@ static void llm_load_tensors( // output { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2550,8 +2550,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -2589,8 +2589,8 @@ static void llm_load_tensors( model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2624,8 +2624,8 @@ static void llm_load_tensors( const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index e44c3bd03..4311268bd 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -1,16 +1,18 @@ #!/bin/bash -cp -rpv ../ggml/src/ggml.c ./ggml.c -cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c -cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h -cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu -cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h -cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp -cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h -cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m -cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal -cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h -cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h +cp -rpv ../ggml/src/ggml.c ./ggml.c +cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c +cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c +cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h +cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu +cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h +cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp +cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h +cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m +cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal +cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h +cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h +cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp From dcc09d25961c5d0626bc148e558ee841141748f7 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 9 Oct 2023 14:28:27 +0300 Subject: [PATCH 044/295] metal : do not use mul_mm kernels when ne00 < 64 (#3542) --- ggml-metal.m | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-metal.m b/ggml-metal.m index 29cb3c922..7d67db90f 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1040,7 +1040,7 @@ void ggml_metal_graph_compute( !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1t == GGML_TYPE_F32 && - ne00 % 32 == 0 && + ne00 % 32 == 0 && ne00 >= 64 && ne11 > ne11_mm_min) { //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); switch (src0->type) { From fcca0a700487999d52a525c96d6661e9f6a8703a Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 9 Oct 2023 14:32:17 +0300 Subject: [PATCH 045/295] refact : fix convert script + zero out KV cache to avoid nans (#3523) * refact : fix convert script + zero out KV cache to avoid nans * ggml : silu(-inf) should never happen * metal : assert various kernel requirements --- convert-refact-hf-to-gguf.py | 71 ++++------------------------------ examples/parallel/parallel.cpp | 2 +- ggml-metal.m | 20 ++++++---- ggml-metal.metal | 18 ++++++--- ggml.c | 27 +++++++------ llama.cpp | 4 ++ 6 files changed, 51 insertions(+), 91 deletions(-) diff --git a/convert-refact-hf-to-gguf.py b/convert-refact-hf-to-gguf.py index e0cd417db..bfeabc082 100755 --- a/convert-refact-hf-to-gguf.py +++ b/convert-refact-hf-to-gguf.py @@ -17,33 +17,6 @@ if "NO_LOCAL_GGUF" not in os.environ: sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf")) import gguf - -def bytes_to_unicode(): - # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py - """ - Returns list of utf-8 byte and a corresponding list of unicode strings. - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a significant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - And avoids mapping to whitespace/control characters the bpe code barfs on. - """ - bs = ( - list(range(ord("!"), ord("~") + 1)) - + list(range(ord("¡"), ord("¬") + 1)) - + list(range(ord("®"), ord("ÿ") + 1)) - ) - cs = bs[:] - n = 0 - for b in range(2**8): - if b not in bs: - bs.append(b) - cs.append(2**8 + n) - n += 1 - return dict(zip(bs, (chr(n) for n in cs))) - - def count_model_parts(dir_model: Path) -> int: num_parts = 0 for filename in os.listdir(dir_model): @@ -153,53 +126,25 @@ tokens: list[bytearray] = [] scores: list[float] = [] toktypes: list[int] = [] -tokenizer_json_file = dir_model / "tokenizer.json" -if not tokenizer_json_file.is_file(): - print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr) - sys.exit(1) - # gpt2 tokenizer gguf_writer.add_tokenizer_model("gpt2") -with open(tokenizer_json_file, "r", encoding="utf-8") as f: - tokenizer_json = json.load(f) - print("gguf: get gpt2 tokenizer vocab") +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) + # The number of tokens in tokenizer.json can differ from the expected vocab size. # This causes downstream issues with mismatched tensor sizes when running the inference -vocab_size = ( - hparams["vocab_size"] - if "vocab_size" in hparams - else len(tokenizer_json["model"]["vocab"]) -) - -tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) +vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) +assert max(tokenizer.vocab.values()) < vocab_size reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} -byte_encoder = bytes_to_unicode() -byte_decoder = {v: k for k, v in byte_encoder.items()} for i in range(vocab_size): - if i in reverse_vocab: - text = reverse_vocab[i] - try: - text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) - except KeyError: - text = bytearray() - for c in reverse_vocab[i]: - if ord(c) < 256: # single byte character - text.append(byte_decoder[ord(c)]) - else: # multibyte special token character - text.extend(c.encode("utf-8")) - else: - print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") - pad_token = f"[PAD{i}]".encode("utf8") - text = bytearray(pad_token) - - tokens.append(text) - scores.append(0.0) # dymmy - toktypes.append(gguf.TokenType.NORMAL) # dummy + tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") + scores.append(0.0) # dummy + toktypes.append(gguf.TokenType.NORMAL) gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 721888da7..04f1e45b9 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -167,7 +167,7 @@ int main(int argc, char ** argv) { // the max batch size is as large as the context to handle cases where we get very long input prompt from multiple // users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time - llama_batch batch = llama_batch_init(params.n_ctx, 0); + llama_batch batch = llama_batch_init(n_ctx, 0); int32_t n_total_prompt = 0; int32_t n_total_gen = 0; diff --git a/ggml-metal.m b/ggml-metal.m index 7d67db90f..5a23144d0 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -779,8 +779,8 @@ void ggml_metal_graph_compute( } break; case GGML_OP_CONCAT: { + const int64_t nb = ne00; - int64_t nb = ne00; [encoder setComputePipelineState:ctx->pipeline_concat]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; @@ -812,6 +812,7 @@ void ggml_metal_graph_compute( [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; const int nth = MIN(1024, ne0); + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ADD: @@ -909,9 +910,10 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; - const int64_t n = ggml_nelements(dst)/4; + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(gf->nodes[i])) { @@ -921,9 +923,10 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - const int64_t n = ggml_nelements(dst)/4; + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_RELU: { @@ -941,9 +944,10 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - const int64_t n = ggml_nelements(dst)/4; + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; default: { @@ -1251,6 +1255,8 @@ void ggml_metal_graph_compute( } break; case GGML_OP_RMS_NORM: { + GGML_ASSERT(ne00 % 4 == 0); + float eps; memcpy(&eps, dst->op_params, sizeof(float)); diff --git a/ggml-metal.metal b/ggml-metal.metal index b6288db28..99b9fd7a7 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -345,10 +345,11 @@ kernel void kernel_rms_norm( uint sgitg[[simdgroup_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint ntg[[threads_per_threadgroup]]) { - device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01); - device const float * x_scalar = (device const float *) x; - float4 sumf=0; - float all_sum=0; + device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01); + device const float * x_scalar = (device const float *) x; + + float4 sumf = 0; + float all_sum = 0; // parallel sum for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { @@ -361,6 +362,7 @@ kernel void kernel_rms_norm( } threadgroup_barrier(mem_flags::mem_threadgroup); + // broadcast, simd group number is ntg / 32 for (uint i = ntg / 32 / 2; i > 0; i /= 2) { if (tpitg < i) { @@ -368,7 +370,9 @@ kernel void kernel_rms_norm( } } if (tpitg == 0) { - for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];} + for (int i = 4 * (ne00 / 4); i < ne00; i++) { + sum[0] += x_scalar[i]; + } sum[0] /= ne00; } @@ -383,7 +387,9 @@ kernel void kernel_rms_norm( y[i00] = x[i00] * scale; } if (tpitg == 0) { - for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;} + for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) { + y_scalar[i00] = x_scalar[i00] * scale; + } } } diff --git a/ggml.c b/ggml.c index 6d1776ca4..5bb1da31b 100644 --- a/ggml.c +++ b/ggml.c @@ -11233,7 +11233,7 @@ static void ggml_compute_forward_silu_f32( #ifndef NDEBUG for (int k = 0; k < nc; k++) { - const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k]; UNUSED(x); assert(!isnan(x)); assert(!isinf(x)); @@ -13066,17 +13066,17 @@ static void ggml_compute_forward_alibi_f32( assert(n_past >= 0); - const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 - const int ne1 = src0->ne[1]; // seq_len_without_past - const int ne2 = src0->ne[2]; // n_head -> this is k - //const int ne3 = src0->ne[3]; // 1 -> bsz + const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 + const int64_t ne1 = src0->ne[1]; // seq_len_without_past + const int64_t ne2 = src0->ne[2]; // n_head -> this is k + //const int64_t ne3 = src0->ne[3]; // 1 -> bsz - const int n = ggml_nrows(src0); - const int ne2_ne3 = n/ne1; // ne2*ne3 + const int64_t n = ggml_nrows(src0); + const int64_t ne2_ne3 = n/ne1; // ne2*ne3 - const int nb0 = src0->nb[0]; - const int nb1 = src0->nb[1]; - const int nb2 = src0->nb[2]; + const size_t nb0 = src0->nb[0]; + const size_t nb1 = src0->nb[1]; + const size_t nb2 = src0->nb[2]; //const int nb3 = src0->nb[3]; GGML_ASSERT(nb0 == sizeof(float)); @@ -13088,9 +13088,9 @@ static void ggml_compute_forward_alibi_f32( const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - for (int i = 0; i < ne0; i++) { - for (int j = 0; j < ne1; j++) { - for (int k = 0; k < ne2_ne3; k++) { + for (int64_t i = 0; i < ne0; i++) { + for (int64_t j = 0; j < ne1; j++) { + for (int64_t k = 0; k < ne2_ne3; k++) { float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); @@ -13105,7 +13105,6 @@ static void ggml_compute_forward_alibi_f32( } pdst[0] = i * m_k + src[0]; - } } } diff --git a/llama.cpp b/llama.cpp index 77f7fa7c1..24f07daca 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1325,7 +1325,11 @@ static bool llama_kv_cache_init( cache.cells.clear(); cache.cells.resize(n_ctx); + // TODO: this should be: + // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead()); + // change it and test that it works cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); + memset(cache.buf.data, 0, cache.buf.size); struct ggml_init_params params; params.mem_size = cache.buf.size; From 95bd60a0a69f57e9a2ff1269667ea484a1a9bb40 Mon Sep 17 00:00:00 2001 From: slaren Date: Mon, 9 Oct 2023 14:44:58 +0200 Subject: [PATCH 046/295] ggml-alloc : fix assert in debug builds (#3555) --- ggml-alloc.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-alloc.c b/ggml-alloc.c index 3321f05e2..34eba3f83 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -386,7 +386,7 @@ static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) { // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras - assert(ggml_allocr_is_measure(alloc) || view->buffer->backend == alloc->buffer->backend); + assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend); ggml_backend_buffer_init_tensor(alloc->buffer, view); } From 11ea5c7d96f2c28e1c99659e08ec0a44574056e2 Mon Sep 17 00:00:00 2001 From: vvhg1 <94630311+vvhg1@users.noreply.github.com> Date: Tue, 10 Oct 2023 09:31:21 +0200 Subject: [PATCH 047/295] infill. : fix tokenization (#3508) * infill tokens correction * serverinfill tokens correction * removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape * removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape * only rm when params.escape, rm space if possible which is added back or rm added space token * only rm when params.escape, rm space if possible which is added back or rm added space token * Revert "only rm when params.escape, rm space if possible which is added back or rm added space token" This reverts commit 63ba0b621f21077c0e3bc6ba6a327534123cb738. * fix interactive prompt escaping and fix server infill leading space handling * rm unnecessary bool check --- examples/infill/infill.cpp | 37 +++++++++++++++++++++++++++++++++---- examples/server/server.cpp | 15 +++++++++++++-- 2 files changed, 46 insertions(+), 6 deletions(-) diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index 9ec75ce42..d994de5e8 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -233,10 +233,22 @@ int main(int argc, char ** argv) { const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM; LOG("add_bos: %d\n", add_bos); + bool suff_rm_leading_spc = params.escape; + if (suff_rm_leading_spc && params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) { + params.input_suffix.erase(0, 1); + suff_rm_leading_spc = false; + } std::vector embd_inp; - std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos); - std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos); + std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); + std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); + const int space_token = 29871; + if (suff_rm_leading_spc && inp_sfx[0] == space_token) { + inp_sfx.erase(inp_sfx.begin()); + } inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx)); + if (add_bos) { + inp_pfx.insert(inp_pfx.begin(), llama_token_bos(ctx)); + } inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx)); embd_inp = inp_pfx; embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); @@ -627,10 +639,27 @@ int main(int argc, char ** argv) { buffer.clear(); // done taking input, reset color console::set_display(console::reset); + + if (params.escape) { + //process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here + process_escapes(params.input_prefix); + process_escapes(params.input_suffix); + } + suff_rm_leading_spc = params.escape; + if (suff_rm_leading_spc && params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) { + params.input_suffix.erase(0, 1); + suff_rm_leading_spc = false; + } // tokenize new prefix and suffix - std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos); - std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos); + std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); + std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); + if (suff_rm_leading_spc && inp_sfx[0] == space_token) { + inp_sfx.erase(inp_sfx.begin()); + } inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx)); + if (add_bos) { + inp_pfx.insert(inp_pfx.begin(), llama_token_bos(ctx)); + } inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx)); embd_inp = inp_pfx; embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); diff --git a/examples/server/server.cpp b/examples/server/server.cpp index c53a64867..8c5318c65 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -344,9 +344,20 @@ struct llama_server_context void loadInfill() { - auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS - auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS + bool suff_rm_leading_spc = true; + if (params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) { + params.input_suffix.erase(0, 1); + suff_rm_leading_spc = false; + } + + auto prefix_tokens = tokenize(params.input_prefix, false); + auto suffix_tokens = tokenize(params.input_suffix, false); + const int space_token = 29871; + if (suff_rm_leading_spc && suffix_tokens[0] == space_token) { + suffix_tokens.erase(suffix_tokens.begin()); + } prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx)); + prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(ctx)); // always add BOS prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx)); prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); prefix_tokens.push_back(llama_token_middle(ctx)); From f5f9121de140eff558f13b5c5e78a3a3b6b94377 Mon Sep 17 00:00:00 2001 From: Jan Ploski Date: Tue, 10 Oct 2023 09:50:23 +0200 Subject: [PATCH 048/295] llm : add MPT support (#3417) * CUDA: added support for ggml_clamp (see also: https://github.com/ggerganov/ggml/issues/545) * mpt : added an implementation based (mostly) on falcon integration, modified with deltas from ggml/examples/mpt * mpt : protect against "clip_qkv": null in mpt-7b * mpt : quick fix to avoid "Strange model" warning when quantizing MPT models * mpt : addendum to changeset:84e30e8 - leave parameter clamp_kqv out from metadata rather than use 0.0 to indicate "no clamping" (more compliant with the current GGUF spec?) * mpt : standardized all tensor names to follow GGUF spec * mpt : addendum to changeset:1be89c40 - use "req" parameter of GGUF_GET_KEY macro instead of duplicate code * mpt : fixed comment s/gptneox/mpt/ * mpt : remove tabs, trailing whitespace * mpt : removed ne01 + n_past == ne00 assertion from alibi (cuda/f32) and rope_shift from build_mpt * mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252 * comment out n_past instead of marking it unused * mpt : removed hardcoded +178 from convert script in favor of utilizing hparams["vocab_size"] * mpt : remove unused tokenizer_json in convert script * ggml : remove obsolete n_past assert in ggml_alibi * llama : print clam_kqv and max_alibi_bias hparams --------- Co-authored-by: Cebtenzzre Co-authored-by: Georgi Gerganov --- convert-mpt-hf-to-gguf.py | 216 +++++++++++++++++++ ggml-cuda.cu | 47 ++++- ggml-metal.m | 2 +- ggml.c | 4 +- llama.cpp | 425 +++++++++++++++++++++++++++++++++++++- 5 files changed, 685 insertions(+), 9 deletions(-) create mode 100755 convert-mpt-hf-to-gguf.py diff --git a/convert-mpt-hf-to-gguf.py b/convert-mpt-hf-to-gguf.py new file mode 100755 index 000000000..73a4932f7 --- /dev/null +++ b/convert-mpt-hf-to-gguf.py @@ -0,0 +1,216 @@ +#!/usr/bin/env python3 +# HF mpt--> gguf conversion + +from __future__ import annotations + +import argparse +import json +import os +import struct +import sys +from pathlib import Path +from typing import Any + +import numpy as np +import torch +from transformers import AutoTokenizer # type: ignore[import] + +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) +import gguf + + +def count_model_parts(dir_model: Path) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts + + +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert an MPT model to a GGML compatible file") + parser.add_argument( + "--vocab-only", action="store_true", + help="extract only the vocab", + ) + parser.add_argument( + "--outfile", type=Path, + help="path to write to; default: based on input", + ) + parser.add_argument( + "model", type=Path, + help="directory containing model file, or model file itself (*.bin)", + ) + parser.add_argument( + "ftype", type=int, choices=[0, 1], default=1, nargs='?', + help="output format - use 0 for float32, 1 for float16", + ) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) + sys.exit(1) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' + +print("gguf: loading model "+dir_model.name) + +with open(dir_model / "config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) + +if hparams["architectures"][0] != "MPTForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + + sys.exit() + +# get number of model parts +num_parts = count_model_parts(dir_model) + +ARCH=gguf.MODEL_ARCH.MPT +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +block_count = hparams["n_layers"] + +gguf_writer.add_name(dir_model.name) +gguf_writer.add_context_length(hparams["max_seq_len"]) +gguf_writer.add_embedding_length(hparams["d_model"]) +gguf_writer.add_block_count(block_count) +gguf_writer.add_feed_forward_length(4 * hparams["d_model"]) +gguf_writer.add_head_count(hparams["n_heads"]) +gguf_writer.add_layer_norm_eps(1e-05) +if hparams["attn_config"]["clip_qkv"] is not None: + gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"]) +gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"]) + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: list[bytearray] = [] +scores: list[float] = [] +toktypes: list[int] = [] + +# gpt2 tokenizer +gguf_writer.add_tokenizer_model("gpt2") + +print("gguf: get gpt2 tokenizer vocab") + +# MPT token embedding tensors have dimension 50432 (hparams["vocab_size"]), but +# there are only 50254 (len(tokenizer.vocab)) tokens in the vocab, presumably to +# accomodate some "reserved" tokens; this is causing problems down the line in +# llama.cpp, so we pad the vocab with dummy tokens: + +vocab_size = hparams["vocab_size"] + +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) + +reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} + +for i in range(vocab_size): + tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") + scores.append(0.0) # dummy + toktypes.append(gguf.TokenType.NORMAL) + +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) + +special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) +special_vocab.add_to_gguf(gguf_writer) + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH,block_count) + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = iter(("pytorch_model.bin",)) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) + +for part_name in part_names: + if args.vocab_only: + break + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") + + for name in model_part.keys(): + data = model_part[name] + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: + print("Cannot map tensor '" + name + "'") + continue # for the sake of compatibility with some old published models, don't quit + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + + gguf_writer.add_tensor(new_name, data) + + # note: MPT output is tied to (same as) wte in original model; + # for easier implementation in llama.cpp it's duplicated in GGUF, though :/ + if new_name == "token_embd.weight": + gguf_writer.add_tensor("output.weight", data) + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print(f"gguf: model successfully exported to '{fname_out}'") +print("") diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 7e92c5197..654d3632f 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -415,6 +415,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define CUDA_SILU_BLOCK_SIZE 256 #define CUDA_CPY_BLOCK_SIZE 32 #define CUDA_SCALE_BLOCK_SIZE 256 +#define CUDA_CLAMP_BLOCK_SIZE 256 #define CUDA_ROPE_BLOCK_SIZE 256 #define CUDA_ALIBI_BLOCK_SIZE 32 #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 @@ -4585,6 +4586,15 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale dst[i] = scale * x[i]; } +static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + + dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]); +} template static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) { @@ -5475,6 +5485,11 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons scale_f32<<>>(x, dst, scale, k); } +static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE; + clamp_f32<<>>(x, dst, min, max, k); +} + template static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { @@ -6419,12 +6434,12 @@ inline void ggml_cuda_op_alibi( const int64_t ne02 = src0->ne[2]; const int64_t nrows = ggml_nrows(src0); - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - GGML_ASSERT(ne01 + n_past == ne00); + //GGML_ASSERT(ne01 + n_past == ne00); GGML_ASSERT(n_head == ne02); const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); @@ -6500,6 +6515,24 @@ inline void ggml_cuda_op_scale( (void) src1_dd; } +inline void ggml_cuda_op_clamp( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + const float min = ((float *) dst->op_params)[0]; + const float max = ((float *) dst->op_params)[1]; + + clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream); + CUDA_CHECK(cudaGetLastError()); + + (void) src1; + (void) dst; + (void) src1_dd; +} + static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) { const int64_t nrows0 = ggml_nrows(src0); @@ -7061,6 +7094,10 @@ static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale); } +static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp); +} + static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); @@ -7470,6 +7507,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ case GGML_OP_SCALE: func = ggml_cuda_scale; break; + case GGML_OP_CLAMP: + if (!any_on_device) { + return false; + } + func = ggml_cuda_clamp; + break; case GGML_OP_CPY: func = ggml_cuda_cpy; break; diff --git a/ggml-metal.m b/ggml-metal.m index 5a23144d0..87fa17216 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1299,7 +1299,7 @@ void ggml_metal_graph_compute( const int nth = MIN(1024, ne00); - const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); diff --git a/ggml.c b/ggml.c index 5bb1da31b..1f5598fa6 100644 --- a/ggml.c +++ b/ggml.c @@ -13059,13 +13059,11 @@ static void ggml_compute_forward_alibi_f32( return; } - const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - assert(n_past >= 0); - const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 const int64_t ne1 = src0->ne[1]; // seq_len_without_past const int64_t ne2 = src0->ne[2]; // n_head -> this is k diff --git a/llama.cpp b/llama.cpp index 24f07daca..3b63b6401 100644 --- a/llama.cpp +++ b/llama.cpp @@ -424,6 +424,14 @@ static std::map> LLM_TENSOR_NAMES = LLM_ARCH_MPT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { @@ -1011,6 +1019,9 @@ struct llama_hparams { float rope_freq_base_train; float rope_freq_scale_train; + float f_clamp_kqv; + float f_max_alibi_bias; + bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; if (this->n_vocab != other.n_vocab) return true; @@ -2060,6 +2071,20 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_MPT: + { + hparams.f_clamp_kqv = 0.0f; + + GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); + GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV)); + GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS)); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 48: model.type = e_model::MODEL_30B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -2204,6 +2229,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); + LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); + LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias); LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); @@ -2649,6 +2676,73 @@ static void llm_load_tensors( layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend); } } break; + case LLM_ARCH_MPT: + { + model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + + // output + { + ggml_backend_type backend_norm; + ggml_backend_type backend_output; + + if (n_gpu_layers > int(n_layer)) { + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 + + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } + } + + const uint32_t n_ff = hparams.n_ff; + + const int i_gpu_start = n_layer - n_gpu_layers; + + model.layers.resize(n_layer); + + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd}, backend_split); + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + + layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + + layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); + layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + + ggml_nbytes(layer.wqkv) + + ggml_nbytes(layer.wo) + + ggml_nbytes(layer.ffn_norm) + + ggml_nbytes(layer.w2) + + ggml_nbytes(layer.w3); + } + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -4505,7 +4599,6 @@ static struct ggml_cgraph * llm_build_starcoder( return gf; } - static struct ggml_cgraph * llm_build_persimmon( llama_context & lctx, const llama_batch & batch) { @@ -4903,6 +4996,326 @@ static struct ggml_cgraph * llm_build_persimmon( return gf; } +static struct ggml_cgraph * llm_build_mpt( + llama_context & lctx, + const llama_batch & batch) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; // == n_head for MPT, as there's no MQA/GQA + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + const float norm_eps = hparams.f_norm_eps; + const float clamp_kqv = hparams.f_clamp_kqv; + const float max_alibi_bias = hparams.f_max_alibi_bias; + + const int n_gpu_layers = model.n_gpu_layers; + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n", + // kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift); + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ false, + }; + + params.no_alloc = true; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + //int warmup = 0; + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); + //warmup = ((uint32_t*) inp_tokens->data)[0] == 0; + } + + ggml_set_name(inp_tokens, "inp_tokens"); + + inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inpL); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); + } + } + + const int i_gpu_start = n_layer - n_gpu_layers; + (void) i_gpu_start; + + // offload functions set the tensor output backend to GPU + // tensors are GPU-accelerated if any input or the output has been offloaded + offload_func_t offload_func_nr = llama_nop; // nr = non-repeating + offload_func_t offload_func_kq = llama_nop; + offload_func_t offload_func_v = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (n_gpu_layers > n_layer) { + offload_func_nr = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 1) { + offload_func_v = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 2) { + offload_func_kq = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + } + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + offload_func_kq(KQ_mask); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * attn_norm; + + offload_func_t offload_func = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (il >= i_gpu_start) { + offload_func = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + // self-attention + // TODO: refactor into common function (shared with LLaMA) + { + attn_norm = ggml_norm(ctx0, inpL, norm_eps); + offload_func(attn_norm); + + attn_norm = ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm); + offload_func(attn_norm); + + if (1) { + cur = attn_norm; + } + + // compute QKV + + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + offload_func_kq(cur); + + if (clamp_kqv > 0.0f) { + cur = ggml_clamp(ctx0, cur, -clamp_kqv, clamp_kqv); + offload_func_kq(cur); + } + + const size_t wsize = ggml_type_size(cur->type); + + struct ggml_tensor * Qcur = ggml_view_3d( + ctx0, cur, n_embd_head, n_head, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + 0); + offload_func_kq(Qcur); + + struct ggml_tensor * Kcur = ggml_view_3d( + ctx0, cur, n_embd_head, n_head_kv, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + wsize * n_embd_head * n_head); + offload_func_kq(Kcur); + + struct ggml_tensor * tmpv = ggml_view_3d( + ctx0, cur, n_embd_head, n_head_kv, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + wsize * n_embd_head * (n_head + n_head_kv)); + offload_func_kq(Kcur); + + ggml_set_name(Qcur, "Qcur"); + ggml_set_name(Kcur, "Kcur"); + + { + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); + offload_func_v(Vcur); + offload_func_v(Vcur->src[0]->src[0]); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); + offload_func_kq(k); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + offload_func_v(v); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + offload_func_kq(Q); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + offload_func_kq(K); + ggml_set_name(K, "K"); + + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + offload_func_kq(KQ); + ggml_set_name(KQ, "KQ"); + + struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); + offload_func_kq(KQ_scaled); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + // TODO: replace with ggml_add() + struct ggml_tensor * KQ_scaled_alibi = + ggml_alibi(ctx0, KQ_scaled, 0, n_head, max_alibi_bias); + offload_func_kq(KQ_scaled_alibi); + ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); + + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); + offload_func_kq(KQ_masked); + ggml_set_name(KQ_masked, "KQ_masked"); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); + offload_func_v(KQ_soft_max); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + offload_func_v(V); + ggml_set_name(V, "V"); + + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + offload_func_v(KQV); + ggml_set_name(KQV, "KQV"); + + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + offload_func_v(KQV_merged); + ggml_set_name(KQV_merged, "KQV_merged"); + + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + offload_func_v(cur); + ggml_set_name(cur, "KQV_merged_contiguous"); + + cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); + offload_func(cur); + ggml_set_name(cur, "result_wo"); + } + + // Add the input + cur = ggml_add(ctx0, cur, inpL); + offload_func(cur); + + struct ggml_tensor * attn_out = cur; + + // feed forward + { + // Norm + { + cur = ggml_norm(ctx0, attn_out, norm_eps); + offload_func(cur); + + cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); + offload_func(cur); + } + + cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur); + offload_func(cur); + + cur = ggml_gelu(ctx0, cur); + offload_func(cur); + cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); + offload_func(cur); + } + + cur = ggml_add(ctx0, cur, attn_out); + offload_func(cur); + // input for next layer + inpL = cur; + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur, norm_eps); + offload_func_nr(cur); + + cur = ggml_mul(ctx0, cur, model.output_norm); + ggml_set_name(cur, "result_norm"); + } + + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_batch & batch) { @@ -4935,6 +5348,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm_build_refact(lctx, batch); } break; + case LLM_ARCH_MPT: + { + result = llm_build_mpt(lctx, batch); + } break; default: GGML_ASSERT(false); } @@ -5065,7 +5482,8 @@ static int llama_decode_internal( const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_BAICHUAN || model.arch == LLM_ARCH_FALCON || - model.arch == LLM_ARCH_REFACT; + model.arch == LLM_ARCH_REFACT || + model.arch == LLM_ARCH_MPT; const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3; if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) { n_threads = 1; @@ -7161,7 +7579,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s const std::string name = ggml_get_name(meta); // TODO: avoid hardcoded tensor names - use the TN_* constants - if (name.find("attn_v.weight") != std::string::npos) { + if (name.find("attn_v.weight") != std::string::npos || + name.find("attn_qkv.weight") != std::string::npos) { ++n_attention_wv; } else if (name.find("ffn_down.weight") != std::string::npos) { From 0aa6595ae02f97f2e5ffd74bf57a8b21ac83b272 Mon Sep 17 00:00:00 2001 From: Jhen-Jie Hong Date: Tue, 10 Oct 2023 06:31:13 -0500 Subject: [PATCH 049/295] swift : improvements and fixes (#3564) * swift : use macOS 12 as minimum requirement * swift : add missing ggml-backend.c source * swift : add -O3 -DNDEBUG unsafe flags --- Package.swift | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/Package.swift b/Package.swift index 1ea414cc1..4ab055b19 100644 --- a/Package.swift +++ b/Package.swift @@ -1,10 +1,10 @@ -// swift-tools-version:5.3 +// swift-tools-version:5.5 import PackageDescription #if arch(arm) || arch(arm64) let platforms: [SupportedPlatform]? = [ - .macOS(.v11), + .macOS(.v12), .iOS(.v14), .watchOS(.v4), .tvOS(.v14) @@ -41,12 +41,13 @@ let package = Package( "ggml.c", "llama.cpp", "ggml-alloc.c", + "ggml-backend.c", "k_quants.c", ] + additionalSources, resources: resources, publicHeadersPath: "spm-headers", cSettings: [ - .unsafeFlags(["-Wno-shorten-64-to-32"]), + .unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]), .define("GGML_USE_K_QUANTS"), .define("GGML_USE_ACCELERATE") // NOTE: NEW_LAPACK will required iOS version 16.4+ From 02d2875deff28599c6c2c6e1886fab002ffe43b1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Xingchen=20Song=28=E5=AE=8B=E6=98=9F=E8=BE=B0=29?= Date: Tue, 10 Oct 2023 22:48:21 +0800 Subject: [PATCH 050/295] llm : add bloom models (#3553) * feat: Support bloom models * fix(bloom): fix model size --------- Co-authored-by: Georgi Gerganov --- convert-bloom-hf-to-gguf.py | 238 ++++++++++++++++++++++ gguf-py/gguf/gguf.py | 112 +++++++---- llama.cpp | 383 ++++++++++++++++++++++++++++++++++-- 3 files changed, 678 insertions(+), 55 deletions(-) create mode 100755 convert-bloom-hf-to-gguf.py diff --git a/convert-bloom-hf-to-gguf.py b/convert-bloom-hf-to-gguf.py new file mode 100755 index 000000000..7bfc95ec1 --- /dev/null +++ b/convert-bloom-hf-to-gguf.py @@ -0,0 +1,238 @@ +#!/usr/bin/env python3 +# HF bloom --> gguf conversion + +from __future__ import annotations + +import argparse +import json +import os +import re +import struct +import sys +from pathlib import Path +from typing import Any + +import numpy as np +import torch +from transformers import AutoTokenizer # type: ignore[import] + +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) +import gguf + + +def count_model_parts(dir_model: Path) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts + + +# Supported Models: +# https://huggingface.co/bigscience/bloom-1b7 +# https://huggingface.co/bigscience/bloom-3b +# https://huggingface.co/bigscience/bloom-7b1 +# https://huggingface.co/Langboat/bloom-1b4-zh +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") + parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) + sys.exit(1) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' + +print("gguf: loading model "+dir_model.name) + +with open(dir_model / "config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) + +if hparams["architectures"][0] != "BloomForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + sys.exit(1) + +# get number of model parts +num_parts = count_model_parts(dir_model) + +ARCH=gguf.MODEL_ARCH.BLOOM +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +block_count = hparams["n_layer"] + +gguf_writer.add_name("Bloom") +n_embed = hparams.get("hidden_size", hparams.get("n_embed")) +n_head = hparams.get("n_head", hparams.get("num_attention_heads")) +gguf_writer.add_context_length(hparams.get("seq_length", n_embed)) +gguf_writer.add_embedding_length(n_embed) +gguf_writer.add_feed_forward_length(4 * n_embed) +gguf_writer.add_block_count(block_count) +gguf_writer.add_head_count(n_head) +gguf_writer.add_head_count_kv(n_head) +gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) +gguf_writer.add_file_type(ftype) + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: list[bytearray] = [] +scores: list[float] = [] +toktypes: list[int] = [] + +# gpt2 tokenizer +gguf_writer.add_tokenizer_model("gpt2") + +print("gguf: get gpt2 tokenizer vocab") + +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) + +# The number of tokens in tokenizer.json can differ from the expected vocab size. +# This causes downstream issues with mismatched tensor sizes when running the inference +vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) +assert max(tokenizer.vocab.values()) < vocab_size + +reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} + +for i in range(vocab_size): + tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") + scores.append(0.0) # dummy + toktypes.append(gguf.TokenType.NORMAL) + +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) + +special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) +special_vocab.add_to_gguf(gguf_writer) + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH, block_count) + +# params for qkv transform +n_head_kv = hparams.get("n_head_kv", n_head) +head_dim = n_embed // n_head + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = iter(("pytorch_model.bin",)) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) + +for part_name in part_names: + if args.vocab_only: + break + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(dir_model / part_name, map_location="cpu") + + has_lm_head = True + if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys(): + has_lm_head = False + + for original_name in model_part.keys(): + data = model_part[original_name] + name = re.sub(r'transformer\.', '', original_name) + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): + # Map bloom-style qkv_linear to gpt-style qkv_linear + # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa + # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa + qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed)) + data = np.concatenate( + (qkv_weights[:, 0, :, :].reshape((-1, n_embed)), + qkv_weights[:, 1, :, :].reshape((-1, n_embed)), + qkv_weights[:, 2, :, :].reshape((-1, n_embed))), + axis=0 + ) + print("re-format attention.linear_qkv.weight") + elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): + qkv_bias = data.reshape((n_head, 3, n_embed // n_head)) + data = np.concatenate( + (qkv_bias[:, 0, :].reshape((n_embed,)), + qkv_bias[:, 1, :].reshape((n_embed,)), + qkv_bias[:, 2, :].reshape((n_embed,))), + axis=0 + ) + print("re-format attention.linear_qkv.bias") + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print("Can not map tensor '" + name + "'") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + + gguf_writer.add_tensor(new_name, data) + + if not has_lm_head and name == "word_embeddings.weight": + gguf_writer.add_tensor("output.weight", data) + print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa + + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print(f"gguf: model successfully exported to '{fname_out}'") +print("") diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index fb677a6ed..557ce7ac0 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -88,29 +88,31 @@ class MODEL_ARCH(IntEnum): PERSIMMON : int = auto() REFACT : int = auto() BERT : int = auto() + BLOOM : int = auto() class MODEL_TENSOR(IntEnum): - TOKEN_EMBD : int = auto() - TOKEN_TYPES : int = auto() - POS_EMBD : int = auto() - OUTPUT : int = auto() - OUTPUT_NORM : int = auto() - ROPE_FREQS : int = auto() - ATTN_Q : int = auto() - ATTN_K : int = auto() - ATTN_V : int = auto() - ATTN_QKV : int = auto() - ATTN_OUT : int = auto() - ATTN_NORM : int = auto() - ATTN_NORM_2 : int = auto() - ATTN_ROT_EMBD: int = auto() - FFN_GATE : int = auto() - FFN_DOWN : int = auto() - FFN_UP : int = auto() - FFN_NORM : int = auto() - ATTN_Q_NORM : int = auto() - ATTN_K_NORM : int = auto() + TOKEN_EMBD : int = auto() + TOKEN_EMBD_NORM : int = auto() + TOKEN_TYPES : int = auto() + POS_EMBD : int = auto() + OUTPUT : int = auto() + OUTPUT_NORM : int = auto() + ROPE_FREQS : int = auto() + ATTN_Q : int = auto() + ATTN_K : int = auto() + ATTN_V : int = auto() + ATTN_QKV : int = auto() + ATTN_OUT : int = auto() + ATTN_NORM : int = auto() + ATTN_NORM_2 : int = auto() + ATTN_ROT_EMBD : int = auto() + FFN_GATE : int = auto() + FFN_DOWN : int = auto() + FFN_UP : int = auto() + FFN_NORM : int = auto() + ATTN_Q_NORM : int = auto() + ATTN_K_NORM : int = auto() MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { @@ -125,29 +127,31 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.PERSIMMON: "persimmon", MODEL_ARCH.REFACT: "refact", MODEL_ARCH.BERT: "bert", + MODEL_ARCH.BLOOM: "bloom", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.TOKEN_TYPES: "token_types", - MODEL_TENSOR.POS_EMBD: "position_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", - MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", - MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", - MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", - MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", + MODEL_TENSOR.TOKEN_TYPES: "token_types", + MODEL_TENSOR.POS_EMBD: "position_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", + MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", } MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { @@ -282,6 +286,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.BLOOM: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.TOKEN_EMBD_NORM, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.GPT2: [ # TODO ], @@ -311,6 +327,7 @@ class TensorNameMap: "gpt_neox.embed_in", # gptneox "transformer.wte", # gpt2 gpt-j mpt refact "transformer.word_embeddings", # falcon + "word_embeddings", # bloom "model.embed_tokens", # llama-hf "tok_embeddings", # llama-pth "embeddings.word_embeddings", # bert @@ -322,6 +339,11 @@ class TensorNameMap: "embeddings.token_type_embeddings", # bert ), + # Normalization of token embeddings + MODEL_TENSOR.TOKEN_EMBD_NORM: ( + "word_embeddings_layernorm", # bloom + ), + # Position embeddings MODEL_TENSOR.POS_EMBD: ( "transformer.wpe", # gpt2 @@ -332,7 +354,7 @@ class TensorNameMap: MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox "lm_head", # gpt2 mpt falcon llama-hf baichuan - "output", # llama-pth + "output", # llama-pth bloom "word_embeddings_for_head", # persimmon ), @@ -344,7 +366,7 @@ class TensorNameMap: "norm", # llama-pth "embeddings.LayerNorm", # bert "transformer.norm_f", # mpt - "ln_f", # refact + "ln_f", # refact bloom "language_model.encoder.final_layernorm", # persimmon ), @@ -361,6 +383,7 @@ class TensorNameMap: "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b + "h.{bid}.input_layernorm", # bloom "transformer.h.{bid}.ln_mlp", # falcon40b "model.layers.{bid}.input_layernorm", # llama-hf "layers.{bid}.attention_norm", # llama-pth @@ -379,6 +402,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.c_attn", # gpt2 "transformer.blocks.{bid}.attn.Wqkv", # mpt "transformer.h.{bid}.self_attention.query_key_value", # falcon + "h.{bid}.self_attention.query_key_value", # bloom "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon ), @@ -412,6 +436,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.c_proj", # gpt2 refact "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon + "h.{bid}.self_attention.dense", # bloom "model.layers.{bid}.self_attn.o_proj", # llama-hf "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert @@ -429,6 +454,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox "transformer.h.{bid}.ln_2", # gpt2 refact + "h.{bid}.post_attention_layernorm", # bloom "transformer.blocks.{bid}.norm_2", # mpt "model.layers.{bid}.post_attention_layernorm", # llama-hf "layers.{bid}.ffn_norm", # llama-pth @@ -442,6 +468,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.c_fc", # gpt2 "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon + "h.{bid}.mlp.dense_h_to_4h", # bloom "model.layers.{bid}.mlp.up_proj", # llama-hf refact "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert @@ -461,6 +488,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.c_proj", # gpt2 refact "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon + "h.{bid}.mlp.dense_4h_to_h", # bloom "model.layers.{bid}.mlp.down_proj", # llama-hf "layers.{bid}.feed_forward.w2", # llama-pth "encoder.layer.{bid}.output.dense", # bert diff --git a/llama.cpp b/llama.cpp index 3b63b6401..4653c8023 100644 --- a/llama.cpp +++ b/llama.cpp @@ -188,6 +188,7 @@ enum llm_arch { LLM_ARCH_STARCODER, LLM_ARCH_PERSIMMON, LLM_ARCH_REFACT, + LLM_ARCH_BLOOM, LLM_ARCH_UNKNOWN, }; @@ -201,7 +202,8 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, { LLM_ARCH_PERSIMMON, "persimmon" }, - { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_BLOOM, "bloom" }, }; enum llm_kv { @@ -304,6 +306,7 @@ struct LLM_KV { enum llm_tensor { LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, LLM_TENSOR_POS_EMBD, LLM_TENSOR_OUTPUT, LLM_TENSOR_OUTPUT_NORM, @@ -466,6 +469,21 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_BLOOM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -1207,6 +1225,8 @@ struct llama_model { struct ggml_tensor * tok_embeddings; struct ggml_tensor * pos_embeddings; + struct ggml_tensor * tok_norm; + struct ggml_tensor * tok_norm_b; struct ggml_tensor * output_norm; struct ggml_tensor * output_norm_b; @@ -2056,13 +2076,13 @@ static void llm_load_hparams( } } break; case LLM_ARCH_PERSIMMON: - { - GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); - switch (hparams.n_layer) { - case 36: model.type = e_model::MODEL_8B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; + { + GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); + switch (hparams.n_layer) { + case 36: model.type = e_model::MODEL_8B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_REFACT: { GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); @@ -2071,6 +2091,19 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_BLOOM: + { + GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 30: + switch (hparams.n_embd) { + case 2560: model.type = e_model::MODEL_3B; break; + case 4096: model.type = e_model::MODEL_7B; break; + } break; + } + } break; case LLM_ARCH_MPT: { hparams.f_clamp_kqv = 0.0f; @@ -2676,6 +2709,88 @@ static void llm_load_tensors( layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend); } } break; + case LLM_ARCH_BLOOM: + { + // TODO: CPU-only for now + + model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU); + model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU); + + // output + { + ggml_backend_type backend_norm; + ggml_backend_type backend_output; + + if (n_gpu_layers > int(n_layer)) { + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 + + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + vram_weights += ggml_nbytes(model.output_norm_b); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } + } + + const uint32_t n_ff = hparams.n_ff; + + const int i_gpu_start = n_layer - n_gpu_layers; + + model.layers.resize(n_layer); + + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + + layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); + layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split); + + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split); + + layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); + + layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); + layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split); + + layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) + + ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) + + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) + + ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3) + + ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2); + } + } + } break; case LLM_ARCH_MPT: { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); @@ -4996,6 +5111,248 @@ static struct ggml_cgraph * llm_build_persimmon( return gf; } +static struct ggml_cgraph * llm_build_bloom( + llama_context & lctx, + const llama_batch & batch) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + GGML_ASSERT(n_embd_head == hparams.n_rot); + + const float norm_eps = hparams.f_norm_eps; + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ false, + }; + + params.no_alloc = true; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * token; + struct ggml_tensor * inpL; + + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); + } + ggml_set_name(inp_tokens, "inp_tokens"); + + token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + + ggml_allocr_alloc(lctx.alloc, token); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token)); + } + } + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + } + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + // norm + { + inpL = ggml_norm(ctx0, token, norm_eps); + inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.tok_norm), model.tok_norm_b); + } + + ggml_set_name(inpL, "inpL"); + + for (int il = 0; il < n_layer; ++il) { + { + // Norm + cur = ggml_norm(ctx0, inpL, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b); + } + + { + // Self Attention + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv); + + struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd); + struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd); + struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa)); + + struct ggml_tensor * Qcur = tmpq; + struct ggml_tensor * Kcur = tmpk; + + // store key and value to memory + { + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = + ggml_permute(ctx0, + ggml_cpy(ctx0, + Qcur, + ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)), + 0, 2, 1, 3); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + ggml_set_name(K, "K"); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + ggml_set_name(KQ, "KQ"); + + // KQ_scaled = KQ / sqrt(n_embd_head) + // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1] + struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ kv_head, n_head, 8); + ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); + + // KQ_masked = mask_past(KQ_scaled) + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); + ggml_set_name(KQ_masked, "KQ_masked"); + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + // split cached V into n_head heads + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + ggml_set_name(V, "V"); + + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + ggml_set_name(KQV, "KQV"); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + ggml_set_name(KQV_merged, "KQV_merged"); + + // cur = KQV_merged.contiguous().view(n_embd, n_tokens) + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + ggml_set_name(cur, "KQV_merged_contiguous"); + } + + // Projection + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo); + + // Add the input + cur = ggml_add(ctx0, cur, inpL); + + struct ggml_tensor * inpFF = cur; + + // FF + { + // Norm + { + cur = ggml_norm(ctx0, inpFF, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b); + } + + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3); + + // GELU activation + cur = ggml_gelu(ctx0, cur); + + // Projection + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2); + } + + inpL = ggml_add(ctx0, cur, inpFF); + } + + // Output Norm + { + cur = ggml_norm(ctx0, inpL, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b); + } + ggml_set_name(cur, "result_norm"); + + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + static struct ggml_cgraph * llm_build_mpt( llama_context & lctx, const llama_batch & batch) { @@ -5025,9 +5382,6 @@ static struct ggml_cgraph * llm_build_mpt( const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; - //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n", - // kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift); - auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { @@ -5348,6 +5702,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm_build_refact(lctx, batch); } break; + case LLM_ARCH_BLOOM: + { + result = llm_build_bloom(lctx, batch); + } break; case LLM_ARCH_MPT: { result = llm_build_mpt(lctx, batch); @@ -7579,8 +7937,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s const std::string name = ggml_get_name(meta); // TODO: avoid hardcoded tensor names - use the TN_* constants - if (name.find("attn_v.weight") != std::string::npos || - name.find("attn_qkv.weight") != std::string::npos) { + if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) { ++n_attention_wv; } else if (name.find("ffn_down.weight") != std::string::npos) { From c5b49360d0d9e49f32e05a9116e90bd0b39a282d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Xingchen=20Song=28=E5=AE=8B=E6=98=9F=E8=BE=B0=29?= Date: Wed, 11 Oct 2023 00:28:50 +0800 Subject: [PATCH 051/295] readme : add bloom (#3570) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 056279562..5c2b57cb4 100644 --- a/README.md +++ b/README.md @@ -96,6 +96,7 @@ as the main playground for developing new features for the [ggml](https://github - [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187) - [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) +- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553) **Bindings:** From 233fc1c69f6f415f35363e18a755f9610e89161b Mon Sep 17 00:00:00 2001 From: goerch Date: Tue, 10 Oct 2023 18:59:52 +0200 Subject: [PATCH 052/295] Minor improvements in GPT2 tokenizer (#3567) * Fixing minor bugs in bpe_gpt2_preprocess * Don't add bos token in test --- llama.cpp | 9 ++++----- tests/test-tokenizer-0-falcon.cpp | 8 ++++---- tests/test-tokenizer-0-falcon.py | 9 +++++---- tests/test-tokenizer-0-llama.cpp | 4 +--- tests/test-tokenizer-0-llama.py | 7 +++---- 5 files changed, 17 insertions(+), 20 deletions(-) diff --git a/llama.cpp b/llama.cpp index 4653c8023..7ed872237 100644 --- a/llama.cpp +++ b/llama.cpp @@ -6342,7 +6342,6 @@ private: for (int i = 0; i < (int)text_utf.size(); i++) { const std::string & utf_char = text_utf[i]; bool split_condition = false; - // const char* text_pos = raw_text_p + utf_char.seq_offset_bytes; int bytes_remain = text_utf.size() - i; // forward backward lookups const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; @@ -6368,9 +6367,9 @@ private: if (!split_condition && bytes_remain >= 3) { // 're|'ve|'ll if (utf_char == "\'" && ( - (utf_char_next == "r" || utf_char_next_next == "e") || - (utf_char_next == "v" || utf_char_next_next == "e") || - (utf_char_next == "l" || utf_char_next_next == "l")) + (utf_char_next == "r" && utf_char_next_next == "e") || + (utf_char_next == "v" && utf_char_next_next == "e") || + (utf_char_next == "l" && utf_char_next_next == "l")) ) { split_condition = true; } @@ -6421,7 +6420,7 @@ private: else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) { split_condition = true; } - else if (collecting_whitespace_lookahead && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) { + else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { split_condition = true; } } diff --git a/tests/test-tokenizer-0-falcon.cpp b/tests/test-tokenizer-0-falcon.cpp index 0f3c50bce..a4e9d2b91 100644 --- a/tests/test-tokenizer-0-falcon.cpp +++ b/tests/test-tokenizer-0-falcon.cpp @@ -36,6 +36,8 @@ static const std::map> & k_tests() { { " Hello" , { 258, 23090, }, }, { " Hello" , { 466, 23090, }, }, { " Hello\n Hello" , { 466, 23090, 742, 23090, }, }, + { "\n =" , { 1212, 40, }, }, + { "' era" , { 18, 4932, }, }, }; return _k_tests; @@ -155,7 +157,7 @@ int main(int argc, char **argv) { fprintf(stderr, "%s : text size: %zu\n", __func__, text.size()); - const std::vector res = llama_tokenize(ctx, text, true); + const std::vector res = llama_tokenize(ctx, text, false); fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size()); @@ -169,10 +171,8 @@ int main(int argc, char **argv) { } for (const auto & tok : res) { - ofs << tok << " "; + ofs << tok << " '" << llama_detokenize_bpe(ctx, std::vector{tok}) << "'" << std::endl; } - - ofs << "\n"; } fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str()); diff --git a/tests/test-tokenizer-0-falcon.py b/tests/test-tokenizer-0-falcon.py index 9c8c1c7d1..cf65a3f65 100644 --- a/tests/test-tokenizer-0-falcon.py +++ b/tests/test-tokenizer-0-falcon.py @@ -41,6 +41,8 @@ tests = [ " Hello", " Hello", " Hello\n Hello", + "\n =", + "' era", ] for text in tests: @@ -69,15 +71,14 @@ fname_tok = args.fname_tok if fname_tok: print('tokenizing file: ', fname_tok) fname_out = fname_tok + '.tok' - with open(fname_tok, 'r') as f: + with open(fname_tok, 'r', encoding='utf-8') as f: lines = f.readlines() s = ''.join(lines) res = tokenizer.encode(s) # write to file - with open(fname_out, 'w') as f: + with open(fname_out, 'w', encoding='utf-8') as f: for x in res: - f.write(str(x) + ' ') - f.write('\n') + f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n') print('len(res): ', len(res)) print('len(lines): ', len(lines)) print('results written to: ', fname_out) diff --git a/tests/test-tokenizer-0-llama.cpp b/tests/test-tokenizer-0-llama.cpp index 91c841f7b..39c8d188c 100644 --- a/tests/test-tokenizer-0-llama.cpp +++ b/tests/test-tokenizer-0-llama.cpp @@ -174,10 +174,8 @@ int main(int argc, char **argv) { } for (const auto & tok : res) { - ofs << tok << " "; + ofs << tok << " '" << llama_detokenize_spm(ctx, std::vector{tok}) << "'" << std::endl; } - - ofs << "\n"; } fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str()); diff --git a/tests/test-tokenizer-0-llama.py b/tests/test-tokenizer-0-llama.py index bc164ee29..078f680b1 100644 --- a/tests/test-tokenizer-0-llama.py +++ b/tests/test-tokenizer-0-llama.py @@ -81,15 +81,14 @@ fname_tok = args.fname_tok if fname_tok: print('tokenizing file: ', fname_tok) fname_out = fname_tok + '.tok' - with open(fname_tok, 'r') as f: + with open(fname_tok, 'r', encoding='utf-8') as f: lines = f.readlines() s = ''.join(lines) res = tokenizer.encode(s, add_bos=True) # write to file - with open(fname_out, 'w') as f: + with open(fname_out, 'w', encoding='utf-8') as f: for x in res: - f.write(str(x) + ' ') - f.write('\n') + f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n') print('len(res): ', len(res)) print('len(lines): ', len(lines)) print('results written to: ', fname_out) From 9f6ede19f3cfa50d4a51a5babb056c3f8a450b80 Mon Sep 17 00:00:00 2001 From: Galunid Date: Wed, 11 Oct 2023 01:02:49 +0200 Subject: [PATCH 053/295] Add MPT model to supported models in README.md (#3574) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 5c2b57cb4..0f1fd7565 100644 --- a/README.md +++ b/README.md @@ -97,6 +97,7 @@ as the main playground for developing new features for the [ggml](https://github - [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) - [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553) +- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417) **Bindings:** From 24ba3d829e31a6eda3fa1723f692608c2fa3adda Mon Sep 17 00:00:00 2001 From: Zane Shannon Date: Wed, 11 Oct 2023 04:14:05 -0700 Subject: [PATCH 054/295] examples : add batched.swift + improve CI for swift (#3562) --- .github/workflows/build.yml | 5 + Makefile | 7 +- examples/batched.swift/.gitignore | 9 + examples/batched.swift/Makefile | 6 + examples/batched.swift/Package.swift | 22 ++ examples/batched.swift/README.md | 4 + examples/batched.swift/Sources/main.swift | 255 ++++++++++++++++++++++ 7 files changed, 307 insertions(+), 1 deletion(-) create mode 100644 examples/batched.swift/.gitignore create mode 100755 examples/batched.swift/Makefile create mode 100644 examples/batched.swift/Package.swift create mode 100644 examples/batched.swift/README.md create mode 100644 examples/batched.swift/Sources/main.swift diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index e41be76db..5af497a3c 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -276,6 +276,11 @@ jobs: run: | xcodebuild -scheme llama -destination "${{ matrix.destination }}" + - name: Build Swift Example + id: make_build_swift_example + run: | + make swift + windows-latest-cmake: runs-on: windows-latest diff --git a/Makefile b/Makefile index 40187c4a2..87e7bb604 100644 --- a/Makefile +++ b/Makefile @@ -617,6 +617,11 @@ metal: examples/metal/metal.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) endif +ifeq ($(UNAME_S),Darwin) +swift: examples/batched.swift + (cd examples/batched.swift; make build) +endif + build-info.h: $(wildcard .git/index) scripts/build-info.sh @sh scripts/build-info.sh $(CC) > $@.tmp @if ! cmp -s $@.tmp $@; then \ @@ -637,7 +642,7 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o run-benchmark-matmult: benchmark-matmult ./$@ -.PHONY: run-benchmark-matmult +.PHONY: run-benchmark-matmult swift vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) diff --git a/examples/batched.swift/.gitignore b/examples/batched.swift/.gitignore new file mode 100644 index 000000000..e1e863bec --- /dev/null +++ b/examples/batched.swift/.gitignore @@ -0,0 +1,9 @@ +.DS_Store +/.build +/Packages +xcuserdata/ +DerivedData/ +.swiftpm/configuration/registries.json +.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata +.netrc +batched_swift diff --git a/examples/batched.swift/Makefile b/examples/batched.swift/Makefile new file mode 100755 index 000000000..2afb24fb8 --- /dev/null +++ b/examples/batched.swift/Makefile @@ -0,0 +1,6 @@ +.PHONY: build + +build: + xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build + rm -f ./batched_swift + ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift diff --git a/examples/batched.swift/Package.swift b/examples/batched.swift/Package.swift new file mode 100644 index 000000000..826491def --- /dev/null +++ b/examples/batched.swift/Package.swift @@ -0,0 +1,22 @@ +// swift-tools-version: 5.5 +// The swift-tools-version declares the minimum version of Swift required to build this package. + +import PackageDescription + +let package = Package( + name: "batched_swift", + platforms: [.macOS(.v12)], + dependencies: [ + .package(name: "llama", path: "../../"), + ], + targets: [ + // Targets are the basic building blocks of a package, defining a module or a test suite. + // Targets can depend on other targets in this package and products from dependencies. + .executableTarget( + name: "batched_swift", + dependencies: ["llama"], + path: "Sources", + linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")] + ), + ] +) diff --git a/examples/batched.swift/README.md b/examples/batched.swift/README.md new file mode 100644 index 000000000..464c9079c --- /dev/null +++ b/examples/batched.swift/README.md @@ -0,0 +1,4 @@ +This is a swift clone of `examples/batched`. + +$ `make` +$ `./swift MODEL_PATH [PROMPT] [PARALLEL]` diff --git a/examples/batched.swift/Sources/main.swift b/examples/batched.swift/Sources/main.swift new file mode 100644 index 000000000..938f30512 --- /dev/null +++ b/examples/batched.swift/Sources/main.swift @@ -0,0 +1,255 @@ +import Foundation +import llama + +let arguments = CommandLine.arguments + +// Check that we have at least one argument (the model path) +guard arguments.count > 1 else { + print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]") + exit(1) +} + +let modelPath: String = arguments[1] +let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is" +let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1 + +// total length of the sequences including the prompt +let n_len: Int = 32 + +// init LLM +llama_backend_init(false) +defer { + llama_backend_free() +} + +let model_params = llama_model_default_params() +guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else { + print("Failed to load model") + exit(1) +} + +defer { + llama_free_model(model) +} + +var tokens = tokenize(text: prompt, add_bos: true) + +let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel) + +var context_params = llama_context_default_params() +context_params.seed = 1234 +context_params.n_ctx = n_kv_req +context_params.n_batch = UInt32(max(n_len, n_parallel)) +context_params.n_threads = 8 +context_params.n_threads_batch = 8 + +let context = llama_new_context_with_model(model, context_params) +guard context != nil else { + print("Failed to initialize context") + exit(1) +} + +defer { + llama_free(context) +} + +let n_ctx = llama_n_ctx(context) + +print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n") + +if n_kv_req > n_ctx { + print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req) + exit(1) +} + +var buffer: [CChar] = [] +for id: llama_token in tokens { + print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "") +} + +print("\n") + +var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0) +defer { + llama_batch_free(batch) +} + +// evaluate the initial prompt +batch.n_tokens = Int32(tokens.count) + +for (i, token) in tokens.enumerated() { + batch.token[i] = token + batch.pos[i] = Int32(i) + batch.seq_id[i] = 0 + batch.logits[i] = 0 +} + +// llama_decode will output logits only for the last token of the prompt +batch.logits[Int(batch.n_tokens) - 1] = 1 + +if llama_decode(context, batch) != 0 { + print("llama_decode() failed") + exit(1) +} + +for i in 1 ..< n_parallel { + llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens) +} + +if n_parallel > 1 { + print("generating \(n_parallel) sequences ...\n") +} + +var streams: [String] = .init(repeating: "", count: n_parallel) +var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel) +var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel) + +var n_cur = batch.n_tokens +var n_decode = 0 + +let t_main_start = ggml_time_us() + +while n_cur <= n_len { + // prepare the next batch + batch.n_tokens = 0 + + // sample the next token for each parallel sequence / stream + for i in 0 ..< n_parallel { + if i_batch[i] < 0 { + // the stream has already finished + continue + } + + var n_vocab = llama_n_vocab(model) + var logits = llama_get_logits_ith(context, i_batch[i]) + + var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab)) + + for token_id in 0 ..< n_vocab { + candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0)) + } + + var candidates_p: llama_token_data_array = .init( + data: &candidates, + size: candidates.count, + sorted: false + ) + + let top_k: Int32 = 40 + let top_p: Float = 0.9 + let temp: Float = 0.4 + + llama_sample_top_k(context, &candidates_p, top_k, 1) + llama_sample_top_p(context, &candidates_p, top_p, 1) + llama_sample_temp(context, &candidates_p, temp) + + let new_token_id = llama_sample_token(context, &candidates_p) + + // const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); + + // is it an end of stream? -> mark the stream as finished + if new_token_id == llama_token_eos(context) || n_cur == n_len { + i_batch[i] = -1 + // print("") + if n_parallel > 1 { + print("stream \(i) finished at n_cur = \(n_cur)") + } + + continue + } + + let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? "" + + // if there is only one stream, we print immediately to stdout + if n_parallel == 1 { + print(nextStringPiece, terminator: "") + } + streams[i] += nextStringPiece + + // push this new token for next evaluation + batch.token[Int(batch.n_tokens)] = new_token_id + batch.pos[Int(batch.n_tokens)] = n_cur + batch.seq_id[Int(batch.n_tokens)] = Int32(i) + batch.logits[Int(batch.n_tokens)] = 1 + + i_batch[i] = batch.n_tokens + + batch.n_tokens += 1 + + n_decode += 1 + } + + // all streams are finished + if batch.n_tokens == 0 { + break + } + + n_cur += 1 + + // evaluate the current batch with the transformer model + if llama_decode(context, batch) != 0 { + print("llama_decode() failed") + exit(1) + } +} + +if n_parallel > 1 { + print("\n") + for (i, stream) in streams.enumerated() { + print("sequence \(i):\n\n\(prompt)\(stream)\n") + } +} + +let t_main_end = ggml_time_us() + +print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n") + +llama_print_timings(context) + +private func tokenize(text: String, add_bos: Bool) -> [llama_token] { + let n_tokens = text.count + (add_bos ? 1 : 0) + let tokens = UnsafeMutablePointer.allocate(capacity: n_tokens) + let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos) + var swiftTokens: [llama_token] = [] + for i in 0 ..< tokenCount { + swiftTokens.append(tokens[Int(i)]) + } + tokens.deallocate() + return swiftTokens +} + +private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? { + var result = [CChar](repeating: 0, count: 8) + let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count)) + if nTokens < 0 { + if result.count >= -Int(nTokens) { + result.removeLast(-Int(nTokens)) + } else { + result.removeAll() + } + let check = llama_token_to_piece( + model, + token, + &result, + Int32(result.count) + ) + assert(check == nTokens) + } else { + result.removeLast(result.count - Int(nTokens)) + } + if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) { + return utfString + } else { + buffer.append(contentsOf: result) + let data = Data(buffer.map { UInt8(bitPattern: $0) }) + if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer + buffer = [] + } + guard let bufferString = String(data: data, encoding: .utf8) else { + return nil + } + buffer = [] + return bufferString + } + return nil +} From 8c70a5ff25964f0a81e20d142a2f5ac5baff22fc Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 11 Oct 2023 21:25:33 +0300 Subject: [PATCH 055/295] batched : add bench tool (#3545) * batched : add bench tool * batched : minor fix table * batched-bench : add readme + n_kv_max is now configurable * batched-bench : init warm-up batch * batched-bench : pass custom set of PP, TG and PL * batched-bench : add mmq CLI arg --- .gitignore | 1 + Makefile | 13 +- examples/CMakeLists.txt | 1 + examples/batched-bench/CMakeLists.txt | 5 + examples/batched-bench/README.md | 51 +++++ examples/batched-bench/batched-bench.cpp | 251 +++++++++++++++++++++++ examples/batched/batched.cpp | 2 +- 7 files changed, 321 insertions(+), 3 deletions(-) create mode 100644 examples/batched-bench/CMakeLists.txt create mode 100644 examples/batched-bench/README.md create mode 100644 examples/batched-bench/batched-bench.cpp diff --git a/.gitignore b/.gitignore index 420e0d6d0..d288e66fc 100644 --- a/.gitignore +++ b/.gitignore @@ -55,6 +55,7 @@ models-mnt /server /simple /batched +/batched-bench /export-lora /finetune /speculative diff --git a/Makefile b/Makefile index 87e7bb604..571ad3bbe 100644 --- a/Makefile +++ b/Makefile @@ -1,8 +1,14 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o +BUILD_TARGETS = \ + main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ + simple batched batched-bench save-load-state server embd-input-test gguf llama-bench baby-llama beam-search \ + speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o # Binaries only useful for tests -TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe +TEST_TARGETS = \ + tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \ + tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \ + tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe # Code coverage output files COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report @@ -557,6 +563,9 @@ simple: examples/simple/simple.cpp build-info.h ggml. batched: examples/batched/batched.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) +batched-bench: examples/batched-bench/batched-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index de4cf7a69..ab8459370 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -25,6 +25,7 @@ else() add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(simple) add_subdirectory(batched) + add_subdirectory(batched-bench) add_subdirectory(speculative) add_subdirectory(parallel) add_subdirectory(embd-input) diff --git a/examples/batched-bench/CMakeLists.txt b/examples/batched-bench/CMakeLists.txt new file mode 100644 index 000000000..40a032c51 --- /dev/null +++ b/examples/batched-bench/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET batched-bench) +add_executable(${TARGET} batched-bench.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/batched-bench/README.md b/examples/batched-bench/README.md new file mode 100644 index 000000000..34b343f66 --- /dev/null +++ b/examples/batched-bench/README.md @@ -0,0 +1,51 @@ +# llama.cpp/example/batched-bench + +Benchmark the batched decoding performance of `llama.cpp` + +## Usage + +There are 2 modes of operation: + +- `prompt not shared` - each batch has a separate prompt of size `PP` (i.e. `N_KV = B*(PP + TG)`) +- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`) + +```bash +./batched-bench MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] + +# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared +./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 0 99 + +# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared +./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 1 99 + +# custom set of batches +./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32 +``` + +## Sample results + +- `PP` - prompt tokens per batch +- `TG` - generated tokens per batch +- `B` - number of batches +- `N_KV` - required KV cache size +- `T_PP` - prompt processing time (i.e. time to first token) +- `S_PP` - prompt processing speed (`(B*PP)/T_PP` or `PP/T_PP`) +- `T_TG` - time to generate all batches +- `S_TG` - text generation speed (`(B*TG)/T_TG`) +- `T` - total time +- `S` - total speed (i.e. all tokens / total time) + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 128 | 128 | 1 | 256 | 0.108 | 1186.64 | 3.079 | 41.57 | 3.187 | 80.32 | +| 128 | 128 | 2 | 512 | 0.198 | 1295.19 | 5.029 | 50.90 | 5.227 | 97.95 | +| 128 | 128 | 4 | 1024 | 0.373 | 1373.96 | 6.878 | 74.44 | 7.251 | 141.23 | +| 128 | 128 | 8 | 2048 | 0.751 | 1363.27 | 7.344 | 139.43 | 8.095 | 252.99 | +| 128 | 128 | 16 | 4096 | 1.570 | 1304.68 | 8.455 | 242.23 | 10.024 | 408.60 | +| 128 | 128 | 32 | 8192 | 3.408 | 1201.73 | 8.801 | 465.40 | 12.209 | 670.96 | +| 128 | 256 | 1 | 384 | 0.107 | 1196.70 | 6.329 | 40.45 | 6.436 | 59.67 | +| 128 | 256 | 2 | 768 | 0.194 | 1317.45 | 10.239 | 50.00 | 10.433 | 73.61 | +| 128 | 256 | 4 | 1536 | 0.366 | 1399.03 | 13.960 | 73.35 | 14.326 | 107.22 | +| 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 | +| 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 | +| 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 | diff --git a/examples/batched-bench/batched-bench.cpp b/examples/batched-bench/batched-bench.cpp new file mode 100644 index 000000000..3e1e0716d --- /dev/null +++ b/examples/batched-bench/batched-bench.cpp @@ -0,0 +1,251 @@ +#include "common.h" +#include "llama.h" + +#include +#include +#include +#include +#include + +// mutates the input string +static std::vector parse_list(char * p) { + std::vector ret; + + char * q = p; + + while (*p) { + if (*p == ',') { + *p = '\0'; + ret.push_back(std::atoi(q)); + q = p + 1; + } + + ++p; + } + + ret.push_back(std::atoi(q)); + + return ret; +} + +int main(int argc, char ** argv) { + gpt_params params; + + if (argc == 1 || argv[1][0] == '-') { + printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] \n" , argv[0]); + printf(" , and PL are comma-separated lists of numbers without spaces\n\n"); + printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]); + return 1 ; + } + + int n_kv_max = 2048; + int is_pp_shared = 0; + int n_gpu_layers = 0; + int mmq = 0; + + std::vector n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, }; + std::vector n_tg = { 128, 256, }; + std::vector n_pl = { 1, 2, 4, 8, 16, 32, }; + //std::vector n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, }; + + if (argc >= 2) { + params.model = argv[1]; + } + + if (argc >= 3) { + n_kv_max = std::atoi(argv[2]); + } + + if (argc >= 4) { + is_pp_shared = std::atoi(argv[3]); + } + + if (argc >= 5) { + n_gpu_layers = std::atoi(argv[4]); + } + + if (argc >= 6) { + mmq = std::atoi(argv[5]); + } + + if (argc >= 7) { + n_pp = parse_list(argv[6]); + } + + if (argc >= 8) { + n_tg = parse_list(argv[7]); + } + + if (argc >= 9) { + n_pl = parse_list(argv[8]); + } + + // init LLM + + llama_backend_init(params.numa); + + // initialize the model + + llama_model_params model_params = llama_model_default_params(); + + model_params.n_gpu_layers = n_gpu_layers; + + llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); + + if (model == NULL) { + fprintf(stderr , "%s: error: unable to load model\n" , __func__); + return 1; + } + + llama_context_params ctx_params = llama_context_default_params(); + + ctx_params.seed = 1234; + ctx_params.n_ctx = n_kv_max; + ctx_params.n_batch = 512; + ctx_params.mul_mat_q = mmq; + + ctx_params.n_threads = params.n_threads; + ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + + llama_context * ctx = llama_new_context_with_model(model, ctx_params); + + if (ctx == NULL) { + fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); + return 1; + } + + llama_batch batch = llama_batch_init(n_kv_max, 0); + + // decode in batches of ctx_params.n_batch tokens + auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { + for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { + const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); + + llama_batch batch_view = { + n_tokens, + batch.token + i, + nullptr, + batch.pos + i, + batch.seq_id + i, + batch.logits + i, + 0, 0, 0, // unused + }; + + const int ret = llama_decode(ctx, batch_view); + if (ret != 0) { + LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); + return false; + } + } + + return true; + }; + + // warm up + { + batch.n_tokens = 16; + + for (int i = 0; i < batch.n_tokens; ++i) { + batch.token[i] = 0; + batch.pos[i] = i; + batch.seq_id[i] = 0; + batch.logits[i] = false; + } + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG_TEE("%s: llama_decode() failed\n", __func__); + return 1; + } + } + + LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); + LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------"); + + for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) { + for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) { + for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) { + const int pp = n_pp[i_pp]; + const int tg = n_tg[i_tg]; + const int pl = n_pl[i_pl]; + + const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg); + + if (n_ctx_req > n_kv_max) { + continue; + } + + batch.n_tokens = is_pp_shared ? pp : pl*pp; + + for (int i = 0; i < batch.n_tokens; ++i) { + batch.token[i] = 0; + batch.pos[i] = i; + batch.seq_id[i] = 0; + batch.logits[i] = false; + } + batch.logits[batch.n_tokens - 1] = true; + + const auto t_pp_start = ggml_time_us(); + + llama_kv_cache_tokens_rm(ctx, -1, -1); + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG_TEE("%s: llama_decode() failed\n", __func__); + return 1; + } + + if (is_pp_shared) { + for (int32_t i = 1; i < pl; ++i) { + llama_kv_cache_seq_cp(ctx, 0, i, 0, pp); + } + } + + const auto t_pp_end = ggml_time_us(); + + const auto t_tg_start = ggml_time_us(); + + for (int i = 0; i < tg; ++i) { + batch.n_tokens = pl; + + for (int j = 0; j < pl; ++j) { + batch.token[j] = 0; + batch.pos[j] = pp + i; + batch.seq_id[j] = j; + batch.logits[j] = true; + } + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG_TEE("%s: llama_decode() failed\n", __func__); + return 1; + } + } + + const auto t_tg_end = ggml_time_us(); + + const int32_t n_kv = n_ctx_req; + + const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; + const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; + const float t = t_pp + t_tg; + + const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp; + const float speed_tg = pl*tg / t_tg; + const float speed = n_kv / t; + + LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed); + } + } + } + + llama_print_timings(ctx); + + llama_batch_free(batch); + + llama_free(ctx); + llama_free_model(model); + + llama_backend_free(); + + fprintf(stderr, "\n\n"); + + return 0; +} diff --git a/examples/batched/batched.cpp b/examples/batched/batched.cpp index 688ef2213..a88e022d6 100644 --- a/examples/batched/batched.cpp +++ b/examples/batched/batched.cpp @@ -66,7 +66,7 @@ int main(int argc, char ** argv) { ctx_params.seed = 1234; ctx_params.n_ctx = n_kv_req; ctx_params.n_batch = std::max(n_len, n_parallel); - ctx_params.n_threads = params.n_threads; + ctx_params.n_threads = params.n_threads; ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; llama_context * ctx = llama_new_context_with_model(model, ctx_params); From 70c29da118cdb02bfcbd0376c32b5b2236e48e48 Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Wed, 11 Oct 2023 13:35:46 -0600 Subject: [PATCH 056/295] common : fix mirostat state when using multiple sequences (#3543) * Fix mirostat state when using multiple sequences * Fix mirostat by completely refactoring sampling! * Try to fix zig build. * Export function to fetch/create default sampler states Code formatting cleanups and add some comments Silence a warning about id not being used when logging is disabled * Apply some renaming suggestions. Fix comments that were out of sync with the pull. * Use more consistant naming convention for sampling contexts --- Makefile | 86 ++++--- build.zig | 5 +- common/CMakeLists.txt | 2 + common/common.cpp | 228 +++++-------------- common/common.h | 56 +---- common/sampling.cpp | 166 ++++++++++++++ common/sampling.h | 108 +++++++++ examples/embd-input/embd-input-lib.cpp | 19 +- examples/infill/infill.cpp | 18 +- examples/main/main.cpp | 18 +- examples/parallel/parallel.cpp | 6 +- examples/save-load-state/save-load-state.cpp | 5 +- examples/server/server.cpp | 100 ++++---- examples/speculative/speculative.cpp | 12 +- 14 files changed, 495 insertions(+), 334 deletions(-) create mode 100644 common/sampling.cpp create mode 100644 common/sampling.h diff --git a/Makefile b/Makefile index 571ad3bbe..705fa1eff 100644 --- a/Makefile +++ b/Makefile @@ -178,6 +178,24 @@ else MK_CPPFLAGS += -DNDEBUG endif +ifdef LLAMA_SANITIZE_THREAD + MK_CFLAGS += -fsanitize=thread -g + MK_CXXFLAGS += -fsanitize=thread -g + MK_LDFLAGS += -fsanitize=thread -g +endif + +ifdef LLAMA_SANITIZE_ADDRESS + MK_CFLAGS += -fsanitize=address -fno-omit-frame-pointer -g + MK_CXXFLAGS += -fsanitize=address -fno-omit-frame-pointer -g + MK_LDFLAGS += -fsanitize=address -fno-omit-frame-pointer -g +endif + +ifdef LLAMA_SANITIZE_UNDEFINED + MK_CFLAGS += -fsanitize=undefined -g + MK_CXXFLAGS += -fsanitize=undefined -g + MK_LDFLAGS += -fsanitize=undefined -g +endif + ifdef LLAMA_SERVER_VERBOSE MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE) endif @@ -526,7 +544,13 @@ OBJS += ggml-alloc.o ggml-backend.o llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h $(CXX) $(CXXFLAGS) -c $< -o $@ -common.o: common/common.cpp common/common.h build-info.h common/log.h +COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h +COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o + +common.o: common/common.cpp $(COMMON_H_DEPS) + $(CXX) $(CXXFLAGS) -c $< -o $@ + +sampling.o: common/sampling.cpp $(COMMON_H_DEPS) $(CXX) $(CXXFLAGS) -c $< -o $@ console.o: common/console.cpp common/console.h @@ -548,19 +572,19 @@ clean: # Examples # -main: examples/main/main.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS) +main: examples/main/main.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) @echo @echo '==== Run ./main -h for help. ====' @echo -infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS) +infill: examples/infill/infill.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS) +simple: examples/simple/simple.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -batched: examples/batched/batched.cpp build-info.h ggml.o llama.o common.o $(OBJS) +batched: examples/batched/batched.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) batched-bench: examples/batched-bench/batched-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS) @@ -572,53 +596,53 @@ quantize: examples/quantize/quantize.cpp build-info.h ggml. quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS) +perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS) +embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS) +save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) +server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS) +$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) -embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS) +embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS) +train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS) +llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS) +baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS) +beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS) +finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS) +export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) +speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o common.o $(OBJS) +parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) ifdef LLAMA_METAL @@ -659,40 +683,40 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) -tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS) +tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) +tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-c.o: tests/test-c.c llama.h diff --git a/build.zig b/build.zig index fdc5bc084..0b74cee48 100644 --- a/build.zig +++ b/build.zig @@ -128,17 +128,18 @@ pub fn build(b: *std.build.Builder) !void { const llama = make.obj("llama", "llama.cpp"); const common = make.obj("common", "common/common.cpp"); const console = make.obj("console", "common/console.cpp"); + const sampling = make.obj("sampling", "common/sampling.cpp"); const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); const train = make.obj("train", "common/train.cpp"); - _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser }); + _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, console, grammar_parser }); _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train }); _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train }); - const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser }); + const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, grammar_parser }); if (server.target.isWindows()) { server.linkSystemLibrary("ws2_32"); } diff --git a/common/CMakeLists.txt b/common/CMakeLists.txt index 951aa8340..fbb0ff095 100644 --- a/common/CMakeLists.txt +++ b/common/CMakeLists.txt @@ -5,6 +5,8 @@ set(TARGET common) add_library(${TARGET} OBJECT common.h common.cpp + sampling.h + sampling.cpp console.h console.cpp grammar-parser.h diff --git a/common/common.cpp b/common/common.cpp index 0f55c33a7..4214e63af 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -107,6 +107,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { std::string arg; gpt_params default_params; const std::string arg_prefix = "--"; + llama_sampling_params & sparams = params.sampling_params; for (int i = 1; i < argc; i++) { arg = argv[i]; @@ -184,7 +185,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.top_k = std::stoi(argv[i]); + sparams.top_k = std::stoi(argv[i]); } else if (arg == "-c" || arg == "--ctx-size") { if (++i >= argc) { invalid_param = true; @@ -216,73 +217,73 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.top_p = std::stof(argv[i]); + sparams.top_p = std::stof(argv[i]); } else if (arg == "--temp") { if (++i >= argc) { invalid_param = true; break; } - params.temp = std::stof(argv[i]); + sparams.temp = std::stof(argv[i]); } else if (arg == "--tfs") { if (++i >= argc) { invalid_param = true; break; } - params.tfs_z = std::stof(argv[i]); + sparams.tfs_z = std::stof(argv[i]); } else if (arg == "--typical") { if (++i >= argc) { invalid_param = true; break; } - params.typical_p = std::stof(argv[i]); + sparams.typical_p = std::stof(argv[i]); } else if (arg == "--repeat-last-n") { if (++i >= argc) { invalid_param = true; break; } - params.repeat_last_n = std::stoi(argv[i]); + sparams.repeat_last_n = std::stoi(argv[i]); } else if (arg == "--repeat-penalty") { if (++i >= argc) { invalid_param = true; break; } - params.repeat_penalty = std::stof(argv[i]); + sparams.repeat_penalty = std::stof(argv[i]); } else if (arg == "--frequency-penalty") { if (++i >= argc) { invalid_param = true; break; } - params.frequency_penalty = std::stof(argv[i]); + sparams.frequency_penalty = std::stof(argv[i]); } else if (arg == "--presence-penalty") { if (++i >= argc) { invalid_param = true; break; } - params.presence_penalty = std::stof(argv[i]); + sparams.presence_penalty = std::stof(argv[i]); } else if (arg == "--mirostat") { if (++i >= argc) { invalid_param = true; break; } - params.mirostat = std::stoi(argv[i]); + sparams.mirostat = std::stoi(argv[i]); } else if (arg == "--mirostat-lr") { if (++i >= argc) { invalid_param = true; break; } - params.mirostat_eta = std::stof(argv[i]); + sparams.mirostat_eta = std::stof(argv[i]); } else if (arg == "--mirostat-ent") { if (++i >= argc) { invalid_param = true; break; } - params.mirostat_tau = std::stof(argv[i]); + sparams.mirostat_tau = std::stof(argv[i]); } else if (arg == "--cfg-negative-prompt") { if (++i >= argc) { invalid_param = true; break; } - params.cfg_negative_prompt = argv[i]; + sparams.cfg_negative_prompt = argv[i]; } else if (arg == "--cfg-negative-prompt-file") { if (++i >= argc) { invalid_param = true; @@ -294,16 +295,16 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.cfg_negative_prompt)); - if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') { - params.cfg_negative_prompt.pop_back(); + std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(sparams.cfg_negative_prompt)); + if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') { + sparams.cfg_negative_prompt.pop_back(); } } else if (arg == "--cfg-scale") { if (++i >= argc) { invalid_param = true; break; } - params.cfg_scale = std::stof(argv[i]); + sparams.cfg_scale = std::stof(argv[i]); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; @@ -512,7 +513,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--no-penalize-nl") { - params.penalize_nl = false; + sparams.penalize_nl = false; } else if (arg == "-l" || arg == "--logit-bias") { if (++i >= argc) { invalid_param = true; @@ -524,7 +525,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { std::string value_str; try { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { - params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); + sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); } else { throw std::exception(); } @@ -627,6 +628,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { + const llama_sampling_params & sparams = params.sampling_params; + printf("usage: %s [options]\n", argv[0]); printf("\n"); printf("options:\n"); @@ -659,19 +662,19 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); - printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); - printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); - printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); - printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p); - printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n); - printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty); - printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty); - printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty); + printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k); + printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p); + printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z); + printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p); + printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.repeat_last_n); + printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.repeat_penalty); + printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.presence_penalty); + printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.frequency_penalty); printf(" --mirostat N use Mirostat sampling.\n"); printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); - printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat); - printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta); - printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau); + printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat); + printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta); + printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau); printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); printf(" modifies the likelihood of token appearing in the completion,\n"); printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); @@ -682,7 +685,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" negative prompt to use for guidance. (default: empty)\n"); printf(" --cfg-negative-prompt-file FNAME\n"); printf(" negative prompt file to use for guidance. (default: empty)\n"); - printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); + printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale); printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n"); printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n"); printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n"); @@ -690,7 +693,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --no-penalize-nl do not penalize newline token\n"); printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); - printf(" --temp N temperature (default: %.1f)\n", (double)params.temp); + printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp); printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n"); printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); @@ -840,7 +843,7 @@ std::tuple llama_init_from_gpt_par } if (params.ignore_eos) { - params.logit_bias[llama_token_eos(lctx)] = -INFINITY; + params.sampling_params.logit_bias[llama_token_eos(lctx)] = -INFINITY; } { @@ -932,127 +935,6 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector & last_tokens, - std::vector & candidates, - int idx) { - const int n_ctx = llama_n_ctx(ctx); - const int n_vocab = llama_n_vocab(llama_get_model(ctx)); - - const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; - const float top_p = params.top_p; - const float tfs_z = params.tfs_z; - const float typical_p = params.typical_p; - const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; - const float repeat_penalty = params.repeat_penalty; - const float alpha_presence = params.presence_penalty; - const float alpha_frequency = params.frequency_penalty; - const int mirostat = params.mirostat; - const float mirostat_tau = params.mirostat_tau; - const float mirostat_eta = params.mirostat_eta; - const bool penalize_nl = params.penalize_nl; - - llama_token id = 0; - - float * logits = llama_get_logits_ith(ctx, idx); - - // Apply params.logit_bias map - for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { - logits[it->first] += it->second; - } - - candidates.clear(); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { - candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); - } - - llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; - - if (ctx_guidance) { - llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); - } - - // apply penalties - if (!last_tokens.empty()) { - const float nl_logit = logits[llama_token_nl(ctx)]; - const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx); - - llama_sample_repetition_penalty(ctx, &cur_p, - last_tokens.data() + last_tokens.size() - last_n_repeat, - last_n_repeat, repeat_penalty); - llama_sample_frequency_and_presence_penalties(ctx, &cur_p, - last_tokens.data() + last_tokens.size() - last_n_repeat, - last_n_repeat, alpha_frequency, alpha_presence); - - if (!penalize_nl) { - for (size_t idx = 0; idx < cur_p.size; idx++) { - if (cur_p.data[idx].id == llama_token_nl(ctx)) { - cur_p.data[idx].logit = nl_logit; - break; - } - } - } - } - - if (grammar != NULL) { - llama_sample_grammar(ctx, &cur_p, grammar); - } - - if (temp <= 0) { - // Greedy sampling - id = llama_sample_token_greedy(ctx, &cur_p); - } else { - if (mirostat == 1) { - static float mirostat_mu = 2.0f * mirostat_tau; - const int mirostat_m = 100; - llama_sample_temp(ctx, &cur_p, temp); - id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); - } else if (mirostat == 2) { - static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temp(ctx, &cur_p, temp); - id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); - } else { - // Temperature sampling - size_t min_keep = std::max(1, params.n_probs); - llama_sample_top_k (ctx, &cur_p, top_k, min_keep); - llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep); - llama_sample_typical (ctx, &cur_p, typical_p, min_keep); - llama_sample_top_p (ctx, &cur_p, top_p, min_keep); - llama_sample_temp(ctx, &cur_p, temp); - - { - const int n_top = 10; - LOG("top %d candidates:\n", n_top); - - for (int i = 0; i < n_top; i++) { - const llama_token id = cur_p.data[i].id; - LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); - } - } - - id = llama_sample_token(ctx, &cur_p); - - LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); - } - } - // printf("`%d`", candidates_p.size); - - if (grammar != NULL) { - llama_grammar_accept_token(ctx, grammar, id); - } - - return id; -} - // // YAML utils // @@ -1204,6 +1086,8 @@ std::string get_sortable_timestamp() { void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx, const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc) { + const llama_sampling_params & sparams = params.sampling_params; + fprintf(stream, "build_commit: %s\n", BUILD_COMMIT); fprintf(stream, "build_number: %d\n", BUILD_NUMBER); fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); @@ -1250,21 +1134,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); - dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str()); - fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale); + dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str()); + fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale); fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); - fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty); + fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.frequency_penalty); dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str()); fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); - const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx)); - const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY; + const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(lctx)); + const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY; fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str()); @@ -1277,7 +1161,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); fprintf(stream, "logit_bias:\n"); - for (std::pair lb : params.logit_bias) { + for (std::pair lb : sparams.logit_bias) { if (ignore_eos && lb.first == logit_bias_eos->first) { continue; } @@ -1301,30 +1185,30 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false"); - fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat); - fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau); - fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta); + fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); + fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); + fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); - fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs); + fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false"); - fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false"); + fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false"); fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false"); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); - fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty); + fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.presence_penalty); dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str()); fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens); fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); - fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty); + fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.repeat_penalty); fprintf(stream, "reverse_prompt:\n"); for (std::string ap : params.antiprompt) { @@ -1342,15 +1226,15 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); - fprintf(stream, "temp: %f # default: 0.8\n", params.temp); + fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES); dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); - fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z); + fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency()); - fprintf(stream, "top_k: %d # default: 40\n", params.top_k); - fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p); - fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p); + fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); + fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); + fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); } diff --git a/common/common.h b/common/common.h index c80215279..fa115536b 100644 --- a/common/common.h +++ b/common/common.h @@ -4,6 +4,8 @@ #include "llama.h" +#include "sampling.h" + #define LOG_NO_FILE_LINE_FUNCTION #include "log.h" @@ -49,31 +51,12 @@ struct gpt_params { int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs - int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t n_beams = 0; // if non-zero then use beam search of given width. float rope_freq_base = 0.0f; // RoPE base frequency float rope_freq_scale = 0.0f; // RoPE frequency scaling factor - // sampling parameters - int32_t top_k = 40; // <= 0 to use vocab size - float top_p = 0.95f; // 1.0 = disabled - float tfs_z = 1.00f; // 1.0 = disabled - float typical_p = 1.00f; // 1.0 = disabled - float temp = 0.80f; // 1.0 = disabled - float repeat_penalty = 1.10f; // 1.0 = disabled - int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) - float frequency_penalty = 0.00f; // 0.0 = disabled - float presence_penalty = 0.00f; // 0.0 = disabled - int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 - float mirostat_tau = 5.00f; // target entropy - float mirostat_eta = 0.10f; // learning rate - - std::unordered_map logit_bias; // logit bias for specific tokens - - // Classifier-Free Guidance - // https://arxiv.org/abs/2306.17806 - std::string cfg_negative_prompt; // string to help guidance - float cfg_scale = 1.f; // How strong is guidance + // // sampling parameters + struct llama_sampling_params sampling_params; std::string model = "models/7B/ggml-model-f16.gguf"; // model path std::string model_draft = ""; // draft model for speculative decoding @@ -115,7 +98,6 @@ struct gpt_params { bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool ignore_eos = false; // ignore generated EOS tokens bool instruct = false; // instruction mode (used for Alpaca models) - bool penalize_nl = true; // consider newlines as a repeatable token bool logits_all = false; // return logits for all tokens in the batch bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory @@ -180,36 +162,6 @@ std::string llama_detokenize_bpe( llama_context * ctx, const std::vector & tokens); -// -// Sampling utils -// - -// this is a common sampling function used across the examples for convenience -// it can serve as a starting point for implementing your own sampling function -// -// required: -// - ctx: context to use for sampling -// - params: sampling parameters -// -// optional: -// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL -// - grammar: grammar to use for sampling, ignore if NULL -// - last_tokens: needed for repetition penalty, ignore if empty -// - idx: sample from llama_get_logits_ith(ctx, idx) -// -// returns: -// - token: sampled token -// - candidates: vector of candidate tokens -// -llama_token llama_sample_token( - struct llama_context * ctx, - struct llama_context * ctx_guidance, - struct llama_grammar * grammar, - const struct gpt_params & params, - const std::vector & last_tokens, - std::vector & candidates, - int idx = 0); - // // YAML utils // diff --git a/common/sampling.cpp b/common/sampling.cpp new file mode 100644 index 000000000..8ce419459 --- /dev/null +++ b/common/sampling.cpp @@ -0,0 +1,166 @@ +#include "sampling.h" + +llama_sampling_context::~llama_sampling_context() { + for (auto & it : sequence_contexts) { + if (it.second.grammar != NULL) { + llama_grammar_free(it.second.grammar); + it.second.grammar = NULL; + } + } +} + +llama_sampling_context llama_sampling_context_init( + const struct gpt_params & params, + llama_grammar * grammar) { + llama_sampling_context result; + + result.params = params.sampling_params; + result.grammar = grammar; + return result; +} + +// Note: Creates the context if it doesn't exist, so this always return something. +llama_sampler_sequence_context & llama_sampling_get_sequence_context( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq) { + const auto it = ctx_sampling.sequence_contexts.find(seq); + if (it != ctx_sampling.sequence_contexts.end()) { + return it->second; + } + llama_sampler_sequence_context new_ctx = { + 2.0f * ctx_sampling.params.mirostat_tau, + ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL, + }; + return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second; +} + +bool llama_sampling_context_reset( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq) { + const auto it = ctx_sampling.sequence_contexts.find(seq); + if (it == ctx_sampling.sequence_contexts.end()) return false; + if (it->second.grammar != NULL) { + llama_grammar_free(it->second.grammar); + it->second.grammar = NULL; + } + ctx_sampling.sequence_contexts.erase(it); + return true; +} + +llama_token llama_sampling_sample( + struct llama_context * ctx, + struct llama_context * ctx_guidance, + struct llama_sampling_context & ctx_sampling, + const std::vector & last_tokens, + std::vector & candidates, + const int idx, + llama_seq_id seq) { + const int n_ctx = llama_n_ctx(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); + + const llama_sampling_params & params = ctx_sampling.params; + const float temp = params.temp; + const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; + const float top_p = params.top_p; + const float tfs_z = params.tfs_z; + const float typical_p = params.typical_p; + const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; + const float repeat_penalty = params.repeat_penalty; + const float alpha_presence = params.presence_penalty; + const float alpha_frequency = params.frequency_penalty; + const int mirostat = params.mirostat; + const float mirostat_tau = params.mirostat_tau; + const float mirostat_eta = params.mirostat_eta; + const bool penalize_nl = params.penalize_nl; + + llama_token id = 0; + + float * logits = llama_get_logits_ith(ctx, idx); + + // Apply params.logit_bias map + for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { + logits[it->first] += it->second; + } + + candidates.clear(); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + + llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; + + if (ctx_guidance) { + llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); + } + + // apply penalties + if (!last_tokens.empty()) { + const float nl_logit = logits[llama_token_nl(ctx)]; + const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx); + + llama_sample_repetition_penalty(ctx, &cur_p, + last_tokens.data() + last_tokens.size() - last_n_repeat, + last_n_repeat, repeat_penalty); + llama_sample_frequency_and_presence_penalties(ctx, &cur_p, + last_tokens.data() + last_tokens.size() - last_n_repeat, + last_n_repeat, alpha_frequency, alpha_presence); + + if (!penalize_nl) { + for (size_t idx = 0; idx < cur_p.size; idx++) { + if (cur_p.data[idx].id == llama_token_nl(ctx)) { + cur_p.data[idx].logit = nl_logit; + break; + } + } + } + } + + llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq); + + if (ctx_seq.grammar != NULL) { + llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar); + } + + if (temp <= 0) { + // Greedy sampling + id = llama_sample_token_greedy(ctx, &cur_p); + } else { + if (mirostat == 1) { + const int mirostat_m = 100; + llama_sample_temp(ctx, &cur_p, temp); + id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu); + } else if (mirostat == 2) { + llama_sample_temp(ctx, &cur_p, temp); + id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu); + } else { + // Temperature sampling + size_t min_keep = std::max(1, params.n_probs); + llama_sample_top_k (ctx, &cur_p, top_k, min_keep); + llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep); + llama_sample_typical (ctx, &cur_p, typical_p, min_keep); + llama_sample_top_p (ctx, &cur_p, top_p, min_keep); + llama_sample_temp(ctx, &cur_p, temp); + + { + const int n_top = 10; + LOG("top %d candidates:\n", n_top); + + for (int i = 0; i < n_top; i++) { + const llama_token id = cur_p.data[i].id; + (void)id; // To avoid a warning that id is unused when logging is disabled. + LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); + } + } + + id = llama_sample_token(ctx, &cur_p); + + LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); + } + } + + if (ctx_seq.grammar != NULL) { + llama_grammar_accept_token(ctx, ctx_seq.grammar, id); + } + + return id; +} diff --git a/common/sampling.h b/common/sampling.h new file mode 100644 index 000000000..0aab5d03c --- /dev/null +++ b/common/sampling.h @@ -0,0 +1,108 @@ +#pragma once + +#include "llama.h" + +#include +#include +#include + +// sampling parameters +typedef struct llama_sampling_params { + int32_t top_k = 40; // <= 0 to use vocab size + float top_p = 0.95f; // 1.0 = disabled + float tfs_z = 1.00f; // 1.0 = disabled + float typical_p = 1.00f; // 1.0 = disabled + float temp = 0.80f; // 1.0 = disabled + float repeat_penalty = 1.10f; // 1.0 = disabled + int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) + float frequency_penalty = 0.00f; // 0.0 = disabled + float presence_penalty = 0.00f; // 0.0 = disabled + int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 + float mirostat_tau = 5.00f; // target entropy + float mirostat_eta = 0.10f; // learning rate + + bool penalize_nl = true; // consider newlines as a repeatable token + + int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. + + // Classifier-Free Guidance + // https://arxiv.org/abs/2306.17806 + std::string cfg_negative_prompt; // string to help guidance + float cfg_scale = 1.f; // How strong is guidance + + std::unordered_map logit_bias; // logit bias for specific tokens + +} llama_sampling_params; + +// per-sequence sampler context +typedef struct llama_sampler_sequence_context { + float mirostat_mu; // mirostat sampler state + llama_grammar * grammar; +} llama_sampler_sequence_context; + +// general sampler context +typedef struct llama_sampling_context { + ~llama_sampling_context(); + + // parameters that will be used for sampling and when creating + // new llama_sampler_sequence_context instances + llama_sampling_params params; + + // map of sequence ids to sampler contexts + std::unordered_map sequence_contexts; + + // when non-NULL, new instances of llama_sampler_sequence_context + // will get a copy of the grammar here + // note: only the pointer is stored here, it is not a copy of + // the grammar and shouldn't be freed + llama_grammar * grammar; +} llama_sampling_context; + +#include "common.h" + +// Create a new sampling context instance. +llama_sampling_context llama_sampling_context_init( + const struct gpt_params & params, + llama_grammar * grammar = NULL); + +// Fetches the sampler context for the specified sequence id (defaults to 0). +// If the context for that sequence id doesn't already exist, it will be created with +// default values based on the parameters in the ctx_sampling argument. +llama_sampler_sequence_context & llama_sampling_get_sequence_context( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq = 0); + +// Reset the sampler context for the supplied sequence id (defaults to 0). +// This is necessary to reuse a sequence id or free memory used by sequences +// that are no longer required. +bool llama_sampling_context_reset( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq = 0); + +// this is a common sampling function used across the examples for convenience +// it can serve as a starting point for implementing your own sampling function +// Note: When using multiple sequences, it is the caller's responsibility to call +// llama_sampling_context_reset when a sequence ends +// +// required: +// - ctx: context to use for sampling +// - ctx_sampling: sampling-specific context +// +// optional: +// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL +// - last_tokens: needed for repetition penalty, ignore if empty +// - idx: sample from llama_get_logits_ith(ctx, idx) +// - seq: sequence id to associate sampler state with +// +// returns: +// - token: sampled token +// - candidates: vector of candidate tokens +// +llama_token llama_sampling_sample( + struct llama_context * ctx, + struct llama_context * ctx_guidance, + struct llama_sampling_context & ctx_sampling, + const std::vector & last_tokens, + std::vector & candidates, + const int idx = 0, + llama_seq_id seq = 0); diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp index 99e6bdad5..87a5a1c26 100644 --- a/examples/embd-input/embd-input-lib.cpp +++ b/examples/embd-input/embd-input-lib.cpp @@ -128,21 +128,22 @@ bool eval_string(struct MyModel * mymodel,const char* str){ llama_token sampling_id(struct MyModel* mymodel) { llama_context* ctx = mymodel->ctx; gpt_params params = mymodel->params; + llama_sampling_params & sparams = params.sampling_params; // int n_ctx = llama_n_ctx(ctx); // out of user input, sample next token - const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k; - const float top_p = params.top_p; - const float tfs_z = params.tfs_z; - const float typical_p = params.typical_p; + const float temp = sparams.temp; + const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k; + const float top_p = sparams.top_p; + const float tfs_z = sparams.tfs_z; + const float typical_p = sparams.typical_p; // const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; // const float repeat_penalty = params.repeat_penalty; // const float alpha_presence = params.presence_penalty; // const float alpha_frequency = params.frequency_penalty; - const int mirostat = params.mirostat; - const float mirostat_tau = params.mirostat_tau; - const float mirostat_eta = params.mirostat_eta; + const int mirostat = sparams.mirostat; + const float mirostat_tau = sparams.mirostat_tau; + const float mirostat_eta = sparams.mirostat_eta; // const bool penalize_nl = params.penalize_nl; llama_token id = 0; @@ -151,7 +152,7 @@ llama_token sampling_id(struct MyModel* mymodel) { auto n_vocab = llama_n_vocab(llama_get_model(ctx)); // Apply params.logit_bias map - for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { + for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) { logits[it->first] += it->second; } diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index d994de5e8..187623f5d 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -104,6 +104,7 @@ static void sigint_handler(int signo) { int main(int argc, char ** argv) { gpt_params params; + llama_sampling_params & sparams = params.sampling_params; g_params = ¶ms; if (!gpt_params_parse(argc, argv, params)) { @@ -206,7 +207,7 @@ int main(int argc, char ** argv) { // load the model and apply lora adapter, if any LOG("%s: load the model and apply lora adapter, if any\n", __func__); std::tie(model, ctx) = llama_init_from_gpt_params(params); - if (params.cfg_scale > 1.f) { + if (sparams.cfg_scale > 1.f) { struct llama_context_params lparams = llama_context_params_from_gpt_params(params); ctx_guidance = llama_new_context_with_model(model, lparams); } @@ -269,9 +270,9 @@ int main(int argc, char ** argv) { int guidance_offset = 0; int original_prompt_len = 0; if (ctx_guidance) { - LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt)); + LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt)); - guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos); + guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos); LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp)); std::vector original_inp = ::llama_tokenize(ctx, params.prompt, add_bos); @@ -312,7 +313,7 @@ int main(int argc, char ** argv) { if (ctx_guidance) { LOG_TEE("\n"); - LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str()); + LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str()); LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); for (int i = 0; i < (int) guidance_inp.size(); i++) { LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); @@ -358,7 +359,7 @@ int main(int argc, char ** argv) { } } LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n", - params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau); + sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau); LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); LOG_TEE("\n\n"); @@ -376,8 +377,8 @@ int main(int argc, char ** argv) { LOG_TEE("\n"); { - auto it = params.logit_bias.find(llama_token_eos(ctx)); - if (it != params.logit_bias.end() && it->second == -INFINITY) { + auto it = sparams.logit_bias.find(llama_token_eos(ctx)); + if (it != sparams.logit_bias.end() && it->second == -INFINITY) { LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__); } } @@ -434,6 +435,7 @@ int main(int argc, char ** argv) { const int n_vocab = llama_n_vocab(model); + llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar); std::vector candidates; candidates.reserve(n_vocab); @@ -552,7 +554,7 @@ int main(int argc, char ** argv) { if ((int) embd_inp.size() <= n_consumed && !is_interacting) { - const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates); + const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates); last_tokens.erase(last_tokens.begin()); last_tokens.push_back(id); diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 775a5a201..b39a67d97 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -109,6 +109,7 @@ int main(int argc, char ** argv) { if (!gpt_params_parse(argc, argv, params)) { return 1; } + llama_sampling_params & sparams = params.sampling_params; #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("main", "log")); @@ -179,7 +180,7 @@ int main(int argc, char ** argv) { // load the model and apply lora adapter, if any LOG("%s: load the model and apply lora adapter, if any\n", __func__); std::tie(model, ctx) = llama_init_from_gpt_params(params); - if (params.cfg_scale > 1.f) { + if (sparams.cfg_scale > 1.f) { struct llama_context_params lparams = llama_context_params_from_gpt_params(params); ctx_guidance = llama_new_context_with_model(model, lparams); } @@ -257,9 +258,9 @@ int main(int argc, char ** argv) { int guidance_offset = 0; int original_prompt_len = 0; if (ctx_guidance) { - LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt)); + LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt)); - guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos); + guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos); LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp)); std::vector original_inp = ::llama_tokenize(ctx, params.prompt, add_bos); @@ -343,7 +344,7 @@ int main(int argc, char ** argv) { if (ctx_guidance) { LOG_TEE("\n"); - LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str()); + LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str()); LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); for (int i = 0; i < (int) guidance_inp.size(); i++) { LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); @@ -395,7 +396,7 @@ int main(int argc, char ** argv) { } } LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n", - params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau); + sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau); LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); LOG_TEE("\n\n"); @@ -413,8 +414,8 @@ int main(int argc, char ** argv) { LOG_TEE("\n"); { - auto it = params.logit_bias.find(llama_token_eos(ctx)); - if (it != params.logit_bias.end() && it->second == -INFINITY) { + auto it = sparams.logit_bias.find(llama_token_eos(ctx)); + if (it != sparams.logit_bias.end() && it->second == -INFINITY) { LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__); } } @@ -469,6 +470,7 @@ int main(int argc, char ** argv) { const int n_vocab = llama_n_vocab(model); + llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar); std::vector candidates; candidates.reserve(n_vocab); @@ -625,7 +627,7 @@ int main(int argc, char ** argv) { LOG("saved session to %s\n", path_session.c_str()); } - const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates); + const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates); last_tokens.erase(last_tokens.begin()); last_tokens.push_back(id); diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 04f1e45b9..63ddcd8ed 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -125,6 +125,8 @@ int main(int argc, char ** argv) { params.logits_all = true; std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_sampling_context ctx_sampling = llama_sampling_context_init(params, NULL); + // load the prompts from an external file if there are any if (params.prompt.empty()) { printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n"); @@ -339,7 +341,7 @@ int main(int argc, char ** argv) { //printf("client %d, seq %d, token %d, pos %d, batch %d\n", // client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch); - const llama_token id = llama_sample_token(ctx, NULL, NULL, params, client.tokens_prev, candidates, client.i_batch - i); + const llama_token id = llama_sampling_sample(ctx, NULL, ctx_sampling, client.tokens_prev, candidates, client.i_batch - i, client.seq_id); if (client.n_decoded == 1) { // start measuring generation time after the first token to make sure all concurrent clients @@ -384,7 +386,7 @@ int main(int argc, char ** argv) { n_total_prompt += client.n_prompt; n_total_gen += client.n_decoded; - + llama_sampling_context_reset(ctx_sampling, client.seq_id); client.seq_id = -1; } diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index acc6dbdfd..f9e3c98a3 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -8,9 +8,10 @@ int main(int argc, char ** argv) { gpt_params params; + llama_sampling_params & sparams = params.sampling_params; params.seed = 42; params.n_threads = 4; - params.repeat_last_n = 64; + sparams.repeat_last_n = 64; params.prompt = "The quick brown fox"; if (!gpt_params_parse(argc, argv, params)) { @@ -24,7 +25,7 @@ int main(int argc, char ** argv) { } auto n_past = 0; - auto last_n_tokens_data = std::vector(params.repeat_last_n, 0); + auto last_n_tokens_data = std::vector(sparams.repeat_last_n, 0); // init llama_model * model; diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 8c5318c65..58af78de9 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -200,6 +200,7 @@ struct llama_server_context llama_model *model = nullptr; llama_context *ctx = nullptr; gpt_params params; + llama_sampling_context ctx_sampling; int n_ctx; grammar_parser::parse_state parsed_grammar; @@ -254,6 +255,7 @@ struct llama_server_context if (grammar != nullptr) { llama_grammar_free(grammar); grammar = nullptr; + ctx_sampling = llama_sampling_context_init(params, NULL); } } @@ -329,8 +331,8 @@ struct llama_server_context grammar_parser::print_grammar(stderr, parsed_grammar); { - auto it = params.logit_bias.find(llama_token_eos(ctx)); - if (it != params.logit_bias.end() && it->second == -INFINITY) { + auto it = params.sampling_params.logit_bias.find(llama_token_eos(ctx)); + if (it != params.sampling_params.logit_bias.end() && it->second == -INFINITY) { LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {}); } } @@ -339,6 +341,7 @@ struct llama_server_context grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); } + ctx_sampling = llama_sampling_context_init(params, grammar); return true; } @@ -550,12 +553,12 @@ struct llama_server_context std::vector candidates; candidates.reserve(llama_n_vocab(model)); - result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates); + result.tok = llama_sampling_sample(ctx, NULL, ctx_sampling, last_n_tokens, candidates); llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; - const int32_t n_probs = params.n_probs; - if (params.temp <= 0 && n_probs > 0) + const int32_t n_probs = params.sampling_params.n_probs; + if (params.sampling_params.temp <= 0 && n_probs > 0) { // For llama_sample_token_greedy we need to sort candidates llama_sample_softmax(ctx, &candidates_p); @@ -630,7 +633,7 @@ struct llama_server_context const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok); generated_text += token_text; - if (params.n_probs > 0) + if (params.sampling_params.n_probs > 0) { generated_token_probs.push_back(token_with_probs); } @@ -1018,34 +1021,35 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, static json format_generation_settings(llama_server_context &llama) { - const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx)); - const bool ignore_eos = eos_bias != llama.params.logit_bias.end() && + const auto & sparams = llama.params.sampling_params; + const auto eos_bias = sparams.logit_bias.find(llama_token_eos(llama.ctx)); + const bool ignore_eos = eos_bias != sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second); return json{ {"n_ctx", llama.n_ctx}, {"model", llama.params.model_alias}, {"seed", llama.params.seed}, - {"temp", llama.params.temp}, - {"top_k", llama.params.top_k}, - {"top_p", llama.params.top_p}, - {"tfs_z", llama.params.tfs_z}, - {"typical_p", llama.params.typical_p}, - {"repeat_last_n", llama.params.repeat_last_n}, - {"repeat_penalty", llama.params.repeat_penalty}, - {"presence_penalty", llama.params.presence_penalty}, - {"frequency_penalty", llama.params.frequency_penalty}, - {"mirostat", llama.params.mirostat}, - {"mirostat_tau", llama.params.mirostat_tau}, - {"mirostat_eta", llama.params.mirostat_eta}, - {"penalize_nl", llama.params.penalize_nl}, + {"temp", sparams.temp}, + {"top_k", sparams.top_k}, + {"top_p", sparams.top_p}, + {"tfs_z", sparams.tfs_z}, + {"typical_p", sparams.typical_p}, + {"repeat_last_n", sparams.repeat_last_n}, + {"repeat_penalty", sparams.repeat_penalty}, + {"presence_penalty", sparams.presence_penalty}, + {"frequency_penalty", sparams.frequency_penalty}, + {"mirostat", sparams.mirostat}, + {"mirostat_tau", sparams.mirostat_tau}, + {"mirostat_eta", sparams.mirostat_eta}, + {"penalize_nl", sparams.penalize_nl}, {"stop", llama.params.antiprompt}, {"n_predict", llama.params.n_predict}, {"n_keep", llama.params.n_keep}, {"ignore_eos", ignore_eos}, {"stream", llama.stream}, - {"logit_bias", llama.params.logit_bias}, - {"n_probs", llama.params.n_probs}, + {"logit_bias", sparams.logit_bias}, + {"n_probs", sparams.n_probs}, {"grammar", llama.params.grammar}, }; } @@ -1094,7 +1098,7 @@ static json format_final_response(llama_server_context &llama, const std::string {"timings", format_timings(llama)}, }; - if (llama.params.n_probs > 0) + if (llama.params.sampling_params.n_probs > 0) { res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); } @@ -1110,7 +1114,7 @@ static json format_partial_response( {"stop", false}, }; - if (llama.params.n_probs > 0) + if (llama.params.sampling_params.n_probs > 0) { res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); } @@ -1142,26 +1146,28 @@ static T json_value(const json &body, const std::string &key, const T &default_v static void parse_options_completion(const json &body, llama_server_context &llama) { gpt_params default_params; + const auto & default_sparams = default_params.sampling_params; + auto & sparams = llama.params.sampling_params; llama.stream = json_value(body, "stream", false); llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict); - llama.params.top_k = json_value(body, "top_k", default_params.top_k); - llama.params.top_p = json_value(body, "top_p", default_params.top_p); - llama.params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z); - llama.params.typical_p = json_value(body, "typical_p", default_params.typical_p); - llama.params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n); - llama.params.temp = json_value(body, "temperature", default_params.temp); - llama.params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty); - llama.params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty); - llama.params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty); - llama.params.mirostat = json_value(body, "mirostat", default_params.mirostat); - llama.params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau); - llama.params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta); - llama.params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl); + sparams.top_k = json_value(body, "top_k", default_sparams.top_k); + sparams.top_p = json_value(body, "top_p", default_sparams.top_p); + sparams.tfs_z = json_value(body, "tfs_z", default_sparams.tfs_z); + sparams.typical_p = json_value(body, "typical_p", default_sparams.typical_p); + sparams.repeat_last_n = json_value(body, "repeat_last_n", default_sparams.repeat_last_n); + sparams.temp = json_value(body, "temperature", default_sparams.temp); + sparams.repeat_penalty = json_value(body, "repeat_penalty", default_sparams.repeat_penalty); + sparams.presence_penalty = json_value(body, "presence_penalty", default_sparams.presence_penalty); + sparams.frequency_penalty = json_value(body, "frequency_penalty", default_sparams.frequency_penalty); + sparams.mirostat = json_value(body, "mirostat", default_sparams.mirostat); + sparams.mirostat_tau = json_value(body, "mirostat_tau", default_sparams.mirostat_tau); + sparams.mirostat_eta = json_value(body, "mirostat_eta", default_sparams.mirostat_eta); + sparams.penalize_nl = json_value(body, "penalize_nl", default_sparams.penalize_nl); llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep); llama.params.seed = json_value(body, "seed", default_params.seed); llama.params.grammar = json_value(body, "grammar", default_params.grammar); - llama.params.n_probs = json_value(body, "n_probs", default_params.n_probs); + sparams.n_probs = json_value(body, "n_probs", default_sparams.n_probs); if (body.count("prompt") != 0) { @@ -1172,10 +1178,10 @@ static void parse_options_completion(const json &body, llama_server_context &lla llama.prompt = ""; } - llama.params.logit_bias.clear(); + sparams.logit_bias.clear(); if (json_value(body, "ignore_eos", false)) { - llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY; + sparams.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY; } const auto &logit_bias = body.find("logit_bias"); @@ -1191,11 +1197,11 @@ static void parse_options_completion(const json &body, llama_server_context &lla { if (el[1].is_number()) { - llama.params.logit_bias[tok] = el[1].get(); + sparams.logit_bias[tok] = el[1].get(); } else if (el[1].is_boolean() && !el[1].get()) { - llama.params.logit_bias[tok] = -INFINITY; + sparams.logit_bias[tok] = -INFINITY; } } } @@ -1215,6 +1221,8 @@ static void parse_options_completion(const json &body, llama_server_context &lla } } + llama.ctx_sampling = llama_sampling_context_init(llama.params, llama.grammar); + LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama)); } @@ -1423,7 +1431,7 @@ int main(int argc, char **argv) } auto probs = llama.generated_token_probs; - if (llama.params.n_probs > 0 && llama.stopped_word) { + if (llama.params.sampling_params.n_probs > 0 && llama.stopped_word) { const std::vector stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false); probs = std::vector(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size()); } @@ -1475,7 +1483,7 @@ int main(int argc, char **argv) std::vector probs_output = {}; - if (llama.params.n_probs > 0) { + if (llama.params.sampling_params.n_probs > 0) { const std::vector to_send_toks = llama_tokenize(llama.ctx, to_send, false); size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size()); size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size()); @@ -1596,7 +1604,7 @@ int main(int argc, char **argv) std::vector probs_output = {}; - if (llama.params.n_probs > 0) { + if (llama.params.sampling_params.n_probs > 0) { const std::vector to_send_toks = llama_tokenize(llama.ctx, to_send, false); size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size()); size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size()); diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 75a2e5e22..018dbf9a2 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -125,6 +125,8 @@ int main(int argc, char ** argv) { grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); } + llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt); + const auto t_dec_start = ggml_time_us(); while (true) { @@ -134,7 +136,7 @@ int main(int argc, char ** argv) { while (true) { // sample from the target model - llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft); + llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft); // remember which tokens were sampled - used for repetition penalties during sampling last_tokens.erase(last_tokens.begin()); @@ -211,7 +213,13 @@ int main(int argc, char ** argv) { if (grammar_dft) { llama_grammar_free(grammar_dft); } - grammar_dft = llama_grammar_copy(grammar_tgt); + // Note: Hardcoded to sequence id 0, if this ever supports parallel generation + // that will need to change. + auto it = ctx_sampling.sequence_contexts.find(0); + GGML_ASSERT(it != ctx_sampling.sequence_contexts.end()); + // This is necessary because each sequence id in sequence_contexts + // uses a copy of the original grammar. + grammar_dft = llama_grammar_copy(it->second.grammar); LOG("copied target grammar to draft grammar\n"); } From a8bdd65525ae86dea905e9866ad369b53e30ac14 Mon Sep 17 00:00:00 2001 From: Michael Coppola Date: Wed, 11 Oct 2023 15:42:22 -0400 Subject: [PATCH 057/295] server : add parameter -tb N, --threads-batch N (#3584) Co-authored-by: Michael Coppola --- examples/server/server.cpp | 28 +++++++++++++++++++--------- 1 file changed, 19 insertions(+), 9 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 58af78de9..d992feeef 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -714,15 +714,16 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms, printf("usage: %s [options]\n", argv0); printf("\n"); printf("options:\n"); - printf(" -h, --help show this help message and exit\n"); - printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); - printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); - printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); - printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n"); - printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n"); - printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); - printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); - printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); + printf(" -h, --help show this help message and exit\n"); + printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); + printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n"); + printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); + printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n"); + printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n"); + printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); + printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); + printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); if (llama_mlock_supported()) { printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); @@ -867,6 +868,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, } params.n_threads = std::stoi(argv[i]); } + else if (arg == "--threads-batch" || arg == "-tb") + { + if (++i >= argc) + { + invalid_param = true; + break; + } + params.n_threads_batch = std::stoi(argv[i]); + } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) From b8fe4b5cc9cb237ca98e5bc51b5d189e3c446d13 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 11 Oct 2023 23:55:08 +0300 Subject: [PATCH 058/295] main : fix session loading bug (#3400) --- examples/main/main.cpp | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index b39a67d97..55f73356f 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -297,6 +297,9 @@ int main(int argc, char ** argv) { LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n", __func__, n_matching_session_tokens, embd_inp.size()); } + + // remove any "future" tokens that we might have inherited from the previous session + llama_kv_cache_tokens_rm(ctx, n_matching_session_tokens, -1); } LOGLN( @@ -545,9 +548,6 @@ int main(int argc, char ** argv) { if (i > 0) { embd.erase(embd.begin(), embd.begin() + i); } - - // remove any "future" tokens that we might have inherited from the session from the KV cache - llama_kv_cache_tokens_rm(ctx, n_past, -1); } // evaluate tokens in batches From 57dd55e2c742bfc50e0f5c6fb95c14118cff44f6 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 12 Oct 2023 09:29:04 +0300 Subject: [PATCH 059/295] server : fix kv cache management (#3588) --- examples/server/server.cpp | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index d992feeef..ee0ababb1 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -405,6 +405,7 @@ struct llama_server_context // compare the evaluated prompt with the new prompt n_past = common_part(embd, prompt_tokens); embd = prompt_tokens; + if (n_past == num_prompt_tokens) { // we have to evaluate at least 1 token to generate logits. @@ -412,6 +413,9 @@ struct llama_server_context n_past--; } + // since #3228 we now have to manually manage the KV cache + llama_kv_cache_seq_rm(ctx, 0, n_past, -1); + LOG_VERBOSE("prompt ingested", { {"n_past", n_past}, {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)}, @@ -461,9 +465,6 @@ struct llama_server_context // compare the evaluated prompt with the new prompt n_past = common_part(embd, prompt_tokens); - // since #3228 we now have to manually manage the KV cache - llama_kv_cache_seq_rm(ctx, 0, n_past, -1); - embd = prompt_tokens; if (n_past == num_prompt_tokens) { @@ -471,6 +472,9 @@ struct llama_server_context n_past--; } + // since #3228 we now have to manually manage the KV cache + llama_kv_cache_seq_rm(ctx, 0, n_past, -1); + LOG_VERBOSE("prompt ingested", { {"n_past", n_past}, {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)}, From 6b3ae4da92485f979a0f45774fcf68597634db0b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 12 Oct 2023 09:35:19 +0300 Subject: [PATCH 060/295] prompts : add mnemonics.txt --- prompts/mnemonics.txt | 93 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 prompts/mnemonics.txt diff --git a/prompts/mnemonics.txt b/prompts/mnemonics.txt new file mode 100644 index 000000000..1bcc65bb0 --- /dev/null +++ b/prompts/mnemonics.txt @@ -0,0 +1,93 @@ +For each kanji character, write a Markdown‐formatted mnemonic that uses its keyword and the keyword of all its components. + +Kanji: 欠 (lack of) +Components: 𠂊 (hook claw), 人 (person) +Mnemonic: This **person** is a pirate. He lost his hand to a crocodile many years ago. Nowadays, the ***lack of*** a hand does not bother him too much. In fact, the **hook claw** that replaces it is the mark of a true pirate, so he is quite proud of it! + +Kanji: 類 (kind (of something)) +Components: 米 (rice), 大 (large), 頁 (page) +Mnemonic: The waiter at a Chinese restaurant hands you a **large** menu. Each **page** has all ***kinds*** of **rice** on offer! + +Kanji: 燃 (burn) +Components: 火 (fire), 然 (sort of thing) +Mnemonic: ***Burning*** things up with **fire** is just my **sort of thing**. (Spoken like a true pyromaniac.) + +Kanji: 頂 (top of) +Components: 丁 (street), 頁 (page) +Mnemonic: To be at the ***top of*** your game, you need both practical knowledge (**street** smarts) and theoretical knowledge (having read many **pages**). + +Kanji: 険 (risky and steep) +Components: 阝 (small village), 㑒 (consensus) +Mnemonic: Everyone agrees (there is **consensus**) that the path to the **small village** is ***risky and steep***. + +Kanji: 困 (distressed) +Components: 囗 (closed box), 木 (tree) +Mnemonic: You would feel ***distressed*** too if you were a **tree** trapped in a **closed box**! I have no place to grow! + +Kanji: 頭 (head) +Components: 豆 (bean), 頁 (page) +Mnemonic: What do you have in that ***head*** of yours? A **bean** for a brain? Go read more **pages** and become more knowledgeable about the world! + +Kanji: 確 (certain) +Components: 石 (stone), 冖 (roof without a chimney), 隹 (old bird) +Mnemonic: An **old bird** has made a nest on your **roof**. What do you do? You call Misaka from a A ***Certain*** Scientific Railgun to get rid of it, of course! But she doesn’t really want to vaporize the poor thing, so she just throws a **stone** to scare it away. (What was the point of calling her, then‽) + +Kanji: 魚 (fish) +Components: 𠂊 (hook claw), 田 (rice field), 灬 (fire sparks) +Mnemonic: Catch ***fish*** with a **hook**, collect rice from the **rice field**, cook them with **fire**… And my meal is ready! + +Kanji: 警 (to police (something)) +Components: 敬 (respect), 言 (say) +Mnemonic: ***To police something*** is to make people **respect** what the law **says**. + +Kanji: 筆 (writing brush) +Components: 竹 (bamboo), 聿 (brush) +Mnemonic: A traditional ***writing brush*** is a **brush** made of **bamboo**. + +Kanji: 獄 (prison) +Components: 犭 (animal), 言 (say), 犬 (dog) +Mnemonic: In ***prison***, like in the **animal** kingdom, only the toughest survive. You have to watch what you **say**. It’s a **dog**‐eat‐dog world. + +Kanji: 新 (new) +Components: 立 (standing up), 木 (tree), 斤 (axe) +Mnemonic: In order for a ***new*** construction to be made, an empty lot is needed. If there are any **trees** **standing up**, they must be cut down with an **axe**. + +Kanji: 怪 (suspicious) +Components: 忄 (weak heart), 圣 (sacred) +Mnemonic: That painting of the **Sacred** **Heart** of Jesus looks ***suspicious***. I think it might be a forgery. + +Kanji: 温 (warm (to the touch)) +Components: 氵 (water drops), 日 (sun), 皿 (dish) +Mnemonic: If you leave **water** on a **dish** in the **sun**, it will get ***warm***. + +Kanji: 階 (floor (of a building)) +Components: 阝 (small village), 皆 (all) +Mnemonic: It might be a **small village**, but, despite that, **all** of its buildings have many ***floors***. It’s a village of skyscrapers! + +Kanji: 多 (many) +Components: 夕 (evening (before sunset)), 夕 (evening (before sunset)) +Mnemonic: Two **evenings** in a day would be one too ***many***. + +Kanji: 別 (separate) +Components: 口 (mouth), 万 (ten thousand), 刂 (knife) +Mnemonic: Tom Six is at it again. For his next flick, he wants to stitch together **ten thousand** people, **mouth**‐to‐anus. One of the most graphic and disturbing scenes will feature one of the victims using a **knife** to ***separate*** perself. + +Kanji: 並 (line up) +Components: 䒑 (antlers on a wall), 业 (runway) +Mnemonic: In order to land a plane you have to ***line up*** properly with the **runway**. The things that look like **antlers** at the end of the runway are the control towers; you should follow their instructions. + +Kanji: 姿 (figure) +Components: 次 (next), 女 (woman) +Mnemonic: The **next** **woman** that I date will have a perfect **figure**. Because I’m done with 3D women—it will *literally* be an anime figure! + +Kanji: 実 (real) +Components: 宀 (roof with a chimney), 𡗗 (three people) +Mnemonic: Living under a **roof with a chimney** with **three people** (a wife and two children)—a happy family life—is not something I could have ever imagined. It does not feel ***real***. + +Kanji: 謝 (apologize) +Components: 言 (say), 射 (shoot) +Mnemonic: **Shot** first, ***apologize*** (**say** you are sorry) later. + +Kanji: 提 (propose) +Components: 扌 (left hand), 是 (go with) +Mnemonic: \ No newline at end of file From b016596d903641f8825cd94bb6742e1de0c21017 Mon Sep 17 00:00:00 2001 From: Aarni Koskela Date: Thu, 12 Oct 2023 15:51:53 +0900 Subject: [PATCH 061/295] server : add completion mode (no chat) (#3582) --- examples/server/index.html.hpp | 4187 +++++++++++++++-------------- examples/server/public/index.html | 191 +- 2 files changed, 2317 insertions(+), 2061 deletions(-) diff --git a/examples/server/index.html.hpp b/examples/server/index.html.hpp index f30232929..58e3387d1 100644 --- a/examples/server/index.html.hpp +++ b/examples/server/index.html.hpp @@ -201,2103 +201,2284 @@ unsigned char index_html[] = { 0x65, 0x6d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2c, 0x20, 0x66, - 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2d, 0x61, 0x6c, 0x69, 0x67, 0x6e, - 0x3a, 0x20, 0x63, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6f, - 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x73, 0x69, 0x7a, 0x65, 0x3a, 0x20, 0x38, - 0x30, 0x25, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x38, 0x38, 0x38, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x40, - 0x6b, 0x65, 0x79, 0x66, 0x72, 0x61, 0x6d, 0x65, 0x73, 0x20, 0x6c, 0x6f, - 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, 0x62, 0x67, 0x2d, 0x77, 0x69, 0x70, - 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x30, 0x25, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, - 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x70, 0x6f, - 0x73, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x30, 0x25, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x31, 0x30, 0x30, 0x25, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, - 0x75, 0x6e, 0x64, 0x2d, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x6f, 0x6e, - 0x3a, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x2e, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2d, 0x2d, 0x6c, 0x6f, - 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, - 0x31, 0x3a, 0x20, 0x23, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65, 0x30, 0x30, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2d, 0x2d, 0x6c, 0x6f, - 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, - 0x32, 0x3a, 0x20, 0x23, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65, 0x66, 0x66, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, - 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x73, 0x69, 0x7a, 0x65, 0x3a, - 0x20, 0x35, 0x30, 0x25, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, - 0x75, 0x6e, 0x64, 0x2d, 0x69, 0x6d, 0x61, 0x67, 0x65, 0x3a, 0x20, 0x6c, - 0x69, 0x6e, 0x65, 0x61, 0x72, 0x2d, 0x67, 0x72, 0x61, 0x64, 0x69, 0x65, - 0x6e, 0x74, 0x28, 0x39, 0x30, 0x64, 0x65, 0x67, 0x2c, 0x20, 0x76, 0x61, - 0x72, 0x28, 0x2d, 0x2d, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, - 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, 0x31, 0x29, 0x2c, 0x20, 0x76, 0x61, - 0x72, 0x28, 0x2d, 0x2d, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, - 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, 0x32, 0x29, 0x2c, 0x20, 0x76, 0x61, - 0x72, 0x28, 0x2d, 0x2d, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, - 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, 0x31, 0x29, 0x29, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x6e, 0x69, 0x6d, 0x61, 0x74, 0x69, - 0x6f, 0x6e, 0x3a, 0x20, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, - 0x62, 0x67, 0x2d, 0x77, 0x69, 0x70, 0x65, 0x20, 0x32, 0x73, 0x20, 0x6c, - 0x69, 0x6e, 0x65, 0x61, 0x72, 0x20, 0x69, 0x6e, 0x66, 0x69, 0x6e, 0x69, - 0x74, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x40, 0x6d, 0x65, 0x64, 0x69, 0x61, 0x20, 0x28, 0x70, - 0x72, 0x65, 0x66, 0x65, 0x72, 0x73, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, - 0x2d, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x65, 0x3a, 0x20, 0x64, 0x61, 0x72, - 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, - 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2d, 0x2d, 0x6c, 0x6f, 0x61, 0x64, - 0x69, 0x6e, 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, 0x31, 0x3a, - 0x20, 0x23, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x30, 0x30, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, + 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x2e, 0x73, 0x6c, 0x69, 0x6d, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, + 0x6e, 0x3a, 0x20, 0x30, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, + 0x79, 0x3a, 0x20, 0x69, 0x6e, 0x6c, 0x69, 0x6e, 0x65, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, + 0x61, 0x64, 0x65, 0x72, 0x2c, 0x20, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x78, + 0x74, 0x2d, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x3a, 0x20, 0x63, 0x65, 0x6e, + 0x74, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, + 0x73, 0x69, 0x7a, 0x65, 0x3a, 0x20, 0x38, 0x30, 0x25, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, + 0x23, 0x38, 0x38, 0x38, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x6d, 0x6f, 0x64, 0x65, 0x2d, 0x63, + 0x68, 0x61, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, + 0x5b, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, + 0x5d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, + 0x69, 0x67, 0x68, 0x74, 0x3a, 0x20, 0x34, 0x2e, 0x35, 0x65, 0x6d, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x2e, 0x6d, 0x6f, 0x64, 0x65, 0x2d, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, + 0x61, 0x5b, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x70, 0x72, 0x6f, 0x6d, 0x70, + 0x74, 0x5d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, + 0x65, 0x69, 0x67, 0x68, 0x74, 0x3a, 0x20, 0x31, 0x30, 0x65, 0x6d, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x40, 0x6b, 0x65, 0x79, 0x66, 0x72, 0x61, 0x6d, 0x65, 0x73, 0x20, + 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, 0x62, 0x67, 0x2d, 0x77, + 0x69, 0x70, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x30, 0x25, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, + 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x30, 0x25, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x31, 0x30, 0x30, 0x25, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, + 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, + 0x6f, 0x6e, 0x3a, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, + 0x67, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2d, 0x2d, + 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, + 0x72, 0x2d, 0x31, 0x3a, 0x20, 0x23, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65, + 0x30, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2d, 0x2d, + 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, + 0x72, 0x2d, 0x32, 0x3a, 0x20, 0x23, 0x65, 0x65, 0x65, 0x65, 0x65, 0x65, + 0x66, 0x66, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, + 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x73, 0x69, 0x7a, + 0x65, 0x3a, 0x20, 0x35, 0x30, 0x25, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, + 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x69, 0x6d, 0x61, 0x67, 0x65, 0x3a, + 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x61, 0x72, 0x2d, 0x67, 0x72, 0x61, 0x64, + 0x69, 0x65, 0x6e, 0x74, 0x28, 0x39, 0x30, 0x64, 0x65, 0x67, 0x2c, 0x20, + 0x76, 0x61, 0x72, 0x28, 0x2d, 0x2d, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, + 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, 0x31, 0x29, 0x2c, 0x20, + 0x76, 0x61, 0x72, 0x28, 0x2d, 0x2d, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, + 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, 0x32, 0x29, 0x2c, 0x20, + 0x76, 0x61, 0x72, 0x28, 0x2d, 0x2d, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, + 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, 0x31, 0x29, 0x29, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x6e, 0x69, 0x6d, 0x61, + 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, + 0x67, 0x2d, 0x62, 0x67, 0x2d, 0x77, 0x69, 0x70, 0x65, 0x20, 0x32, 0x73, + 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x61, 0x72, 0x20, 0x69, 0x6e, 0x66, 0x69, + 0x6e, 0x69, 0x74, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x40, 0x6d, 0x65, 0x64, 0x69, 0x61, 0x20, + 0x28, 0x70, 0x72, 0x65, 0x66, 0x65, 0x72, 0x73, 0x2d, 0x63, 0x6f, 0x6c, + 0x6f, 0x72, 0x2d, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x65, 0x3a, 0x20, 0x64, + 0x61, 0x72, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x2e, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2d, 0x2d, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x2d, - 0x32, 0x3a, 0x20, 0x23, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x66, 0x66, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x2e, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, - 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, - 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, - 0x20, 0x62, 0x6c, 0x61, 0x63, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, - 0x3c, 0x2f, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, - 0x3c, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, - 0x3d, 0x22, 0x6d, 0x6f, 0x64, 0x75, 0x6c, 0x65, 0x22, 0x3e, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x2c, 0x20, - 0x68, 0x2c, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, 0x65, - 0x66, 0x66, 0x65, 0x63, 0x74, 0x2c, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, - 0x74, 0x65, 0x64, 0x2c, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x2c, - 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, - 0x75, 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x2c, 0x20, 0x75, - 0x73, 0x65, 0x52, 0x65, 0x66, 0x2c, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6f, - 0x6e, 0x65, 0x6e, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x66, - 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x2e, - 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, - 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, - 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, - 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, - 0x20, 0x7b, 0x20, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x43, 0x6f, 0x6e, - 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, - 0x6d, 0x20, 0x27, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x2d, 0x73, 0x63, 0x68, - 0x65, 0x6d, 0x61, 0x2d, 0x74, 0x6f, 0x2d, 0x67, 0x72, 0x61, 0x6d, 0x6d, - 0x61, 0x72, 0x2e, 0x6d, 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x65, 0x73, 0x73, - 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, - 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, 0x6f, - 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x22, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, - 0x73, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x73, 0x61, - 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x62, 0x65, 0x74, 0x77, 0x65, 0x65, 0x6e, - 0x20, 0x55, 0x73, 0x65, 0x72, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x4c, 0x6c, - 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x61, 0x20, 0x66, 0x72, 0x69, 0x65, 0x6e, - 0x64, 0x6c, 0x79, 0x20, 0x63, 0x68, 0x61, 0x74, 0x62, 0x6f, 0x74, 0x2e, - 0x20, 0x4c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x69, 0x73, 0x20, 0x68, 0x65, - 0x6c, 0x70, 0x66, 0x75, 0x6c, 0x2c, 0x20, 0x6b, 0x69, 0x6e, 0x64, 0x2c, - 0x20, 0x68, 0x6f, 0x6e, 0x65, 0x73, 0x74, 0x2c, 0x20, 0x67, 0x6f, 0x6f, - 0x64, 0x20, 0x61, 0x74, 0x20, 0x77, 0x72, 0x69, 0x74, 0x69, 0x6e, 0x67, - 0x2c, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x6e, 0x65, 0x76, 0x65, 0x72, 0x20, - 0x66, 0x61, 0x69, 0x6c, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x61, 0x6e, 0x73, - 0x77, 0x65, 0x72, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x72, 0x65, 0x71, 0x75, - 0x65, 0x73, 0x74, 0x73, 0x20, 0x69, 0x6d, 0x6d, 0x65, 0x64, 0x69, 0x61, - 0x74, 0x65, 0x6c, 0x79, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x77, 0x69, 0x74, - 0x68, 0x20, 0x70, 0x72, 0x65, 0x63, 0x69, 0x73, 0x69, 0x6f, 0x6e, 0x2e, - 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, - 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x70, 0x72, - 0x6f, 0x6d, 0x70, 0x74, 0x7d, 0x7d, 0x5c, 0x6e, 0x5c, 0x6e, 0x7b, 0x7b, - 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x7d, 0x7d, 0x5c, 0x6e, 0x7b, - 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x2c, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, - 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, - 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x7d, 0x3a, 0x20, 0x7b, 0x7b, 0x6d, - 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x7d, 0x22, 0x2c, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, - 0x69, 0x70, 0x74, 0x3a, 0x20, 0x5b, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3a, 0x20, 0x22, 0x63, 0x68, - 0x61, 0x74, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, - 0x68, 0x61, 0x72, 0x3a, 0x20, 0x22, 0x4c, 0x6c, 0x61, 0x6d, 0x61, 0x22, - 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, - 0x3a, 0x20, 0x22, 0x55, 0x73, 0x65, 0x72, 0x22, 0x2c, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, - 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, - 0x74, 0x3a, 0x20, 0x34, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, - 0x65, 0x3a, 0x20, 0x30, 0x2e, 0x37, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, - 0x74, 0x5f, 0x6e, 0x3a, 0x20, 0x32, 0x35, 0x36, 0x2c, 0x20, 0x2f, 0x2f, - 0x20, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, - 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x2c, 0x20, 0x2d, 0x31, - 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, 0x73, - 0x69, 0x7a, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, - 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, - 0x3a, 0x20, 0x31, 0x2e, 0x31, 0x38, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x31, - 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, - 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x5f, - 0x6b, 0x3a, 0x20, 0x34, 0x30, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x3c, 0x3d, - 0x20, 0x30, 0x20, 0x74, 0x6f, 0x20, 0x75, 0x73, 0x65, 0x20, 0x76, 0x6f, - 0x63, 0x61, 0x62, 0x20, 0x73, 0x69, 0x7a, 0x65, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x5f, 0x70, 0x3a, 0x20, 0x30, 0x2e, - 0x35, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20, - 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x74, 0x66, 0x73, 0x5f, 0x7a, 0x3a, 0x20, 0x31, 0x2e, - 0x30, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20, - 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x74, 0x79, 0x70, 0x69, 0x63, 0x61, 0x6c, 0x5f, 0x70, + 0x31, 0x3a, 0x20, 0x23, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x30, 0x30, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2d, 0x2d, + 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, + 0x72, 0x2d, 0x32, 0x3a, 0x20, 0x23, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, + 0x66, 0x66, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x70, 0x6f, 0x70, 0x6f, 0x76, + 0x65, 0x72, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, + 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, + 0x72, 0x3a, 0x20, 0x62, 0x6c, 0x61, 0x63, 0x6b, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, + 0x20, 0x20, 0x3c, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x20, 0x74, 0x79, + 0x70, 0x65, 0x3d, 0x22, 0x6d, 0x6f, 0x64, 0x75, 0x6c, 0x65, 0x22, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, + 0x7b, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x2c, 0x20, + 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x2c, 0x20, 0x68, 0x2c, + 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x2c, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, + 0x72, 0x2c, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, 0x75, + 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x2c, 0x20, 0x75, 0x73, + 0x65, 0x52, 0x65, 0x66, 0x2c, 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, + 0x6e, 0x61, 0x6c, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, + 0x69, 0x6e, 0x64, 0x65, 0x78, 0x2e, 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, + 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, + 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, + 0x2e, 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, + 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, + 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x7d, 0x20, 0x66, + 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x2d, 0x73, + 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2d, 0x74, 0x6f, 0x2d, 0x67, 0x72, 0x61, + 0x6d, 0x6d, 0x61, 0x72, 0x2e, 0x6d, 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x65, + 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, + 0x61, 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, + 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x22, 0x54, 0x68, 0x69, 0x73, + 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, + 0x73, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x62, 0x65, 0x74, 0x77, 0x65, + 0x65, 0x6e, 0x20, 0x55, 0x73, 0x65, 0x72, 0x20, 0x61, 0x6e, 0x64, 0x20, + 0x4c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x61, 0x20, 0x66, 0x72, 0x69, + 0x65, 0x6e, 0x64, 0x6c, 0x79, 0x20, 0x63, 0x68, 0x61, 0x74, 0x62, 0x6f, + 0x74, 0x2e, 0x20, 0x4c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x69, 0x73, 0x20, + 0x68, 0x65, 0x6c, 0x70, 0x66, 0x75, 0x6c, 0x2c, 0x20, 0x6b, 0x69, 0x6e, + 0x64, 0x2c, 0x20, 0x68, 0x6f, 0x6e, 0x65, 0x73, 0x74, 0x2c, 0x20, 0x67, + 0x6f, 0x6f, 0x64, 0x20, 0x61, 0x74, 0x20, 0x77, 0x72, 0x69, 0x74, 0x69, + 0x6e, 0x67, 0x2c, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x6e, 0x65, 0x76, 0x65, + 0x72, 0x20, 0x66, 0x61, 0x69, 0x6c, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x61, + 0x6e, 0x73, 0x77, 0x65, 0x72, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x72, 0x65, + 0x71, 0x75, 0x65, 0x73, 0x74, 0x73, 0x20, 0x69, 0x6d, 0x6d, 0x65, 0x64, + 0x69, 0x61, 0x74, 0x65, 0x6c, 0x79, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x77, + 0x69, 0x74, 0x68, 0x20, 0x70, 0x72, 0x65, 0x63, 0x69, 0x73, 0x69, 0x6f, + 0x6e, 0x2e, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, + 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x7d, 0x7d, 0x5c, 0x6e, 0x5c, 0x6e, + 0x7b, 0x7b, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x7d, 0x7d, 0x5c, + 0x6e, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x2c, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, + 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, + 0x22, 0x7b, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x7d, 0x3a, 0x20, 0x7b, + 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x7d, 0x22, 0x2c, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, + 0x63, 0x72, 0x69, 0x70, 0x74, 0x3a, 0x20, 0x5b, 0x5d, 0x2c, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3a, 0x20, 0x22, + 0x63, 0x68, 0x61, 0x74, 0x22, 0x2c, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x22, + 0x63, 0x68, 0x61, 0x74, 0x22, 0x20, 0x7c, 0x20, 0x22, 0x63, 0x6f, 0x6d, + 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x68, 0x61, 0x72, 0x3a, 0x20, 0x22, 0x4c, 0x6c, + 0x61, 0x6d, 0x61, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x75, 0x73, 0x65, 0x72, 0x3a, 0x20, 0x22, 0x55, 0x73, 0x65, 0x72, 0x22, + 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, + 0x65, 0x64, 0x69, 0x63, 0x74, 0x3a, 0x20, 0x34, 0x30, 0x30, 0x2c, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, + 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a, 0x20, 0x30, 0x2e, 0x37, 0x2c, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, + 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x3a, 0x20, 0x32, 0x35, 0x36, + 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, + 0x61, 0x62, 0x6c, 0x65, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, + 0x2c, 0x20, 0x2d, 0x31, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, + 0x78, 0x74, 0x20, 0x73, 0x69, 0x7a, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, + 0x61, 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x31, 0x2e, 0x31, 0x38, 0x2c, 0x20, + 0x2f, 0x2f, 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, + 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x74, 0x6f, 0x70, 0x5f, 0x6b, 0x3a, 0x20, 0x34, 0x30, 0x2c, 0x20, 0x2f, + 0x2f, 0x20, 0x3c, 0x3d, 0x20, 0x30, 0x20, 0x74, 0x6f, 0x20, 0x75, 0x73, + 0x65, 0x20, 0x76, 0x6f, 0x63, 0x61, 0x62, 0x20, 0x73, 0x69, 0x7a, 0x65, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x5f, 0x70, + 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x31, 0x2e, + 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x66, 0x73, 0x5f, 0x7a, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, 0x65, 0x73, 0x65, - 0x6e, 0x63, 0x65, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x3a, - 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x30, 0x2e, 0x30, - 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x72, 0x65, 0x71, 0x75, 0x65, - 0x6e, 0x63, 0x79, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x3a, - 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x30, 0x2e, 0x30, - 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, - 0x61, 0x74, 0x3a, 0x20, 0x30, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x30, 0x2f, - 0x31, 0x2f, 0x32, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x69, - 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, 0x74, 0x61, 0x75, 0x3a, 0x20, - 0x35, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, - 0x20, 0x65, 0x6e, 0x74, 0x72, 0x6f, 0x70, 0x79, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, - 0x65, 0x74, 0x61, 0x3a, 0x20, 0x30, 0x2e, 0x31, 0x2c, 0x20, 0x2f, 0x2f, - 0x20, 0x6c, 0x65, 0x61, 0x72, 0x6e, 0x69, 0x6e, 0x67, 0x20, 0x72, 0x61, - 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x72, 0x61, - 0x6d, 0x6d, 0x61, 0x72, 0x3a, 0x20, 0x27, 0x27, 0x2c, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x73, 0x3a, - 0x20, 0x30, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x6e, 0x6f, 0x20, 0x63, 0x6f, - 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, - 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, - 0x2a, 0x20, 0x53, 0x54, 0x41, 0x52, 0x54, 0x3a, 0x20, 0x53, 0x75, 0x70, - 0x70, 0x6f, 0x72, 0x74, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x73, 0x74, 0x6f, - 0x72, 0x69, 0x6e, 0x67, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x20, 0x61, 0x6e, - 0x64, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x65, 0x74, 0x65, 0x72, 0x73, - 0x20, 0x69, 0x6e, 0x20, 0x62, 0x6f, 0x72, 0x77, 0x73, 0x65, 0x72, 0x20, - 0x4c, 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, - 0x20, 0x2a, 0x2f, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, - 0x73, 0x74, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, - 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, - 0x4b, 0x65, 0x79, 0x20, 0x3d, 0x20, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, - 0x63, 0x70, 0x70, 0x5f, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x5f, 0x6c, - 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, - 0x22, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, - 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, - 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x65, 0x74, 0x44, 0x61, - 0x74, 0x61, 0x46, 0x72, 0x6f, 0x6d, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, - 0x28, 0x74, 0x61, 0x67, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, - 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, - 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x2e, - 0x73, 0x65, 0x74, 0x49, 0x74, 0x65, 0x6d, 0x28, 0x6c, 0x6f, 0x63, 0x61, - 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x74, - 0x6f, 0x72, 0x61, 0x67, 0x65, 0x4b, 0x65, 0x79, 0x20, 0x2b, 0x20, 0x27, - 0x2f, 0x27, 0x20, 0x2b, 0x20, 0x74, 0x61, 0x67, 0x2c, 0x20, 0x4a, 0x53, - 0x4f, 0x4e, 0x2e, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, - 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, - 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6c, 0x6f, 0x63, 0x61, - 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x65, - 0x74, 0x44, 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, 0x6d, 0x52, 0x61, 0x77, - 0x54, 0x65, 0x78, 0x74, 0x28, 0x74, 0x61, 0x67, 0x2c, 0x20, 0x63, 0x6f, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x79, 0x70, 0x69, 0x63, + 0x61, 0x6c, 0x5f, 0x70, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x2f, + 0x2f, 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, + 0x62, 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, + 0x72, 0x65, 0x73, 0x65, 0x6e, 0x63, 0x65, 0x5f, 0x70, 0x65, 0x6e, 0x61, + 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x2f, 0x2f, + 0x20, 0x30, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, + 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x72, + 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x79, 0x5f, 0x70, 0x65, 0x6e, 0x61, + 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x2f, 0x2f, + 0x20, 0x30, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, + 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x69, + 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x3a, 0x20, 0x30, 0x2c, 0x20, 0x2f, + 0x2f, 0x20, 0x30, 0x2f, 0x31, 0x2f, 0x32, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, 0x74, + 0x61, 0x75, 0x3a, 0x20, 0x35, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x74, 0x61, + 0x72, 0x67, 0x65, 0x74, 0x20, 0x65, 0x6e, 0x74, 0x72, 0x6f, 0x70, 0x79, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x69, 0x72, 0x6f, 0x73, + 0x74, 0x61, 0x74, 0x5f, 0x65, 0x74, 0x61, 0x3a, 0x20, 0x30, 0x2e, 0x31, + 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x6c, 0x65, 0x61, 0x72, 0x6e, 0x69, 0x6e, + 0x67, 0x20, 0x72, 0x61, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x3a, 0x20, 0x27, 0x27, + 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, + 0x6f, 0x62, 0x73, 0x3a, 0x20, 0x30, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x6e, + 0x6f, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, + 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, + 0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x2f, 0x2a, 0x20, 0x53, 0x54, 0x41, 0x52, 0x54, 0x3a, + 0x20, 0x53, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x66, 0x6f, 0x72, + 0x20, 0x73, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x20, 0x70, 0x72, 0x6f, + 0x6d, 0x70, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x65, + 0x74, 0x65, 0x72, 0x73, 0x20, 0x69, 0x6e, 0x20, 0x62, 0x6f, 0x72, 0x77, + 0x73, 0x65, 0x72, 0x20, 0x4c, 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, 0x6f, + 0x72, 0x61, 0x67, 0x65, 0x20, 0x2a, 0x2f, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, + 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x74, 0x6f, + 0x72, 0x61, 0x67, 0x65, 0x4b, 0x65, 0x79, 0x20, 0x3d, 0x20, 0x22, 0x6c, + 0x6c, 0x61, 0x6d, 0x61, 0x63, 0x70, 0x70, 0x5f, 0x73, 0x65, 0x72, 0x76, + 0x65, 0x72, 0x5f, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, + 0x72, 0x61, 0x67, 0x65, 0x22, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6c, 0x6f, 0x63, + 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, + 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, 0x6d, 0x4f, 0x62, + 0x6a, 0x65, 0x63, 0x74, 0x28, 0x74, 0x61, 0x67, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x2e, 0x73, 0x65, 0x74, 0x49, 0x74, 0x65, 0x6d, 0x28, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x4b, 0x65, 0x79, 0x20, 0x2b, 0x20, 0x27, 0x2f, 0x27, 0x20, 0x2b, 0x20, 0x74, 0x61, 0x67, - 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, - 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6c, 0x6f, 0x63, 0x61, - 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x67, 0x65, - 0x74, 0x44, 0x61, 0x74, 0x61, 0x41, 0x73, 0x4f, 0x62, 0x6a, 0x65, 0x63, - 0x74, 0x28, 0x74, 0x61, 0x67, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x69, 0x74, 0x65, - 0x6d, 0x20, 0x3d, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, 0x6f, - 0x72, 0x61, 0x67, 0x65, 0x2e, 0x67, 0x65, 0x74, 0x49, 0x74, 0x65, 0x6d, - 0x28, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, - 0x67, 0x65, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x4b, 0x65, - 0x79, 0x20, 0x2b, 0x20, 0x27, 0x2f, 0x27, 0x20, 0x2b, 0x20, 0x74, 0x61, - 0x67, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, - 0x20, 0x28, 0x21, 0x69, 0x74, 0x65, 0x6d, 0x29, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, - 0x6e, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, - 0x6e, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, - 0x28, 0x69, 0x74, 0x65, 0x6d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x2c, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74, 0x72, 0x69, 0x6e, + 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, + 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, - 0x65, 0x5f, 0x67, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x41, 0x73, 0x52, - 0x61, 0x77, 0x54, 0x65, 0x78, 0x74, 0x28, 0x74, 0x61, 0x67, 0x29, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, - 0x74, 0x20, 0x69, 0x74, 0x65, 0x6d, 0x20, 0x3d, 0x20, 0x6c, 0x6f, 0x63, - 0x61, 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x2e, 0x67, 0x65, - 0x74, 0x49, 0x74, 0x65, 0x6d, 0x28, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, - 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x74, 0x6f, 0x72, - 0x61, 0x67, 0x65, 0x4b, 0x65, 0x79, 0x20, 0x2b, 0x20, 0x27, 0x2f, 0x27, - 0x20, 0x2b, 0x20, 0x74, 0x61, 0x67, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x69, 0x74, 0x65, 0x6d, - 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, - 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x69, 0x74, 0x65, 0x6d, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x63, - 0x72, 0x65, 0x61, 0x74, 0x65, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x74, - 0x61, 0x69, 0x6e, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x75, 0x73, - 0x65, 0x72, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, - 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, - 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, - 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x65, 0x6c, 0x65, 0x63, - 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, - 0x28, 0x7b, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x27, 0x27, 0x2c, - 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, 0x7b, - 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x7b, 0x7d, - 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x3a, 0x20, 0x7b, 0x7d, - 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, - 0x2f, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x69, 0x6d, 0x70, 0x6f, - 0x72, 0x74, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x73, - 0x61, 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, 0x65, 0x74, 0x74, 0x69, - 0x6e, 0x67, 0x73, 0x20, 0x69, 0x66, 0x20, 0x74, 0x68, 0x65, 0x72, 0x65, - 0x20, 0x61, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x79, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x2f, 0x2f, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20, 0x74, 0x65, 0x6d, + 0x65, 0x5f, 0x73, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, + 0x6d, 0x52, 0x61, 0x77, 0x54, 0x65, 0x78, 0x74, 0x28, 0x74, 0x61, 0x67, + 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, + 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x2e, 0x73, 0x65, 0x74, 0x49, + 0x74, 0x65, 0x6d, 0x28, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, + 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, + 0x65, 0x4b, 0x65, 0x79, 0x20, 0x2b, 0x20, 0x27, 0x2f, 0x27, 0x20, 0x2b, + 0x20, 0x74, 0x61, 0x67, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, + 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, + 0x65, 0x5f, 0x67, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x41, 0x73, 0x4f, + 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x74, 0x61, 0x67, 0x29, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x69, 0x74, 0x65, 0x6d, 0x20, 0x3d, 0x20, 0x6c, 0x6f, 0x63, 0x61, + 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x2e, 0x67, 0x65, 0x74, + 0x49, 0x74, 0x65, 0x6d, 0x28, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, + 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, + 0x67, 0x65, 0x4b, 0x65, 0x79, 0x20, 0x2b, 0x20, 0x27, 0x2f, 0x27, 0x20, + 0x2b, 0x20, 0x74, 0x61, 0x67, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x69, 0x74, 0x65, 0x6d, 0x29, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, + 0x61, 0x72, 0x73, 0x65, 0x28, 0x69, 0x74, 0x65, 0x6d, 0x29, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, + 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x67, 0x65, 0x74, 0x44, 0x61, 0x74, + 0x61, 0x41, 0x73, 0x52, 0x61, 0x77, 0x54, 0x65, 0x78, 0x74, 0x28, 0x74, + 0x61, 0x67, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x69, 0x74, 0x65, 0x6d, 0x20, 0x3d, + 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, + 0x65, 0x2e, 0x67, 0x65, 0x74, 0x49, 0x74, 0x65, 0x6d, 0x28, 0x6c, 0x6f, + 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, + 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x4b, 0x65, 0x79, 0x20, 0x2b, + 0x20, 0x27, 0x2f, 0x27, 0x20, 0x2b, 0x20, 0x74, 0x61, 0x67, 0x29, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, + 0x69, 0x74, 0x65, 0x6d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, + 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x69, + 0x74, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x2f, 0x2f, 0x20, 0x63, 0x72, 0x65, 0x61, 0x74, 0x65, 0x20, 0x61, 0x20, + 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x20, 0x66, 0x6f, + 0x72, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, 0x65, 0x74, + 0x74, 0x69, 0x6e, 0x67, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, + 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x20, + 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x7d, 0x29, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, + 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x73, 0x69, + 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, + 0x20, 0x27, 0x27, 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x3a, 0x20, 0x7b, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, + 0x3a, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x3a, 0x20, 0x7b, 0x7d, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, + 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, + 0x6c, 0x79, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, - 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x61, 0x72, 0x65, 0x20, - 0x73, 0x74, 0x6f, 0x72, 0x65, 0x64, 0x20, 0x69, 0x6e, 0x20, 0x6f, 0x6e, - 0x65, 0x20, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x2f, 0x2f, 0x20, 0x69, 0x6e, 0x20, 0x66, 0x6f, 0x72, 0x6d, 0x20, - 0x6f, 0x66, 0x20, 0x7b, 0x20, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x6e, 0x61, 0x6d, 0x65, 0x22, 0x3a, 0x20, 0x22, 0x74, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x64, 0x61, 0x74, 0x61, 0x22, 0x20, - 0x7d, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x7b, 0x20, 0x22, 0x73, 0x65, 0x74, - 0x74, 0x69, 0x6e, 0x67, 0x73, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x6e, 0x61, 0x6d, 0x65, 0x22, 0x3a, 0x22, 0x73, 0x65, 0x74, 0x74, - 0x69, 0x6e, 0x67, 0x73, 0x64, 0x61, 0x74, 0x61, 0x22, 0x20, 0x7d, 0x0a, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, - 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x49, 0x6d, 0x70, 0x6f, 0x72, 0x74, - 0x69, 0x6e, 0x67, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x27, 0x29, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, - 0x74, 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, - 0x20, 0x3d, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, - 0x72, 0x61, 0x67, 0x65, 0x5f, 0x67, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, - 0x41, 0x73, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x27, 0x75, 0x73, - 0x65, 0x72, 0x5f, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, - 0x27, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, - 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, - 0x6c, 0x61, 0x74, 0x65, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x20, 0x77, 0x65, - 0x72, 0x65, 0x20, 0x73, 0x75, 0x63, 0x63, 0x65, 0x73, 0x73, 0x66, 0x75, - 0x6c, 0x79, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x2e, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, - 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x50, 0x72, 0x6f, - 0x63, 0x65, 0x73, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x73, 0x61, 0x76, 0x65, - 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x20, - 0x61, 0x6e, 0x64, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x69, 0x6e, 0x67, - 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x74, 0x65, 0x6d, - 0x70, 0x6c, 0x61, 0x74, 0x65, 0x27, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, - 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, - 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x29, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, - 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x69, 0x6d, - 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x73, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x2f, 0x2f, 0x6f, 0x76, 0x65, 0x72, 0x72, 0x69, 0x64, 0x65, 0x20, 0x64, - 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x61, + 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x69, 0x66, 0x20, 0x74, + 0x68, 0x65, 0x72, 0x65, 0x20, 0x61, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x79, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x75, 0x73, 0x65, 0x72, + 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x20, 0x61, + 0x6e, 0x64, 0x20, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, + 0x61, 0x72, 0x65, 0x20, 0x73, 0x74, 0x6f, 0x72, 0x65, 0x64, 0x20, 0x69, + 0x6e, 0x20, 0x6f, 0x6e, 0x65, 0x20, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x69, 0x6e, 0x20, 0x66, + 0x6f, 0x72, 0x6d, 0x20, 0x6f, 0x66, 0x20, 0x7b, 0x20, 0x22, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x6e, 0x61, 0x6d, 0x65, 0x22, 0x3a, + 0x20, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x64, 0x61, + 0x74, 0x61, 0x22, 0x20, 0x7d, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x7b, 0x20, + 0x22, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x74, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x6e, 0x61, 0x6d, 0x65, 0x22, 0x3a, 0x22, + 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x64, 0x61, 0x74, 0x61, + 0x22, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x49, 0x6d, + 0x70, 0x6f, 0x72, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x73, 0x61, 0x76, 0x65, + 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x27, + 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x69, + 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, + 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x67, 0x65, 0x74, + 0x44, 0x61, 0x74, 0x61, 0x41, 0x73, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, + 0x28, 0x27, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x73, 0x27, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x69, 0x66, 0x20, 0x28, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, + 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x29, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x61, + 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x73, 0x20, 0x77, 0x65, 0x72, 0x65, 0x20, 0x73, 0x75, 0x63, 0x63, 0x65, + 0x73, 0x73, 0x66, 0x75, 0x6c, 0x79, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, + 0x74, 0x65, 0x64, 0x2e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, + 0x27, 0x50, 0x72, 0x6f, 0x63, 0x65, 0x73, 0x73, 0x69, 0x6e, 0x67, 0x20, + 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x75, 0x70, 0x64, 0x61, + 0x74, 0x69, 0x6e, 0x67, 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, + 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x27, 0x29, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x63, 0x6f, 0x6e, + 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x69, 0x6d, 0x70, + 0x6f, 0x72, 0x74, 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x73, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, + 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x54, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x3b, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x6f, 0x76, 0x65, 0x72, 0x72, 0x69, + 0x64, 0x65, 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x74, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x3d, + 0x20, 0x7b, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x3a, 0x20, + 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x3a, 0x20, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6f, 0x63, 0x61, + 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x65, + 0x74, 0x44, 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, 0x6d, 0x4f, 0x62, 0x6a, + 0x65, 0x63, 0x74, 0x28, 0x27, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x27, 0x2c, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x64, - 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x73, - 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, - 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x70, - 0x61, 0x72, 0x61, 0x6d, 0x73, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, - 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x6e, 0x6f, + 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x73, 0x20, 0x64, 0x65, 0x74, 0x65, 0x63, 0x74, 0x65, + 0x64, 0x2e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x49, + 0x6e, 0x69, 0x74, 0x69, 0x61, 0x6c, 0x69, 0x7a, 0x69, 0x6e, 0x67, 0x20, + 0x4c, 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, + 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, 0x61, 0x76, 0x69, 0x6e, 0x67, 0x20, + 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x27, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x22, 0x64, 0x65, 0x66, 0x61, + 0x75, 0x6c, 0x74, 0x22, 0x3a, 0x20, 0x7b, 0x20, 0x73, 0x65, 0x73, 0x73, + 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, + 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, + 0x46, 0x72, 0x6f, 0x6d, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x27, + 0x75, 0x73, 0x65, 0x72, 0x5f, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x73, 0x27, 0x2c, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, + 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x54, 0x6f, 0x44, 0x65, + 0x66, 0x61, 0x75, 0x6c, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, + 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x52, 0x65, 0x73, 0x65, 0x74, 0x69, 0x6e, + 0x67, 0x20, 0x74, 0x68, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, + 0x74, 0x6f, 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x27, 0x29, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x6c, 0x65, 0x63, + 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x61, + 0x6d, 0x65, 0x20, 0x3d, 0x20, 0x27, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, + 0x74, 0x27, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, + 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x73, 0x61, 0x76, 0x65, + 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x5b, 0x27, 0x64, 0x65, + 0x66, 0x61, 0x75, 0x6c, 0x74, 0x27, 0x5d, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x28, 0x74, + 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, + 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x20, 0x3d, 0x20, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x70, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x54, 0x6f, 0x44, 0x65, 0x66, + 0x61, 0x75, 0x6c, 0x74, 0x41, 0x6e, 0x64, 0x41, 0x70, 0x70, 0x6c, 0x79, + 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, + 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, + 0x65, 0x73, 0x65, 0x74, 0x54, 0x6f, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, + 0x74, 0x28, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, + 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x41, 0x70, + 0x70, 0x6c, 0x79, 0x28, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, + 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x4c, 0x6f, 0x61, 0x64, 0x41, 0x6e, 0x64, 0x41, + 0x70, 0x70, 0x6c, 0x79, 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, + 0x64, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x2f, 0x2f, 0x20, 0x67, 0x65, 0x74, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x73, + 0x61, 0x76, 0x65, 0x64, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x75, 0x73, + 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x61, + 0x73, 0x74, 0x55, 0x73, 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x20, 0x3d, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, + 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x67, 0x65, 0x74, 0x44, 0x61, + 0x74, 0x61, 0x41, 0x73, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x27, + 0x75, 0x73, 0x65, 0x72, 0x5f, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x73, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x27, 0x29, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6c, 0x61, 0x73, + 0x74, 0x55, 0x73, 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, + 0x67, 0x28, 0x27, 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, + 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x66, 0x6f, + 0x75, 0x6e, 0x64, 0x2c, 0x20, 0x72, 0x65, 0x73, 0x74, 0x6f, 0x72, 0x69, + 0x6e, 0x67, 0x27, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, + 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x55, + 0x73, 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, + 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x4e, 0x6f, 0x20, 0x61, 0x75, + 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x20, 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x2c, 0x20, + 0x75, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, + 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x27, 0x29, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, + 0x6e, 0x6f, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, + 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x75, 0x73, 0x65, 0x64, 0x20, 0x74, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x77, 0x61, 0x73, 0x20, + 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x2c, 0x20, 0x73, 0x6f, 0x20, 0x6c, 0x6f, + 0x61, 0x64, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x64, 0x65, 0x66, 0x61, + 0x75, 0x6c, 0x74, 0x2e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x54, 0x6f, 0x44, 0x65, 0x66, + 0x61, 0x75, 0x6c, 0x74, 0x28, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x41, + 0x70, 0x70, 0x6c, 0x79, 0x69, 0x6e, 0x67, 0x20, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x2f, 0x2f, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x75, 0x70, 0x64, 0x61, + 0x74, 0x65, 0x20, 0x69, 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x61, 0x6c, 0x20, + 0x64, 0x61, 0x74, 0x61, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x28, 0x73, 0x65, 0x6c, + 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x2f, 0x2f, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, + 0x67, 0x28, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x63, 0x6f, + 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x73, 0x65, + 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, + 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, + 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x41, 0x75, 0x74, + 0x6f, 0x73, 0x61, 0x76, 0x65, 0x2e, 0x2e, 0x2e, 0x27, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x73, 0x65, 0x6c, + 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, + 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x3d, 0x20, 0x27, 0x64, 0x65, 0x66, + 0x61, 0x75, 0x6c, 0x74, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x77, 0x65, 0x20, 0x64, + 0x6f, 0x6e, 0x27, 0x74, 0x20, 0x77, 0x61, 0x6e, 0x74, 0x20, 0x74, 0x6f, + 0x20, 0x73, 0x61, 0x76, 0x65, 0x20, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, + 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x2c, 0x20, 0x73, 0x6f, 0x20, 0x6c, 0x65, 0x74, 0x27, + 0x73, 0x20, 0x63, 0x72, 0x65, 0x61, 0x74, 0x65, 0x20, 0x61, 0x20, 0x6e, + 0x65, 0x77, 0x20, 0x6f, 0x6e, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6e, 0x65, 0x77, 0x54, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, + 0x20, 0x27, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x2d, 0x27, 0x20, 0x2b, 0x20, 0x44, 0x61, 0x74, 0x65, 0x2e, + 0x6e, 0x6f, 0x77, 0x28, 0x29, 0x2e, 0x74, 0x6f, 0x53, 0x74, 0x72, 0x69, + 0x6e, 0x67, 0x28, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6e, 0x65, 0x77, 0x54, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x27, 0x6e, 0x61, + 0x6d, 0x65, 0x27, 0x3a, 0x20, 0x6e, 0x65, 0x77, 0x54, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x27, 0x64, + 0x61, 0x74, 0x61, 0x27, 0x3a, 0x20, 0x7b, 0x20, 0x27, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, + 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x27, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x27, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x53, + 0x61, 0x76, 0x69, 0x6e, 0x67, 0x20, 0x61, 0x73, 0x20, 0x27, 0x20, 0x2b, + 0x20, 0x6e, 0x65, 0x77, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x61, 0x76, 0x65, 0x20, 0x69, + 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x73, 0x61, + 0x76, 0x65, 0x20, 0x73, 0x6c, 0x6f, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, 0x6d, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x27, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x73, 0x27, 0x2c, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, - 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, - 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x6e, 0x6f, 0x20, 0x73, 0x61, 0x76, - 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, - 0x20, 0x64, 0x65, 0x74, 0x65, 0x63, 0x74, 0x65, 0x64, 0x2e, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, - 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x49, 0x6e, 0x69, 0x74, 0x69, - 0x61, 0x6c, 0x69, 0x7a, 0x69, 0x6e, 0x67, 0x20, 0x4c, 0x6f, 0x63, 0x61, - 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x20, 0x61, 0x6e, 0x64, - 0x20, 0x73, 0x61, 0x76, 0x69, 0x6e, 0x67, 0x20, 0x64, 0x65, 0x66, 0x61, - 0x75, 0x6c, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x27, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x61, - 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, - 0x20, 0x7b, 0x20, 0x22, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x22, - 0x3a, 0x20, 0x7b, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x3a, - 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x3a, 0x20, - 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x20, 0x7d, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, - 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, - 0x5f, 0x73, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, 0x6d, - 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x27, 0x75, 0x73, 0x65, 0x72, - 0x5f, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x27, 0x2c, - 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x75, - 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, - 0x65, 0x73, 0x65, 0x74, 0x54, 0x6f, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, - 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, - 0x27, 0x52, 0x65, 0x73, 0x65, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x74, 0x6f, 0x20, 0x64, - 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, + 0x74, 0x65, 0x73, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x27, 0x2c, 0x20, 0x6e, + 0x65, 0x77, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x29, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, + 0x61, 0x6e, 0x64, 0x20, 0x6c, 0x6f, 0x61, 0x64, 0x20, 0x69, 0x74, 0x20, + 0x62, 0x61, 0x63, 0x6b, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x70, 0x70, + 0x6c, 0x79, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, + 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x4c, + 0x6f, 0x61, 0x64, 0x41, 0x6e, 0x64, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x41, + 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, 0x28, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6f, + 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, + 0x73, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, 0x6d, 0x4f, + 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x27, 0x75, 0x73, 0x65, 0x72, 0x5f, + 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x5f, 0x6c, 0x61, + 0x73, 0x74, 0x27, 0x2c, 0x20, 0x7b, 0x20, 0x27, 0x6e, 0x61, 0x6d, 0x65, + 0x27, 0x3a, 0x20, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3d, - 0x20, 0x27, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x27, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, - 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x64, 0x61, 0x74, - 0x61, 0x20, 0x3d, 0x20, 0x73, 0x61, 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, - 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x5b, 0x27, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, - 0x74, 0x27, 0x5d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, - 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x28, 0x74, 0x29, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, - 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x74, 0x2e, - 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x72, 0x61, - 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x74, - 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x75, 0x73, - 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, 0x65, - 0x73, 0x65, 0x74, 0x54, 0x6f, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, - 0x41, 0x6e, 0x64, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x28, 0x29, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, - 0x54, 0x6f, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x28, 0x29, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x28, - 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, - 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, + 0x27, 0x64, 0x61, 0x74, 0x61, 0x27, 0x3a, 0x20, 0x7b, 0x20, 0x27, 0x73, + 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, + 0x27, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x27, 0x3a, 0x20, 0x70, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, + 0x20, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, + 0x43, 0x68, 0x65, 0x63, 0x6b, 0x69, 0x6e, 0x67, 0x20, 0x66, 0x6f, 0x72, + 0x20, 0x61, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x6c, + 0x61, 0x73, 0x74, 0x20, 0x75, 0x73, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x4c, 0x6f, 0x61, 0x64, 0x41, 0x6e, 0x64, 0x41, 0x70, 0x70, 0x6c, 0x79, - 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, 0x28, 0x29, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x67, - 0x65, 0x74, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, - 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x75, 0x73, 0x65, 0x64, 0x20, 0x74, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x55, 0x73, - 0x65, 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x3d, - 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, - 0x67, 0x65, 0x5f, 0x67, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x41, 0x73, - 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x27, 0x75, 0x73, 0x65, 0x72, - 0x5f, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x5f, 0x6c, - 0x61, 0x73, 0x74, 0x27, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x69, 0x66, 0x20, 0x28, 0x6c, 0x61, 0x73, 0x74, 0x55, 0x73, 0x65, - 0x64, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x29, 0x20, 0x7b, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x41, - 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, - 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x2c, - 0x20, 0x72, 0x65, 0x73, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x27, 0x29, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, - 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x20, 0x3d, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x55, 0x73, 0x65, 0x64, 0x54, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x6c, - 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, - 0x67, 0x28, 0x27, 0x4e, 0x6f, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x73, 0x61, - 0x76, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x20, 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x2c, 0x20, 0x75, 0x73, 0x69, 0x6e, - 0x67, 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x74, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x6e, 0x6f, 0x20, 0x61, - 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x6c, 0x61, 0x73, - 0x74, 0x20, 0x75, 0x73, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x20, 0x77, 0x61, 0x73, 0x20, 0x66, 0x6f, 0x75, 0x6e, - 0x64, 0x2c, 0x20, 0x73, 0x6f, 0x20, 0x6c, 0x6f, 0x61, 0x64, 0x20, 0x66, - 0x72, 0x6f, 0x6d, 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x2e, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, - 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, 0x65, - 0x73, 0x65, 0x74, 0x54, 0x6f, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, - 0x28, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, - 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x41, 0x70, 0x70, 0x6c, 0x79, - 0x69, 0x6e, 0x67, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, - 0x61, 0x6e, 0x64, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x20, 0x69, - 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x61, 0x6c, 0x20, 0x64, 0x61, 0x74, 0x61, - 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, - 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x41, - 0x70, 0x70, 0x6c, 0x79, 0x28, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, - 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x63, 0x6f, - 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x73, 0x61, - 0x76, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, - 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, - 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, - 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x28, 0x29, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, - 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x54, 0x65, 0x6d, 0x70, - 0x6c, 0x61, 0x74, 0x65, 0x20, 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, - 0x65, 0x2e, 0x2e, 0x2e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x69, 0x66, 0x20, 0x28, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, - 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, - 0x20, 0x3d, 0x3d, 0x20, 0x27, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, - 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x2f, 0x2f, 0x20, 0x77, 0x65, 0x20, 0x64, 0x6f, 0x6e, 0x27, 0x74, - 0x20, 0x77, 0x61, 0x6e, 0x74, 0x20, 0x74, 0x6f, 0x20, 0x73, 0x61, 0x76, - 0x65, 0x20, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, - 0x6c, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2c, - 0x20, 0x73, 0x6f, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x63, 0x72, - 0x65, 0x61, 0x74, 0x65, 0x20, 0x61, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x6f, - 0x6e, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, - 0x65, 0x74, 0x20, 0x6e, 0x65, 0x77, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20, 0x27, 0x55, 0x73, - 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2d, 0x27, - 0x20, 0x2b, 0x20, 0x44, 0x61, 0x74, 0x65, 0x2e, 0x6e, 0x6f, 0x77, 0x28, - 0x29, 0x2e, 0x74, 0x6f, 0x53, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x28, 0x29, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, - 0x20, 0x6e, 0x65, 0x77, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x27, 0x6e, 0x61, 0x6d, 0x65, 0x27, 0x3a, - 0x20, 0x6e, 0x65, 0x77, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x27, 0x64, 0x61, 0x74, 0x61, 0x27, - 0x3a, 0x20, 0x7b, 0x20, 0x27, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, - 0x27, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x27, 0x70, 0x61, 0x72, 0x61, 0x6d, - 0x73, 0x27, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, - 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x53, 0x61, 0x76, 0x69, 0x6e, - 0x67, 0x20, 0x61, 0x73, 0x20, 0x27, 0x20, 0x2b, 0x20, 0x6e, 0x65, 0x77, - 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x4e, 0x61, 0x6d, 0x65, - 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, - 0x2f, 0x20, 0x73, 0x61, 0x76, 0x65, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x68, - 0x65, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x20, 0x73, - 0x6c, 0x6f, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, - 0x65, 0x5f, 0x73, 0x65, 0x74, 0x44, 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, - 0x6d, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x27, 0x75, 0x73, 0x65, - 0x72, 0x5f, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x5f, - 0x6c, 0x61, 0x73, 0x74, 0x27, 0x2c, 0x20, 0x6e, 0x65, 0x77, 0x54, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x61, 0x6e, 0x64, 0x20, - 0x6c, 0x6f, 0x61, 0x64, 0x20, 0x69, 0x74, 0x20, 0x62, 0x61, 0x63, 0x6b, - 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x70, 0x70, 0x6c, 0x79, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x4c, 0x6f, 0x61, 0x64, 0x41, - 0x6e, 0x64, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x41, 0x75, 0x74, 0x6f, 0x73, - 0x61, 0x76, 0x65, 0x64, 0x28, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5f, - 0x73, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x5f, 0x73, 0x65, 0x74, 0x44, - 0x61, 0x74, 0x61, 0x46, 0x72, 0x6f, 0x6d, 0x4f, 0x62, 0x6a, 0x65, 0x63, - 0x74, 0x28, 0x27, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x74, 0x65, 0x6d, 0x70, - 0x6c, 0x61, 0x74, 0x65, 0x73, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x27, 0x2c, - 0x20, 0x7b, 0x20, 0x27, 0x6e, 0x61, 0x6d, 0x65, 0x27, 0x3a, 0x20, 0x73, - 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, 0x54, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x27, 0x64, 0x61, 0x74, - 0x61, 0x27, 0x3a, 0x20, 0x7b, 0x20, 0x27, 0x73, 0x65, 0x73, 0x73, 0x69, - 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, - 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x27, 0x70, 0x61, 0x72, - 0x61, 0x6d, 0x73, 0x27, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, - 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, - 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x43, 0x68, 0x65, 0x63, - 0x6b, 0x69, 0x6e, 0x67, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x75, 0x74, - 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, - 0x75, 0x73, 0x65, 0x64, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, - 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x4c, 0x6f, 0x61, 0x64, - 0x41, 0x6e, 0x64, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x41, 0x75, 0x74, 0x6f, - 0x73, 0x61, 0x76, 0x65, 0x64, 0x28, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x2f, 0x2a, 0x20, 0x45, 0x4e, 0x44, 0x3a, 0x20, 0x53, 0x75, 0x70, - 0x70, 0x6f, 0x72, 0x74, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x73, 0x74, 0x6f, - 0x72, 0x69, 0x6e, 0x67, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x73, 0x20, 0x61, 0x6e, - 0x64, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x65, 0x74, 0x65, 0x72, 0x73, - 0x20, 0x69, 0x6e, 0x20, 0x62, 0x72, 0x6f, 0x77, 0x73, 0x65, 0x72, 0x73, - 0x20, 0x4c, 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, - 0x65, 0x20, 0x2a, 0x2f, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, - 0x74, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, - 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, - 0x65, 0x72, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, - 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, - 0x2f, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x6c, 0x79, 0x20, - 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x61, - 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x3f, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x67, - 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x3d, 0x20, - 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x28, 0x28, 0x29, 0x20, - 0x3d, 0x3e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, - 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x21, 0x3d, 0x20, 0x6e, - 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, - 0x20, 0x68, 0x61, 0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x75, 0x73, 0x65, - 0x72, 0x20, 0x73, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, 0x20, 0x61, 0x20, - 0x63, 0x68, 0x61, 0x74, 0x3f, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, - 0x74, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, - 0x65, 0x64, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x73, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, - 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x2e, 0x6c, 0x65, - 0x6e, 0x67, 0x74, 0x68, 0x20, 0x3e, 0x20, 0x30, 0x29, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x72, 0x61, - 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, - 0x65, 0x20, 0x3d, 0x20, 0x28, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, - 0x69, 0x70, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, - 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x20, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x72, 0x65, 0x70, - 0x6c, 0x61, 0x63, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, - 0x73, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, - 0x3d, 0x20, 0x28, 0x73, 0x74, 0x72, 0x2c, 0x20, 0x65, 0x78, 0x74, 0x72, - 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x3d, - 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, - 0x74, 0x20, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, + 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x64, 0x28, 0x29, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2a, 0x20, 0x45, 0x4e, 0x44, 0x3a, + 0x20, 0x53, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x66, 0x6f, 0x72, + 0x20, 0x73, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x20, 0x70, 0x72, 0x6f, + 0x6d, 0x70, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x65, + 0x74, 0x65, 0x72, 0x73, 0x20, 0x69, 0x6e, 0x20, 0x62, 0x72, 0x6f, 0x77, + 0x73, 0x65, 0x72, 0x73, 0x20, 0x4c, 0x6f, 0x63, 0x61, 0x6c, 0x53, 0x74, + 0x6f, 0x72, 0x61, 0x67, 0x65, 0x20, 0x2a, 0x2f, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, + 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, + 0x6e, 0x61, 0x6c, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, + 0x6e, 0x61, 0x6c, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, + 0x74, 0x6c, 0x79, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, + 0x6e, 0x67, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, + 0x69, 0x6f, 0x6e, 0x3f, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, + 0x67, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, + 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, + 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x21, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x68, 0x61, 0x73, 0x20, 0x74, 0x68, 0x65, + 0x20, 0x75, 0x73, 0x65, 0x72, 0x20, 0x73, 0x74, 0x61, 0x72, 0x74, 0x65, + 0x64, 0x20, 0x61, 0x20, 0x63, 0x68, 0x61, 0x74, 0x3f, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x74, + 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x63, 0x6f, + 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, - 0x20, 0x28, 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, - 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, - 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x74, 0x74, 0x69, - 0x6e, 0x67, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, 0x65, 0x78, 0x74, 0x72, - 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x53, 0x74, - 0x72, 0x69, 0x6e, 0x67, 0x28, 0x73, 0x74, 0x72, 0x29, 0x2e, 0x72, 0x65, - 0x70, 0x6c, 0x61, 0x63, 0x65, 0x41, 0x6c, 0x6c, 0x28, 0x2f, 0x5c, 0x7b, - 0x5c, 0x7b, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x7d, 0x5c, 0x7d, 0x2f, - 0x67, 0x2c, 0x20, 0x28, 0x5f, 0x2c, 0x20, 0x6b, 0x65, 0x79, 0x29, 0x20, - 0x3d, 0x3e, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, - 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x5b, 0x6b, 0x65, 0x79, - 0x5d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20, - 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x74, 0x6f, 0x20, 0x73, - 0x65, 0x72, 0x76, 0x65, 0x72, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x74, 0x20, 0x3d, 0x20, 0x61, - 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x6d, 0x73, 0x67, 0x29, 0x20, 0x3d, - 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, - 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, - 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, - 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x61, 0x6c, 0x72, 0x65, 0x61, - 0x64, 0x79, 0x20, 0x72, 0x75, 0x6e, 0x6e, 0x69, 0x6e, 0x67, 0x2e, 0x2e, - 0x2e, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, - 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, - 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, - 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, - 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, - 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x2c, 0x20, 0x5b, - 0x22, 0x7b, 0x7b, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x7d, 0x22, 0x2c, 0x20, - 0x6d, 0x73, 0x67, 0x5d, 0x5d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x6d, - 0x70, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x28, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x2c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x3a, 0x20, 0x6d, 0x73, 0x67, - 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x69, - 0x73, 0x74, 0x6f, 0x72, 0x79, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, - 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, - 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x2e, 0x66, 0x6c, 0x61, 0x74, - 0x4d, 0x61, 0x70, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x28, 0x5b, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x64, - 0x61, 0x74, 0x61, 0x5d, 0x29, 0x20, 0x3d, 0x3e, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, - 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x68, - 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, - 0x73, 0x73, 0x61, 0x67, 0x65, 0x3a, 0x20, 0x41, 0x72, 0x72, 0x61, 0x79, - 0x2e, 0x69, 0x73, 0x41, 0x72, 0x72, 0x61, 0x79, 0x28, 0x64, 0x61, 0x74, - 0x61, 0x29, 0x20, 0x3f, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, - 0x61, 0x74, 0x61, 0x2e, 0x6d, 0x61, 0x70, 0x28, 0x6d, 0x73, 0x67, 0x20, - 0x3d, 0x3e, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, - 0x6e, 0x74, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, 0x27, 0x27, 0x29, - 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x5c, - 0x73, 0x2f, 0x2c, 0x20, 0x27, 0x27, 0x29, 0x20, 0x3a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x64, 0x61, 0x74, 0x61, 0x2c, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, 0x22, 0x5c, 0x6e, 0x22, 0x29, - 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, + 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, + 0x74, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x20, 0x3e, 0x20, 0x30, + 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x74, 0x72, 0x61, + 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x73, 0x73, + 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, + 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6d, + 0x70, 0x6c, 0x65, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x20, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x73, 0x74, 0x72, 0x2c, 0x20, + 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, + 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, + 0x67, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, + 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x74, 0x74, 0x69, + 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x73, + 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, + 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, + 0x73, 0x20, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x53, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x28, 0x73, 0x74, 0x72, + 0x29, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x41, 0x6c, 0x6c, + 0x28, 0x2f, 0x5c, 0x7b, 0x5c, 0x7b, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, + 0x7d, 0x5c, 0x7d, 0x2f, 0x67, 0x2c, 0x20, 0x28, 0x5f, 0x2c, 0x20, 0x6b, + 0x65, 0x79, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, + 0x5b, 0x6b, 0x65, 0x79, 0x5d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x61, 0x73, 0x79, 0x6e, + 0x63, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x72, + 0x75, 0x6e, 0x4c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, + 0x70, 0x74, 0x2c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x61, 0x72, + 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x68, 0x61, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x5b, 0x5d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, - 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, - 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, - 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x73, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, - 0x22, 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, - 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x29, - 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x22, - 0x7b, 0x7b, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x29, 0x5d, - 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, - 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, - 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, - 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x6c, 0x6c, 0x61, - 0x6d, 0x61, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, - 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3a, 0x20, - 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, - 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x64, 0x61, 0x74, - 0x61, 0x2e, 0x73, 0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, - 0x65, 0x20, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, - 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, - 0x74, 0x68, 0x20, 0x3e, 0x20, 0x30, 0x20, 0x26, 0x26, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, + 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, + 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x61, 0x6c, 0x72, 0x65, 0x61, 0x64, + 0x79, 0x20, 0x72, 0x75, 0x6e, 0x6e, 0x69, 0x6e, 0x67, 0x22, 0x29, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, + 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x6e, 0x65, + 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72, + 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, + 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, + 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, + 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3a, 0x20, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x61, 0x74, + 0x61, 0x20, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, + 0x74, 0x61, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x69, 0x66, 0x20, 0x28, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, + 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, + 0x67, 0x65, 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x20, 0x3e, + 0x20, 0x30, 0x20, 0x26, 0x26, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, + 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x5b, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, - 0x73, 0x5b, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, - 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, - 0x20, 0x2d, 0x20, 0x31, 0x5d, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, - 0x74, 0x2e, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x28, 0x2f, 0x5c, 0x6e, 0x24, - 0x2f, 0x29, 0x20, 0x21, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, - 0x61, 0x67, 0x65, 0x73, 0x2e, 0x70, 0x6f, 0x70, 0x28, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x20, 0x2d, 0x20, 0x31, + 0x5d, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2e, 0x6d, 0x61, + 0x74, 0x63, 0x68, 0x28, 0x2f, 0x5c, 0x6e, 0x24, 0x2f, 0x29, 0x20, 0x21, + 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x73, 0x2e, 0x70, 0x6f, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, + 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, + 0x28, 0x5b, 0x2e, 0x2e, 0x2e, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, + 0x2c, 0x20, 0x5b, 0x63, 0x68, 0x61, 0x72, 0x2c, 0x20, 0x63, 0x75, 0x72, + 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, + 0x5d, 0x5d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, + 0x67, 0x28, 0x22, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, + 0x6e, 0x20, 0x66, 0x69, 0x6e, 0x69, 0x73, 0x68, 0x65, 0x64, 0x3a, 0x20, + 0x27, 0x22, 0x2c, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, + 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, 0x6d, 0x61, 0x70, 0x28, + 0x6d, 0x73, 0x67, 0x20, 0x3d, 0x3e, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, + 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, + 0x28, 0x27, 0x27, 0x29, 0x2c, 0x20, 0x22, 0x27, 0x2c, 0x20, 0x73, 0x75, + 0x6d, 0x6d, 0x61, 0x72, 0x79, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x64, 0x61, + 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, 0x72, 0x72, + 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, + 0x70, 0x75, 0x73, 0x68, 0x28, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x2e, 0x2e, 0x2e, 0x68, 0x69, 0x73, 0x74, 0x6f, - 0x72, 0x79, 0x2c, 0x20, 0x5b, 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72, - 0x7d, 0x7d, 0x22, 0x2c, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, - 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x5d, 0x5d, 0x29, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x22, 0x43, - 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x66, 0x69, - 0x6e, 0x69, 0x73, 0x68, 0x65, 0x64, 0x3a, 0x20, 0x27, 0x22, 0x2c, 0x20, - 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, - 0x67, 0x65, 0x73, 0x2e, 0x6d, 0x61, 0x70, 0x28, 0x6d, 0x73, 0x67, 0x20, - 0x3d, 0x3e, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, - 0x6e, 0x74, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, 0x27, 0x27, 0x29, - 0x2c, 0x20, 0x22, 0x27, 0x2c, 0x20, 0x73, 0x75, 0x6d, 0x6d, 0x61, 0x72, - 0x79, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, - 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, - 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, 0x70, 0x75, 0x73, 0x68, - 0x28, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, - 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, - 0x2e, 0x2e, 0x2e, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x2c, 0x20, - 0x5b, 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x22, 0x2c, - 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, - 0x61, 0x67, 0x65, 0x73, 0x5d, 0x5d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x72, 0x79, 0x2c, 0x20, 0x5b, 0x63, 0x68, 0x61, 0x72, 0x2c, 0x20, 0x63, + 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x73, 0x5d, 0x5d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x69, 0x66, 0x20, 0x28, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, + 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, + 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, + 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, + 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x65, 0x6e, 0x64, + 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x74, 0x6f, 0x20, + 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x74, 0x20, 0x3d, 0x20, + 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x6d, 0x73, 0x67, 0x29, 0x20, + 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, + 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, + 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, + 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x61, 0x6c, 0x72, 0x65, + 0x61, 0x64, 0x79, 0x20, 0x72, 0x75, 0x6e, 0x6e, 0x69, 0x6e, 0x67, 0x2e, + 0x2e, 0x2e, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x64, 0x61, 0x74, 0x61, 0x2e, - 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c, 0x61, - 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x20, 0x3d, 0x20, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, - 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, - 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, - 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, - 0x69, 0x6f, 0x6e, 0x20, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, - 0x6e, 0x70, 0x75, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, 0x73, - 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, - 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x22, 0x22, 0x29, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x74, - 0x6f, 0x70, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x2e, - 0x70, 0x72, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x44, 0x65, 0x66, 0x61, 0x75, - 0x6c, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, - 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x65, - 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, - 0x70, 0x28, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, - 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x5d, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x75, 0x62, - 0x6d, 0x69, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, - 0x74, 0x6f, 0x70, 0x28, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x68, 0x61, 0x74, 0x28, 0x6d, 0x65, 0x73, - 0x73, 0x61, 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, - 0x73, 0x61, 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, - 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, - 0x74, 0x20, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x53, 0x75, 0x62, 0x6d, 0x69, - 0x74, 0x73, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, - 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, - 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x31, 0x33, - 0x20, 0x26, 0x26, 0x20, 0x21, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x73, - 0x68, 0x69, 0x66, 0x74, 0x4b, 0x65, 0x79, 0x29, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x75, 0x62, - 0x6d, 0x69, 0x74, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, - 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, - 0x6f, 0x72, 0x6d, 0x20, 0x6f, 0x6e, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, - 0x3d, 0x24, 0x7b, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x7d, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, - 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, - 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x4e, 0x61, - 0x6d, 0x65, 0x3d, 0x24, 0x7b, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, - 0x69, 0x6e, 0x67, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3f, 0x20, - 0x22, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x22, 0x20, 0x3a, 0x20, - 0x6e, 0x75, 0x6c, 0x6c, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x6e, 0x69, - 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x28, 0x65, 0x29, 0x20, 0x3d, - 0x3e, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x65, 0x2e, 0x74, 0x61, 0x72, 0x67, - 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x2e, 0x2e, 0x2e, 0x73, 0x65, + 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, + 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x2c, 0x20, + 0x5b, 0x22, 0x7b, 0x7b, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x7d, 0x22, 0x2c, + 0x20, 0x6d, 0x73, 0x67, 0x5d, 0x5d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, + 0x6d, 0x70, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x28, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x2c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x3a, 0x20, 0x6d, 0x73, + 0x67, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, + 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, + 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, + 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x2e, 0x66, 0x6c, 0x61, + 0x74, 0x4d, 0x61, 0x70, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x28, 0x5b, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, + 0x64, 0x61, 0x74, 0x61, 0x5d, 0x29, 0x20, 0x3d, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, + 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, + 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x6f, 0x6e, 0x6b, 0x65, 0x79, 0x70, 0x72, 0x65, 0x73, 0x73, 0x3d, - 0x24, 0x7b, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x53, 0x75, 0x62, 0x6d, 0x69, - 0x74, 0x73, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x6c, 0x61, 0x63, 0x65, - 0x68, 0x6f, 0x6c, 0x64, 0x65, 0x72, 0x3d, 0x22, 0x53, 0x61, 0x79, 0x20, - 0x73, 0x6f, 0x6d, 0x65, 0x74, 0x68, 0x69, 0x6e, 0x67, 0x2e, 0x2e, 0x2e, - 0x22, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x32, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, - 0x74, 0x22, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, - 0x22, 0x24, 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x22, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, - 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x72, 0x69, 0x67, 0x68, 0x74, - 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x74, - 0x79, 0x70, 0x65, 0x3d, 0x22, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x22, - 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x3d, 0x24, 0x7b, - 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3e, 0x53, 0x65, 0x6e, 0x64, 0x3c, 0x2f, - 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, - 0x74, 0x6f, 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, - 0x24, 0x7b, 0x73, 0x74, 0x6f, 0x70, 0x7d, 0x20, 0x64, 0x69, 0x73, 0x61, - 0x62, 0x6c, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x21, 0x67, 0x65, 0x6e, 0x65, - 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x7d, 0x3e, 0x53, 0x74, 0x6f, 0x70, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, - 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, - 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x72, 0x65, - 0x73, 0x65, 0x74, 0x7d, 0x3e, 0x52, 0x65, 0x73, 0x65, 0x74, 0x3c, 0x2f, - 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, - 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x68, 0x61, 0x74, 0x4c, 0x6f, - 0x67, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, - 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, - 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, - 0x73, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, - 0x72, 0x69, 0x70, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, - 0x6e, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x52, 0x65, 0x66, - 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x28, - 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x63, 0x72, 0x6f, 0x6c, - 0x6c, 0x20, 0x74, 0x6f, 0x20, 0x62, 0x6f, 0x74, 0x74, 0x6f, 0x6d, 0x20, - 0x28, 0x69, 0x66, 0x20, 0x6e, 0x65, 0x65, 0x64, 0x65, 0x64, 0x29, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, - 0x74, 0x20, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x63, - 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, - 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x45, - 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x70, 0x61, 0x72, 0x65, - 0x6e, 0x74, 0x20, 0x26, 0x26, 0x20, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, - 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x48, 0x65, 0x69, 0x67, 0x68, - 0x74, 0x20, 0x3c, 0x3d, 0x20, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x2e, - 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x54, 0x6f, 0x70, 0x20, 0x2b, 0x20, - 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x6f, 0x66, 0x66, 0x73, 0x65, - 0x74, 0x48, 0x65, 0x69, 0x67, 0x68, 0x74, 0x20, 0x2b, 0x20, 0x33, 0x30, - 0x30, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x63, - 0x72, 0x6f, 0x6c, 0x6c, 0x54, 0x6f, 0x28, 0x30, 0x2c, 0x20, 0x70, 0x61, - 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x48, - 0x65, 0x69, 0x67, 0x68, 0x74, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x2c, 0x20, 0x5b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x5d, - 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, - 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, 0x6e, 0x65, 0x20, - 0x3d, 0x20, 0x28, 0x5b, 0x75, 0x73, 0x65, 0x72, 0x2c, 0x20, 0x64, 0x61, - 0x74, 0x61, 0x5d, 0x2c, 0x20, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x29, 0x20, - 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, - 0x73, 0x74, 0x20, 0x69, 0x73, 0x41, 0x72, 0x72, 0x61, 0x79, 0x4d, 0x65, - 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x41, 0x72, 0x72, 0x61, + 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, + 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x3a, 0x20, 0x41, 0x72, 0x72, 0x61, 0x79, 0x2e, 0x69, 0x73, 0x41, 0x72, 0x72, 0x61, 0x79, 0x28, 0x64, 0x61, - 0x74, 0x61, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x69, 0x66, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x73, - 0x20, 0x3e, 0x20, 0x30, 0x20, 0x26, 0x26, 0x20, 0x69, 0x73, 0x41, 0x72, - 0x72, 0x61, 0x79, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x29, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x68, 0x74, - 0x6d, 0x6c, 0x60, 0x3c, 0x24, 0x7b, 0x50, 0x72, 0x6f, 0x62, 0x61, 0x62, - 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x7d, 0x20, 0x64, 0x61, 0x74, - 0x61, 0x3d, 0x24, 0x7b, 0x64, 0x61, 0x74, 0x61, 0x7d, 0x20, 0x2f, 0x3e, - 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, - 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, - 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x69, 0x73, 0x41, 0x72, 0x72, 0x61, - 0x79, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3f, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, - 0x61, 0x74, 0x61, 0x2e, 0x6d, 0x61, 0x70, 0x28, 0x6d, 0x73, 0x67, 0x20, - 0x3d, 0x3e, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, - 0x6e, 0x74, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, 0x27, 0x27, 0x29, - 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x5c, - 0x73, 0x2b, 0x2f, 0x2c, 0x20, 0x27, 0x27, 0x29, 0x20, 0x3a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, - 0x61, 0x74, 0x61, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, - 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x24, 0x7b, 0x4d, 0x61, 0x72, - 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x69, 0x73, 0x68, 0x7d, 0x20, 0x74, 0x65, - 0x78, 0x74, 0x3d, 0x24, 0x7b, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x28, 0x74, 0x65, 0x78, 0x74, 0x29, 0x7d, 0x20, 0x2f, 0x3e, 0x60, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, - 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x70, 0x20, 0x6b, 0x65, - 0x79, 0x3d, 0x24, 0x7b, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x7d, 0x3e, 0x3c, - 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x7b, 0x74, 0x65, 0x6d, - 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x75, 0x73, 0x65, 0x72, 0x29, 0x7d, - 0x3a, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x20, 0x24, - 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x3c, 0x2f, 0x70, - 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, - 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, - 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x68, 0x61, 0x74, 0x22, 0x20, 0x72, - 0x65, 0x66, 0x3d, 0x24, 0x7b, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, - 0x65, 0x72, 0x7d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x24, 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, - 0x73, 0x2e, 0x66, 0x6c, 0x61, 0x74, 0x4d, 0x61, 0x70, 0x28, 0x63, 0x68, - 0x61, 0x74, 0x4c, 0x69, 0x6e, 0x65, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x65, 0x63, 0x74, 0x69, - 0x6f, 0x6e, 0x3e, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, - 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, 0x20, 0x3d, - 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, - 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, - 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, - 0x3e, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x73, + 0x74, 0x61, 0x29, 0x20, 0x3f, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x64, 0x61, 0x74, 0x61, 0x2e, 0x6d, 0x61, 0x70, 0x28, 0x6d, 0x73, 0x67, + 0x20, 0x3d, 0x3e, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, + 0x65, 0x6e, 0x74, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, 0x27, 0x27, + 0x29, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, + 0x5c, 0x73, 0x2f, 0x2c, 0x20, 0x27, 0x27, 0x29, 0x20, 0x3a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x61, 0x74, 0x61, 0x2c, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, 0x22, 0x5c, 0x6e, 0x22, + 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x77, 0x61, 0x69, + 0x74, 0x20, 0x72, 0x75, 0x6e, 0x4c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, + 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x3a, 0x20, + 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, 0x22, 0x2c, 0x20, 0x74, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, + 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x29, 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x28, 0x22, 0x7b, 0x7b, 0x75, 0x73, 0x65, 0x72, + 0x7d, 0x7d, 0x3a, 0x22, 0x29, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x2c, 0x20, 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72, + 0x7d, 0x7d, 0x22, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, + 0x75, 0x6e, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, + 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, + 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, + 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, + 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, 0x27, 0x61, 0x6c, 0x72, 0x65, + 0x61, 0x64, 0x79, 0x20, 0x72, 0x75, 0x6e, 0x6e, 0x69, 0x6e, 0x67, 0x2e, + 0x2e, 0x2e, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x7b, 0x70, 0x72, 0x6f, 0x6d, 0x70, + 0x74, 0x7d, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, + 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x2c, 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, - 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20, 0x65, 0x6c, 0x2e, 0x74, - 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, - 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, - 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, - 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, - 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, - 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, - 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, - 0x6d, 0x65, 0x5d, 0x3a, 0x20, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, - 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, - 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, - 0x6c, 0x6f, 0x61, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, - 0x3d, 0x3e, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, - 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, - 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, - 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x73, 0x65, - 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x28, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, - 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7d, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, - 0x73, 0x49, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, - 0x3d, 0x3e, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, - 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, - 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, - 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20, 0x4d, 0x61, 0x74, 0x68, 0x2e, - 0x66, 0x6c, 0x6f, 0x6f, 0x72, 0x28, 0x70, 0x61, 0x72, 0x73, 0x65, 0x46, - 0x6c, 0x6f, 0x61, 0x74, 0x28, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, - 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x29, 0x20, 0x7d, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, - 0x74, 0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x4a, 0x73, 0x6f, - 0x6e, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x70, 0x4f, - 0x72, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, - 0x6c, 0x28, 0x27, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, - 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x4a, 0x73, 0x6f, 0x6e, 0x53, - 0x63, 0x68, 0x65, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, - 0x65, 0x72, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, - 0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x4a, 0x73, 0x6f, 0x6e, - 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x70, 0x4f, 0x72, - 0x64, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, - 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x4a, - 0x53, 0x4f, 0x4e, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x47, 0x72, 0x61, - 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x3d, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, - 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x63, 0x68, - 0x65, 0x6d, 0x61, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, - 0x61, 0x72, 0x73, 0x65, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, - 0x72, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, - 0x72, 0x74, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x53, - 0x63, 0x68, 0x65, 0x6d, 0x61, 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, - 0x65, 0x72, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x4a, - 0x73, 0x6f, 0x6e, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x50, 0x72, 0x6f, - 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x2c, - 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x64, 0x75, 0x63, 0x65, - 0x28, 0x28, 0x61, 0x63, 0x63, 0x2c, 0x20, 0x63, 0x75, 0x72, 0x2c, 0x20, - 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x28, 0x7b, 0x2e, 0x2e, 0x2e, 0x61, - 0x63, 0x63, 0x2c, 0x20, 0x5b, 0x63, 0x75, 0x72, 0x2e, 0x74, 0x72, 0x69, - 0x6d, 0x28, 0x29, 0x5d, 0x3a, 0x20, 0x69, 0x7d, 0x29, 0x2c, 0x20, 0x7b, - 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x2e, 0x76, - 0x69, 0x73, 0x69, 0x74, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2c, - 0x20, 0x27, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x2c, + 0x20, 0x5b, 0x22, 0x22, 0x2c, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, + 0x5d, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, + 0x77, 0x61, 0x69, 0x74, 0x20, 0x72, 0x75, 0x6e, 0x4c, 0x6c, 0x61, 0x6d, + 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, + 0x70, 0x3a, 0x20, 0x5b, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x2c, 0x20, 0x22, 0x22, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, + 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x65, 0x2e, 0x70, 0x72, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x44, 0x65, 0x66, + 0x61, 0x75, 0x6c, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, + 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, + 0x73, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, + 0x70, 0x28, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x49, 0x6e, 0x70, 0x75, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, + 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, + 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x22, 0x22, 0x29, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, + 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x28, 0x65, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x68, 0x61, 0x74, 0x28, + 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x53, 0x75, + 0x62, 0x6d, 0x69, 0x74, 0x73, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x76, 0x65, + 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x76, 0x65, + 0x6e, 0x74, 0x2e, 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, 0x3d, 0x3d, 0x3d, + 0x20, 0x31, 0x33, 0x20, 0x26, 0x26, 0x20, 0x21, 0x65, 0x76, 0x65, 0x6e, + 0x74, 0x2e, 0x73, 0x68, 0x69, 0x66, 0x74, 0x4b, 0x65, 0x79, 0x29, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, + 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, + 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x66, 0x6f, 0x72, 0x6d, 0x20, 0x6f, 0x6e, 0x73, 0x75, 0x62, + 0x6d, 0x69, 0x74, 0x3d, 0x24, 0x7b, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, + 0x7d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, + 0x61, 0x72, 0x65, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6c, 0x61, 0x73, + 0x73, 0x4e, 0x61, 0x6d, 0x65, 0x3d, 0x24, 0x7b, 0x67, 0x65, 0x6e, 0x65, + 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x20, 0x3f, 0x20, 0x22, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x22, + 0x20, 0x3a, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x28, 0x65, + 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x65, 0x2e, 0x74, + 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x3a, 0x20, 0x63, 0x6f, - 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x2e, 0x66, 0x6f, 0x72, 0x6d, - 0x61, 0x74, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x28, 0x29, 0x2c, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, - 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x6c, 0x65, - 0x72, 0x74, 0x28, 0x60, 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x20, - 0x66, 0x61, 0x69, 0x6c, 0x65, 0x64, 0x3a, 0x20, 0x24, 0x7b, 0x65, 0x2e, - 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, - 0x69, 0x65, 0x6c, 0x64, 0x20, 0x3d, 0x20, 0x28, 0x7b, 0x6c, 0x61, 0x62, - 0x65, 0x6c, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x2c, 0x20, 0x6d, 0x69, 0x6e, - 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, - 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x29, 0x20, 0x3d, 0x3e, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, - 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x6f, 0x6e, 0x6b, 0x65, 0x79, 0x70, 0x72, 0x65, + 0x73, 0x73, 0x3d, 0x24, 0x7b, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x53, 0x75, + 0x62, 0x6d, 0x69, 0x74, 0x73, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x6c, + 0x61, 0x63, 0x65, 0x68, 0x6f, 0x6c, 0x64, 0x65, 0x72, 0x3d, 0x22, 0x53, + 0x61, 0x79, 0x20, 0x73, 0x6f, 0x6d, 0x65, 0x74, 0x68, 0x69, 0x6e, 0x67, + 0x2e, 0x2e, 0x2e, 0x22, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x6f, 0x77, 0x73, + 0x3d, 0x32, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, + 0x74, 0x65, 0x78, 0x74, 0x22, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x7d, 0x22, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, + 0x69, 0x76, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x72, 0x69, + 0x67, 0x68, 0x74, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, + 0x6e, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x73, 0x75, 0x62, 0x6d, + 0x69, 0x74, 0x22, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, + 0x3d, 0x24, 0x7b, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, + 0x67, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3e, 0x53, 0x65, 0x6e, + 0x64, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, + 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x73, 0x74, 0x6f, 0x70, 0x7d, 0x20, 0x64, + 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x21, 0x67, + 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x7d, 0x3e, 0x53, 0x74, 0x6f, 0x70, 0x3c, 0x2f, 0x62, + 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, + 0x6f, 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, + 0x7b, 0x72, 0x65, 0x73, 0x65, 0x74, 0x7d, 0x3e, 0x52, 0x65, 0x73, 0x65, + 0x74, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, - 0x6f, 0x72, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, - 0x3e, 0x24, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x7d, 0x3c, 0x2f, 0x6c, - 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, - 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, - 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, - 0x7d, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x69, - 0x6e, 0x7d, 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x24, 0x7b, 0x6d, - 0x61, 0x78, 0x7d, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, 0x22, 0x24, - 0x7b, 0x73, 0x74, 0x65, 0x70, 0x7d, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, - 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x20, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, - 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, - 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, + 0x3c, 0x2f, 0x66, 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x43, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x73, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, + 0x75, 0x62, 0x6d, 0x69, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, + 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x73, 0x74, 0x6f, 0x70, 0x28, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6e, 0x43, 0x6f, 0x6d, + 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, + 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, + 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x6f, 0x6e, + 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x73, 0x75, 0x62, 0x6d, + 0x69, 0x74, 0x7d, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x62, 0x75, + 0x74, 0x74, 0x6f, 0x6e, 0x22, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, + 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, + 0x69, 0x6e, 0x67, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3e, 0x53, + 0x74, 0x61, 0x72, 0x74, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, + 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x73, 0x74, 0x6f, 0x70, 0x7d, 0x20, + 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x21, + 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3e, 0x53, 0x74, 0x6f, 0x70, 0x3c, 0x2f, + 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, + 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, + 0x72, 0x65, 0x73, 0x65, 0x74, 0x7d, 0x3e, 0x52, 0x65, 0x73, 0x65, 0x74, + 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, + 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x68, 0x61, 0x74, + 0x4c, 0x6f, 0x67, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, + 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, + 0x67, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, + 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x61, 0x69, 0x6e, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x52, + 0x65, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, + 0x74, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x63, 0x72, + 0x6f, 0x6c, 0x6c, 0x20, 0x74, 0x6f, 0x20, 0x62, 0x6f, 0x74, 0x74, 0x6f, + 0x6d, 0x20, 0x28, 0x69, 0x66, 0x20, 0x6e, 0x65, 0x65, 0x64, 0x65, 0x64, + 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x20, 0x3d, + 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, + 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, + 0x74, 0x45, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x70, 0x61, + 0x72, 0x65, 0x6e, 0x74, 0x20, 0x26, 0x26, 0x20, 0x70, 0x61, 0x72, 0x65, + 0x6e, 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x48, 0x65, 0x69, + 0x67, 0x68, 0x74, 0x20, 0x3c, 0x3d, 0x20, 0x70, 0x61, 0x72, 0x65, 0x6e, + 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x54, 0x6f, 0x70, 0x20, + 0x2b, 0x20, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x6f, 0x66, 0x66, + 0x73, 0x65, 0x74, 0x48, 0x65, 0x69, 0x67, 0x68, 0x74, 0x20, 0x2b, 0x20, + 0x33, 0x30, 0x30, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x2e, + 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x54, 0x6f, 0x28, 0x30, 0x2c, 0x20, + 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, + 0x6c, 0x48, 0x65, 0x69, 0x67, 0x68, 0x74, 0x29, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x2c, 0x20, 0x5b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, + 0x73, 0x5d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, 0x6e, + 0x65, 0x20, 0x3d, 0x20, 0x28, 0x5b, 0x75, 0x73, 0x65, 0x72, 0x2c, 0x20, + 0x64, 0x61, 0x74, 0x61, 0x5d, 0x2c, 0x20, 0x69, 0x6e, 0x64, 0x65, 0x78, + 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, + 0x67, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x69, 0x73, 0x41, 0x72, 0x72, 0x61, 0x79, + 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x41, 0x72, + 0x72, 0x61, 0x79, 0x2e, 0x69, 0x73, 0x41, 0x72, 0x72, 0x61, 0x79, 0x28, + 0x64, 0x61, 0x74, 0x61, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x6f, + 0x62, 0x73, 0x20, 0x3e, 0x20, 0x30, 0x20, 0x26, 0x26, 0x20, 0x69, 0x73, + 0x41, 0x72, 0x72, 0x61, 0x79, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, + 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, + 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x24, 0x7b, 0x50, 0x72, 0x6f, 0x62, + 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x7d, 0x20, 0x64, + 0x61, 0x74, 0x61, 0x3d, 0x24, 0x7b, 0x64, 0x61, 0x74, 0x61, 0x7d, 0x20, + 0x2f, 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x69, 0x73, 0x41, 0x72, + 0x72, 0x61, 0x79, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3f, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x6d, 0x61, 0x70, 0x28, 0x6d, 0x73, + 0x67, 0x20, 0x3d, 0x3e, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, + 0x74, 0x65, 0x6e, 0x74, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, 0x27, + 0x27, 0x29, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, + 0x5e, 0x5c, 0x73, 0x2b, 0x2f, 0x2c, 0x20, 0x27, 0x27, 0x29, 0x20, 0x3a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x64, 0x61, 0x74, 0x61, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, + 0x20, 0x3d, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x24, 0x7b, 0x4d, + 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x69, 0x73, 0x68, 0x7d, 0x20, + 0x74, 0x65, 0x78, 0x74, 0x3d, 0x24, 0x7b, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x28, 0x74, 0x65, 0x78, 0x74, 0x29, 0x7d, 0x20, 0x2f, + 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x28, + 0x75, 0x73, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x70, 0x20, 0x6b, 0x65, 0x79, + 0x3d, 0x24, 0x7b, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x7d, 0x3e, 0x3c, 0x73, + 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x7b, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x28, 0x75, 0x73, 0x65, 0x72, 0x29, 0x7d, 0x3a, + 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x20, 0x24, 0x7b, + 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x3c, 0x2f, 0x70, 0x3e, + 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, + 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, + 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x70, 0x20, 0x6b, 0x65, 0x79, 0x3d, + 0x24, 0x7b, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x7d, 0x3e, 0x24, 0x7b, 0x6d, + 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x3c, 0x2f, 0x70, 0x3e, 0x60, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, + 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x64, 0x3d, + 0x22, 0x63, 0x68, 0x61, 0x74, 0x22, 0x20, 0x72, 0x65, 0x66, 0x3d, 0x24, + 0x7b, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x7d, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, + 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, 0x66, 0x6c, + 0x61, 0x74, 0x4d, 0x61, 0x70, 0x28, 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, + 0x6e, 0x65, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x2f, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3e, 0x60, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x6f, 0x6e, 0x66, + 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, + 0x6f, 0x70, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, + 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x73, 0x65, + 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, + 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, + 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, + 0x65, 0x5d, 0x3a, 0x20, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, + 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, + 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, 0x61, 0x72, + 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, + 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, + 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, + 0x20, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, + 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, + 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, + 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, + 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, + 0x5d, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x73, 0x65, 0x46, 0x6c, 0x6f, 0x61, + 0x74, 0x28, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, + 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, + 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, + 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, + 0x5d, 0x3a, 0x20, 0x4d, 0x61, 0x74, 0x68, 0x2e, 0x66, 0x6c, 0x6f, 0x6f, + 0x72, 0x28, 0x70, 0x61, 0x72, 0x73, 0x65, 0x46, 0x6c, 0x6f, 0x61, 0x74, + 0x28, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x29, 0x29, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x67, 0x72, + 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x4a, 0x73, 0x6f, 0x6e, 0x53, 0x63, 0x68, + 0x65, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, + 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x27, 0x27, + 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x47, 0x72, 0x61, 0x6d, + 0x6d, 0x61, 0x72, 0x4a, 0x73, 0x6f, 0x6e, 0x53, 0x63, 0x68, 0x65, 0x6d, + 0x61, 0x50, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x3d, + 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x67, 0x72, 0x61, + 0x6d, 0x6d, 0x61, 0x72, 0x4a, 0x73, 0x6f, 0x6e, 0x53, 0x63, 0x68, 0x65, + 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x65, 0x6c, 0x2e, 0x74, + 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x4a, 0x53, 0x4f, 0x4e, 0x53, + 0x63, 0x68, 0x65, 0x6d, 0x61, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, + 0x20, 0x3d, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x20, + 0x3d, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, + 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2e, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, + 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x53, 0x63, 0x68, 0x65, 0x6d, + 0x61, 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x28, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x4a, 0x73, 0x6f, 0x6e, 0x53, + 0x63, 0x68, 0x65, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, + 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, + 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x2c, 0x27, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x2e, 0x72, 0x65, 0x64, 0x75, 0x63, 0x65, 0x28, 0x28, 0x61, 0x63, + 0x63, 0x2c, 0x20, 0x63, 0x75, 0x72, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, + 0x3e, 0x20, 0x28, 0x7b, 0x2e, 0x2e, 0x2e, 0x61, 0x63, 0x63, 0x2c, 0x20, + 0x5b, 0x63, 0x75, 0x72, 0x2e, 0x74, 0x72, 0x69, 0x6d, 0x28, 0x29, 0x5d, + 0x3a, 0x20, 0x69, 0x7d, 0x29, 0x2c, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x2e, 0x76, 0x69, 0x73, 0x69, 0x74, + 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2c, 0x20, 0x27, 0x27, 0x29, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, + 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x72, 0x61, + 0x6d, 0x6d, 0x61, 0x72, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, + 0x74, 0x65, 0x72, 0x2e, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x47, 0x72, + 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x28, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, + 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x6c, 0x65, 0x72, 0x74, 0x28, 0x60, + 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x20, 0x66, 0x61, 0x69, 0x6c, + 0x65, 0x64, 0x3a, 0x20, 0x24, 0x7b, 0x65, 0x2e, 0x6d, 0x65, 0x73, 0x73, + 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, + 0x20, 0x3d, 0x20, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x2c, 0x20, + 0x6d, 0x61, 0x78, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x2c, 0x20, 0x6e, 0x61, + 0x6d, 0x65, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x2c, 0x20, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, + 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x3e, 0x24, 0x7b, 0x6c, + 0x61, 0x62, 0x65, 0x6c, 0x7d, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, + 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, + 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x20, 0x6d, + 0x69, 0x6e, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x69, 0x6e, 0x7d, 0x22, 0x20, + 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x61, 0x78, 0x7d, 0x22, + 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x74, 0x65, + 0x70, 0x7d, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x24, 0x7b, + 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x3d, 0x22, 0x24, 0x7b, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x22, 0x20, + 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, + 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, + 0x6e, 0x3e, 0x24, 0x7b, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3c, 0x2f, + 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x49, 0x6e, 0x74, 0x46, 0x69, + 0x65, 0x6c, 0x64, 0x20, 0x3d, 0x20, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, + 0x6c, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x2c, + 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, + 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x24, 0x7b, 0x6e, + 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x3e, 0x24, 0x7b, 0x6c, 0x61, 0x62, 0x65, + 0x6c, 0x7d, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, + 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x24, + 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, + 0x22, 0x24, 0x7b, 0x6d, 0x69, 0x6e, 0x7d, 0x22, 0x20, 0x6d, 0x61, 0x78, + 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x61, 0x78, 0x7d, 0x22, 0x20, 0x6e, 0x61, + 0x6d, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, + 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, + 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x49, - 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x20, 0x3d, 0x20, 0x28, 0x7b, - 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x2c, 0x20, - 0x6d, 0x69, 0x6e, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, - 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, + 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, + 0x65, 0x73, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, + 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x65, 0x2e, 0x70, 0x72, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x44, 0x65, 0x66, + 0x61, 0x75, 0x6c, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x54, 0x6f, 0x44, + 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x41, 0x6e, 0x64, 0x41, 0x70, 0x70, + 0x6c, 0x79, 0x28, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x42, 0x75, 0x74, 0x74, 0x6f, + 0x6e, 0x20, 0x3d, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, + 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, 0x55, 0x73, 0x65, 0x72, + 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x3d, 0x20, 0x27, + 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x27, 0x29, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, + 0x6c, 0x65, 0x64, 0x3e, 0x55, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x64, 0x65, + 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, + 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, + 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x52, 0x65, 0x73, 0x65, 0x74, 0x7d, 0x3e, 0x52, 0x65, 0x73, 0x65, 0x74, + 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x74, 0x6f, 0x20, 0x64, 0x65, 0x66, 0x61, + 0x75, 0x6c, 0x74, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, + 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x61, 0x75, 0x74, 0x6f, + 0x73, 0x61, 0x76, 0x65, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x20, 0x6f, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x72, 0x79, 0x20, 0x63, + 0x68, 0x61, 0x6e, 0x67, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x28, 0x29, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c, 0x20, 0x5b, 0x73, + 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x5d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, + 0x72, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x20, 0x3d, 0x20, 0x28, + 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, - 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x3e, 0x24, 0x7b, - 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x7d, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, + 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x47, + 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, - 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, - 0x64, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x20, - 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x69, 0x6e, 0x7d, 0x22, - 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x61, 0x78, 0x7d, - 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, - 0x6d, 0x65, 0x7d, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, - 0x24, 0x7b, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x22, 0x20, 0x6f, 0x6e, - 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, - 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, 0x7d, - 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, - 0x73, 0x74, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, - 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x65, 0x2e, 0x70, 0x72, 0x65, 0x76, 0x65, 0x6e, - 0x74, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x28, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, - 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, - 0x74, 0x54, 0x6f, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x41, 0x6e, - 0x64, 0x41, 0x70, 0x70, 0x6c, 0x79, 0x28, 0x29, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x42, - 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x28, 0x29, 0x20, 0x3d, - 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x69, 0x66, 0x20, 0x28, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x65, 0x64, - 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x20, - 0x3d, 0x3d, 0x20, 0x27, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x27, - 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, - 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x64, - 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x3e, 0x55, 0x73, 0x69, 0x6e, - 0x67, 0x20, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x20, 0x74, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, - 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, - 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, - 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, - 0x6b, 0x3d, 0x24, 0x7b, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, - 0x6c, 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x7d, 0x3e, 0x52, - 0x65, 0x73, 0x65, 0x74, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x74, 0x6f, 0x20, - 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x3c, 0x2f, 0x62, 0x75, 0x74, - 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, - 0x66, 0x65, 0x63, 0x74, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, - 0x61, 0x75, 0x74, 0x6f, 0x73, 0x61, 0x76, 0x65, 0x20, 0x74, 0x65, 0x6d, - 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x6f, 0x6e, 0x20, 0x65, 0x76, 0x65, - 0x72, 0x79, 0x20, 0x63, 0x68, 0x61, 0x6e, 0x67, 0x65, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x54, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x41, 0x75, 0x74, 0x6f, 0x73, 0x61, - 0x76, 0x65, 0x28, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x2c, 0x20, 0x5b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, - 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x5d, 0x29, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, - 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x66, 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, - 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x55, 0x73, 0x65, 0x72, - 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, - 0x74, 0x42, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, - 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, - 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, - 0x72, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x22, 0x3e, 0x50, - 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, - 0x61, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, - 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x6d, - 0x70, 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, - 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x7d, 0x22, 0x20, - 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, - 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, - 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, - 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, - 0x74, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, - 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74, 0x77, 0x6f, 0x22, 0x3e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, - 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x75, 0x73, 0x65, - 0x72, 0x22, 0x3e, 0x55, 0x73, 0x65, 0x72, 0x20, 0x6e, 0x61, 0x6d, 0x65, - 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, - 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, - 0x75, 0x73, 0x65, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, - 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x22, 0x20, - 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, - 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, - 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, - 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x62, 0x6f, 0x74, 0x22, - 0x3e, 0x42, 0x6f, 0x74, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3c, 0x2f, 0x6c, - 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, + 0x20, 0x69, 0x64, 0x3d, 0x22, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, + 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x67, 0x72, 0x61, 0x6d, + 0x6d, 0x61, 0x72, 0x22, 0x20, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x68, 0x6f, + 0x6c, 0x64, 0x65, 0x72, 0x3d, 0x22, 0x55, 0x73, 0x65, 0x20, 0x67, 0x62, + 0x6e, 0x66, 0x20, 0x6f, 0x72, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x20, 0x53, + 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2b, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, + 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, + 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x2e, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x7d, 0x22, 0x20, 0x72, + 0x6f, 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, + 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, - 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x63, 0x68, 0x61, - 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, - 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x2e, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, - 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, - 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x20, 0x2f, 0x3e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, - 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, - 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, + 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x70, 0x72, 0x6f, + 0x70, 0x2d, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x22, 0x20, 0x70, 0x6c, 0x61, + 0x63, 0x65, 0x68, 0x6f, 0x6c, 0x64, 0x65, 0x72, 0x3d, 0x22, 0x6f, 0x72, + 0x64, 0x65, 0x72, 0x3a, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x31, 0x2c, 0x70, + 0x72, 0x6f, 0x70, 0x32, 0x2c, 0x70, 0x72, 0x6f, 0x70, 0x33, 0x22, 0x20, + 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x4a, + 0x73, 0x6f, 0x6e, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x50, 0x72, 0x6f, + 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, + 0x22, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x22, 0x20, 0x6f, 0x6e, 0x63, + 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x63, 0x6f, 0x6e, 0x76, 0x65, + 0x72, 0x74, 0x4a, 0x53, 0x4f, 0x4e, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, + 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x7d, 0x3e, 0x43, 0x6f, 0x6e, + 0x76, 0x65, 0x72, 0x74, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x20, 0x53, 0x63, + 0x68, 0x65, 0x6d, 0x61, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x43, + 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x53, + 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x28, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x74, 0x6d, + 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x68, 0x74, 0x6d, + 0x6c, 0x46, 0x6f, 0x72, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, + 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3c, 0x2f, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, + 0x65, 0x61, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, + 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x70, 0x72, 0x6f, + 0x6d, 0x70, 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, + 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x7d, 0x22, + 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, + 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, + 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x43, 0x68, 0x61, 0x74, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46, + 0x6f, 0x72, 0x6d, 0x20, 0x3d, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, + 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x74, + 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x24, 0x7b, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x43, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x53, 0x65, + 0x74, 0x28, 0x29, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, + 0x74, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74, 0x77, 0x6f, + 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x75, + 0x73, 0x65, 0x72, 0x22, 0x3e, 0x55, 0x73, 0x65, 0x72, 0x20, 0x6e, 0x61, + 0x6d, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x50, 0x72, - 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, + 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, + 0x3d, 0x22, 0x75, 0x73, 0x65, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x75, 0x73, 0x65, 0x72, 0x7d, + 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, + 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, + 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x62, 0x6f, + 0x74, 0x22, 0x3e, 0x42, 0x6f, 0x74, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3c, + 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, + 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, + 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x63, + 0x68, 0x61, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, + 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x2e, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x22, 0x20, 0x6f, + 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x20, + 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, + 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, + 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, + 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, + 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, + 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, + 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, + 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, + 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, + 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x22, 0x3e, 0x43, 0x68, 0x61, 0x74, 0x20, 0x68, 0x69, 0x73, + 0x74, 0x6f, 0x72, 0x79, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, - 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, - 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x7d, - 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, 0x6e, 0x69, - 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, - 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, - 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x22, 0x3e, 0x43, 0x68, 0x61, 0x74, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, - 0x72, 0x79, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, - 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, - 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x6e, 0x61, - 0x6d, 0x65, 0x3d, 0x22, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, - 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x68, 0x69, 0x73, 0x74, - 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x7d, - 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x31, 0x20, 0x6f, 0x6e, 0x69, - 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, - 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, - 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, - 0x22, 0x3e, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x3c, 0x2f, 0x6c, - 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, - 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x67, 0x72, - 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, - 0x22, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x22, 0x20, 0x70, 0x6c, - 0x61, 0x63, 0x65, 0x68, 0x6f, 0x6c, 0x64, 0x65, 0x72, 0x3d, 0x22, 0x55, - 0x73, 0x65, 0x20, 0x67, 0x62, 0x6e, 0x66, 0x20, 0x6f, 0x72, 0x20, 0x4a, - 0x53, 0x4f, 0x4e, 0x20, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2b, 0x63, - 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, - 0x72, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, + 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, + 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, + 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x68, 0x69, + 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x31, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, - 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x7d, 0x2f, 0x3e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, - 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, - 0x6d, 0x65, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x70, 0x2d, 0x6f, 0x72, 0x64, - 0x65, 0x72, 0x22, 0x20, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x68, 0x6f, 0x6c, - 0x64, 0x65, 0x72, 0x3d, 0x22, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x3a, 0x20, - 0x70, 0x72, 0x6f, 0x70, 0x31, 0x2c, 0x70, 0x72, 0x6f, 0x70, 0x32, 0x2c, - 0x70, 0x72, 0x6f, 0x70, 0x33, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, - 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x47, - 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x4a, 0x73, 0x6f, 0x6e, 0x53, 0x63, - 0x68, 0x65, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, - 0x72, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, - 0x74, 0x6f, 0x6e, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x62, 0x75, - 0x74, 0x74, 0x6f, 0x6e, 0x22, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, - 0x6b, 0x3d, 0x24, 0x7b, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x4a, - 0x53, 0x4f, 0x4e, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x47, 0x72, 0x61, - 0x6d, 0x6d, 0x61, 0x72, 0x7d, 0x3e, 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, - 0x74, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x20, 0x53, 0x63, 0x68, 0x65, 0x6d, - 0x61, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, - 0x65, 0x74, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, - 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74, 0x77, 0x6f, 0x22, + 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x24, 0x7b, 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, - 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x50, 0x72, - 0x65, 0x64, 0x69, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x22, 0x2c, 0x20, - 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x32, 0x30, 0x34, 0x38, 0x2c, 0x20, 0x6d, - 0x69, 0x6e, 0x3a, 0x20, 0x2d, 0x31, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, - 0x3a, 0x20, 0x22, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, - 0x22, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, - 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, - 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x7d, 0x29, 0x7d, 0x0a, + 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x47, + 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x6f, + 0x6c, 0x28, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, + 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6c, + 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46, + 0x6f, 0x72, 0x6d, 0x20, 0x3d, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, + 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x74, + 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x24, 0x7b, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x43, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x53, 0x65, + 0x74, 0x28, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, + 0x3e, 0x24, 0x7b, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x43, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x28, 0x29, 0x7d, 0x3c, 0x2f, 0x66, 0x69, + 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x72, 0x6d, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x63, 0x6c, + 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74, 0x77, 0x6f, 0x22, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x24, 0x7b, 0x55, 0x73, 0x65, 0x72, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x52, 0x65, 0x73, 0x65, 0x74, 0x42, 0x75, 0x74, 0x74, 0x6f, + 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, - 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, 0x65, - 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x2c, 0x20, - 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x35, 0x2c, 0x20, 0x6d, 0x69, - 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, - 0x3a, 0x20, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, - 0x72, 0x65, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, - 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, - 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, - 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, - 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, - 0x20, 0x22, 0x50, 0x65, 0x6e, 0x61, 0x6c, 0x69, 0x7a, 0x65, 0x20, 0x72, - 0x65, 0x70, 0x65, 0x61, 0x74, 0x20, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, - 0x63, 0x65, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x32, 0x2e, - 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, - 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x72, 0x65, 0x70, 0x65, - 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c, + 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x63, 0x6c, 0x61, 0x73, + 0x73, 0x3d, 0x22, 0x73, 0x6c, 0x69, 0x6d, 0x22, 0x3e, 0x3c, 0x69, 0x6e, + 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, + 0x64, 0x69, 0x6f, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x74, + 0x79, 0x70, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, + 0x63, 0x68, 0x61, 0x74, 0x22, 0x20, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, + 0x64, 0x3d, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x20, 0x3d, + 0x3d, 0x3d, 0x20, 0x22, 0x63, 0x68, 0x61, 0x74, 0x22, 0x7d, 0x20, 0x6f, + 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x20, + 0x2f, 0x3e, 0x20, 0x43, 0x68, 0x61, 0x74, 0x3c, 0x2f, 0x6c, 0x61, 0x62, + 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, + 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x73, 0x6c, 0x69, 0x6d, + 0x22, 0x3e, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, + 0x65, 0x3d, 0x22, 0x72, 0x61, 0x64, 0x69, 0x6f, 0x22, 0x20, 0x6e, 0x61, + 0x6d, 0x65, 0x3d, 0x22, 0x74, 0x79, 0x70, 0x65, 0x22, 0x20, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, + 0x69, 0x6f, 0x6e, 0x22, 0x20, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, + 0x3d, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x20, 0x3d, 0x3d, + 0x3d, 0x20, 0x22, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, + 0x6e, 0x22, 0x7d, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, + 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, + 0x69, 0x6f, 0x6e, 0x7d, 0x20, 0x2f, 0x3e, 0x20, 0x43, 0x6f, 0x6d, 0x70, + 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, + 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, + 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, + 0x79, 0x70, 0x65, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x63, 0x68, 0x61, + 0x74, 0x27, 0x20, 0x3f, 0x20, 0x43, 0x68, 0x61, 0x74, 0x43, 0x6f, 0x6e, + 0x66, 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, 0x28, 0x29, 0x20, 0x3a, 0x20, + 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x43, 0x6f, + 0x6e, 0x66, 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, 0x28, 0x29, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x63, 0x6c, 0x61, + 0x73, 0x73, 0x3d, 0x22, 0x74, 0x77, 0x6f, 0x22, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, + 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, + 0x20, 0x32, 0x30, 0x34, 0x38, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, + 0x2d, 0x31, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x6e, + 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, 0x2c, 0x20, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x65, + 0x64, 0x69, 0x63, 0x74, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, + 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, 0x65, 0x6d, 0x70, 0x65, 0x72, + 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, + 0x20, 0x31, 0x2e, 0x35, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, + 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74, + 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, - 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, - 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x7d, - 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x24, 0x7b, 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, - 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x43, - 0x6f, 0x6e, 0x73, 0x69, 0x64, 0x65, 0x72, 0x20, 0x4e, 0x20, 0x74, 0x6f, - 0x6b, 0x65, 0x6e, 0x73, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x65, 0x6e, - 0x61, 0x6c, 0x69, 0x7a, 0x65, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, - 0x20, 0x32, 0x30, 0x34, 0x38, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, - 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x72, 0x65, - 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x22, - 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, - 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, - 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, - 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x24, 0x7b, 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, - 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, - 0x6f, 0x70, 0x2d, 0x4b, 0x20, 0x73, 0x61, 0x6d, 0x70, 0x6c, 0x69, 0x6e, - 0x67, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x30, 0x30, - 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x2d, 0x31, 0x2c, 0x20, 0x6e, - 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74, 0x6f, 0x70, 0x5f, 0x6b, 0x22, - 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, - 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x6f, - 0x70, 0x5f, 0x6b, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, - 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, - 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, 0x6f, 0x70, 0x2d, 0x50, 0x20, 0x73, - 0x61, 0x6d, 0x70, 0x6c, 0x69, 0x6e, 0x67, 0x22, 0x2c, 0x20, 0x6d, 0x61, - 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, - 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, - 0x22, 0x74, 0x6f, 0x70, 0x5f, 0x70, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, + 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, + 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x7d, 0x29, 0x7d, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, + 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x50, 0x65, + 0x6e, 0x61, 0x6c, 0x69, 0x7a, 0x65, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, + 0x74, 0x20, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x65, 0x22, 0x2c, + 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x32, 0x2e, 0x30, 0x2c, 0x20, 0x6d, + 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, + 0x65, 0x3a, 0x20, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, + 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x6f, 0x70, 0x5f, 0x70, 0x7d, 0x29, - 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, - 0x65, 0x74, 0x61, 0x69, 0x6c, 0x73, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x75, 0x6d, - 0x6d, 0x61, 0x72, 0x79, 0x3e, 0x4d, 0x6f, 0x72, 0x65, 0x20, 0x6f, 0x70, - 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x3c, 0x2f, 0x73, 0x75, 0x6d, 0x6d, 0x61, - 0x72, 0x79, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, - 0x74, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74, 0x77, 0x6f, - 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, - 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, - 0x3a, 0x20, 0x22, 0x54, 0x46, 0x53, 0x2d, 0x5a, 0x22, 0x2c, 0x20, 0x6d, - 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, - 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, - 0x20, 0x22, 0x74, 0x66, 0x73, 0x5f, 0x7a, 0x22, 0x2c, 0x20, 0x73, 0x74, - 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, + 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x29, 0x7d, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, + 0x7b, 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, + 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x43, 0x6f, 0x6e, 0x73, 0x69, + 0x64, 0x65, 0x72, 0x20, 0x4e, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x73, + 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x69, 0x7a, + 0x65, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x32, 0x30, 0x34, + 0x38, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2c, 0x20, 0x6e, + 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, + 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x66, 0x73, 0x5f, 0x7a, 0x7d, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, + 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x29, 0x7d, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, + 0x7b, 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, + 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, 0x6f, 0x70, 0x2d, 0x4b, + 0x20, 0x73, 0x61, 0x6d, 0x70, 0x6c, 0x69, 0x6e, 0x67, 0x22, 0x2c, 0x20, + 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x30, 0x30, 0x2c, 0x20, 0x6d, 0x69, + 0x6e, 0x3a, 0x20, 0x2d, 0x31, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, + 0x20, 0x22, 0x74, 0x6f, 0x70, 0x5f, 0x6b, 0x22, 0x2c, 0x20, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x6f, 0x70, 0x5f, 0x6b, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, - 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, - 0x3a, 0x20, 0x22, 0x54, 0x79, 0x70, 0x69, 0x63, 0x61, 0x6c, 0x20, 0x50, - 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, - 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, - 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74, 0x79, 0x70, 0x69, 0x63, 0x61, - 0x6c, 0x5f, 0x70, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, + 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, + 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, + 0x22, 0x54, 0x6f, 0x70, 0x2d, 0x50, 0x20, 0x73, 0x61, 0x6d, 0x70, 0x6c, + 0x69, 0x6e, 0x67, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, + 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, + 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74, 0x6f, 0x70, + 0x5f, 0x70, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, + 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, + 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x2e, 0x74, 0x6f, 0x70, 0x5f, 0x70, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, + 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x65, 0x74, 0x61, 0x69, + 0x6c, 0x73, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x75, 0x6d, 0x6d, 0x61, 0x72, 0x79, + 0x3e, 0x4d, 0x6f, 0x72, 0x65, 0x20, 0x6f, 0x70, 0x74, 0x69, 0x6f, 0x6e, + 0x73, 0x3c, 0x2f, 0x73, 0x75, 0x6d, 0x6d, 0x61, 0x72, 0x79, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x63, 0x6c, + 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74, 0x77, 0x6f, 0x22, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, + 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, + 0x46, 0x53, 0x2d, 0x5a, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, + 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, + 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74, 0x66, + 0x73, 0x5f, 0x7a, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x2e, 0x74, 0x79, 0x70, 0x69, 0x63, 0x61, 0x6c, 0x5f, 0x70, 0x7d, - 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, - 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, - 0x3a, 0x20, 0x22, 0x50, 0x72, 0x65, 0x73, 0x65, 0x6e, 0x63, 0x65, 0x20, - 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c, 0x20, 0x6d, 0x61, - 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, - 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, - 0x22, 0x70, 0x72, 0x65, 0x73, 0x65, 0x6e, 0x63, 0x65, 0x5f, 0x70, 0x65, - 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, - 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x65, 0x73, 0x65, 0x6e, 0x63, 0x65, - 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x29, 0x7d, 0x0a, + 0x65, 0x2e, 0x74, 0x66, 0x73, 0x5f, 0x7a, 0x7d, 0x29, 0x7d, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, + 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, + 0x79, 0x70, 0x69, 0x63, 0x61, 0x6c, 0x20, 0x50, 0x22, 0x2c, 0x20, 0x6d, + 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, + 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, + 0x20, 0x22, 0x74, 0x79, 0x70, 0x69, 0x63, 0x61, 0x6c, 0x5f, 0x70, 0x22, + 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, + 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, + 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x79, + 0x70, 0x69, 0x63, 0x61, 0x6c, 0x5f, 0x70, 0x7d, 0x29, 0x7d, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, + 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x50, + 0x72, 0x65, 0x73, 0x65, 0x6e, 0x63, 0x65, 0x20, 0x70, 0x65, 0x6e, 0x61, + 0x6c, 0x74, 0x79, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, + 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, + 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x70, 0x72, 0x65, + 0x73, 0x65, 0x6e, 0x63, 0x65, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, + 0x79, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, + 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, + 0x70, 0x72, 0x65, 0x73, 0x65, 0x6e, 0x63, 0x65, 0x5f, 0x70, 0x65, 0x6e, + 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, + 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, + 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x46, 0x72, 0x65, 0x71, + 0x75, 0x65, 0x6e, 0x63, 0x79, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, + 0x79, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, + 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, + 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x66, 0x72, 0x65, 0x71, 0x75, + 0x65, 0x6e, 0x63, 0x79, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, + 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, + 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x66, + 0x72, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x79, 0x5f, 0x70, 0x65, 0x6e, + 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, + 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x68, 0x72, 0x20, + 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, + 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74, 0x68, 0x72, 0x65, + 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x3c, + 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, + 0x72, 0x61, 0x64, 0x69, 0x6f, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, + 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x22, 0x20, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x30, 0x22, 0x20, 0x63, 0x68, 0x65, + 0x63, 0x6b, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, + 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, + 0x73, 0x74, 0x61, 0x74, 0x20, 0x3d, 0x3d, 0x20, 0x30, 0x7d, 0x20, 0x6f, + 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, + 0x7d, 0x20, 0x2f, 0x3e, 0x20, 0x6e, 0x6f, 0x20, 0x4d, 0x69, 0x72, 0x6f, + 0x73, 0x74, 0x61, 0x74, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, + 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, + 0x22, 0x72, 0x61, 0x64, 0x69, 0x6f, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, + 0x3d, 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x22, 0x20, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x31, 0x22, 0x20, 0x63, 0x68, + 0x65, 0x63, 0x6b, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, + 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x3d, 0x3d, 0x20, 0x31, 0x7d, 0x20, + 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, + 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x20, 0x4d, 0x69, 0x72, 0x6f, 0x73, 0x74, + 0x61, 0x74, 0x20, 0x76, 0x31, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, + 0x3e, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, + 0x3d, 0x22, 0x72, 0x61, 0x64, 0x69, 0x6f, 0x22, 0x20, 0x6e, 0x61, 0x6d, + 0x65, 0x3d, 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x22, + 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x32, 0x22, 0x20, 0x63, + 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x70, 0x61, 0x72, + 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, + 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x3d, 0x3d, 0x20, 0x32, 0x7d, + 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, + 0x6e, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x20, 0x4d, 0x69, 0x72, 0x6f, 0x73, + 0x74, 0x61, 0x74, 0x20, 0x76, 0x32, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, + 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, - 0x46, 0x72, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x79, 0x20, 0x70, 0x65, - 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, - 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, - 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x66, - 0x72, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x79, 0x5f, 0x70, 0x65, 0x6e, - 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, + 0x4d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x74, 0x61, 0x75, + 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x30, 0x2e, 0x30, + 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, + 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, + 0x74, 0x61, 0x74, 0x5f, 0x74, 0x61, 0x75, 0x22, 0x2c, 0x20, 0x73, 0x74, + 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, + 0x61, 0x74, 0x5f, 0x74, 0x61, 0x75, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, + 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x4d, 0x69, + 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x65, 0x74, 0x61, 0x22, 0x2c, + 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, + 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, + 0x65, 0x3a, 0x20, 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, + 0x5f, 0x65, 0x74, 0x61, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x2e, 0x66, 0x72, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x79, - 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x29, 0x7d, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x68, 0x72, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, + 0x65, 0x74, 0x61, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, + 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, - 0x64, 0x73, 0x65, 0x74, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, - 0x74, 0x68, 0x72, 0x65, 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, - 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, - 0x65, 0x6c, 0x3e, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, - 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x64, 0x69, 0x6f, 0x22, 0x20, 0x6e, - 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, - 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x30, 0x22, - 0x20, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x70, - 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, - 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x3d, 0x3d, 0x20, - 0x30, 0x7d, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, - 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, - 0x73, 0x49, 0x6e, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x20, 0x6e, 0x6f, 0x20, - 0x4d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x3c, 0x2f, 0x6c, 0x61, - 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, - 0x62, 0x65, 0x6c, 0x3e, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, - 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x64, 0x69, 0x6f, 0x22, 0x20, - 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, - 0x61, 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x31, - 0x22, 0x20, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, 0x3d, 0x24, 0x7b, - 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x3d, 0x3d, - 0x20, 0x31, 0x7d, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, - 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, - 0x6d, 0x73, 0x49, 0x6e, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x20, 0x4d, 0x69, - 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x76, 0x31, 0x3c, 0x2f, 0x6c, - 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, - 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, - 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x64, 0x69, 0x6f, 0x22, - 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, - 0x74, 0x61, 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, - 0x32, 0x22, 0x20, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, 0x3d, 0x24, - 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x3d, - 0x3d, 0x20, 0x32, 0x7d, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, - 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, - 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x20, 0x4d, - 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x76, 0x32, 0x3c, 0x2f, - 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, - 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, + 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, - 0x6c, 0x3a, 0x20, 0x22, 0x4d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, - 0x20, 0x74, 0x61, 0x75, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, - 0x31, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, - 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x6d, - 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, 0x74, 0x61, 0x75, 0x22, - 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, - 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, - 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, - 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, 0x74, 0x61, 0x75, 0x7d, 0x29, - 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, - 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, - 0x20, 0x22, 0x4d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x65, - 0x74, 0x61, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, - 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, - 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x6d, 0x69, 0x72, 0x6f, - 0x73, 0x74, 0x61, 0x74, 0x5f, 0x65, 0x74, 0x61, 0x22, 0x2c, 0x20, 0x73, - 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, + 0x6c, 0x3a, 0x20, 0x22, 0x53, 0x68, 0x6f, 0x77, 0x20, 0x50, 0x72, 0x6f, + 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x22, 0x2c, + 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x30, 0x2c, 0x20, 0x6d, 0x69, + 0x6e, 0x3a, 0x20, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, + 0x22, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x73, 0x22, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, - 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73, - 0x74, 0x61, 0x74, 0x5f, 0x65, 0x74, 0x61, 0x7d, 0x29, 0x7d, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x24, 0x7b, 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, - 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x53, 0x68, 0x6f, 0x77, - 0x20, 0x50, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, - 0x65, 0x73, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x30, - 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2c, 0x20, 0x6e, 0x61, - 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x73, - 0x22, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, - 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, - 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x73, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, - 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x65, - 0x74, 0x61, 0x69, 0x6c, 0x73, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, - 0x70, 0x72, 0x6f, 0x62, 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x20, 0x3d, 0x20, - 0x28, 0x70, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x20, 0x3d, - 0x20, 0x4d, 0x61, 0x74, 0x68, 0x2e, 0x66, 0x6c, 0x6f, 0x6f, 0x72, 0x28, - 0x31, 0x39, 0x32, 0x20, 0x2a, 0x20, 0x28, 0x31, 0x20, 0x2d, 0x20, 0x70, - 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x67, 0x20, 0x3d, 0x20, 0x4d, 0x61, 0x74, 0x68, - 0x2e, 0x66, 0x6c, 0x6f, 0x6f, 0x72, 0x28, 0x31, 0x39, 0x32, 0x20, 0x2a, - 0x20, 0x70, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, - 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x60, 0x72, 0x67, 0x62, 0x61, 0x28, - 0x24, 0x7b, 0x72, 0x7d, 0x2c, 0x24, 0x7b, 0x67, 0x7d, 0x2c, 0x30, 0x2c, - 0x30, 0x2e, 0x33, 0x29, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, - 0x50, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, - 0x73, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x29, - 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, - 0x73, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x6d, 0x61, 0x70, 0x28, 0x6d, - 0x73, 0x67, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x7b, 0x20, - 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, - 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, - 0x20, 0x7d, 0x20, 0x3d, 0x20, 0x6d, 0x73, 0x67, 0x3b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x21, 0x63, 0x6f, - 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, - 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x20, 0x7c, - 0x7c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, - 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, - 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x20, 0x3d, 0x3d, 0x3d, 0x20, - 0x30, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x20, - 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, - 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6d, 0x70, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x6f, + 0x62, 0x73, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, + 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, + 0x73, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x2f, 0x66, 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x62, + 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x29, 0x20, + 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x20, 0x3d, 0x20, 0x4d, 0x61, 0x74, + 0x68, 0x2e, 0x66, 0x6c, 0x6f, 0x6f, 0x72, 0x28, 0x31, 0x39, 0x32, 0x20, + 0x2a, 0x20, 0x28, 0x31, 0x20, 0x2d, 0x20, 0x70, 0x29, 0x29, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x67, 0x20, 0x3d, 0x20, 0x4d, 0x61, 0x74, 0x68, 0x2e, 0x66, 0x6c, 0x6f, + 0x6f, 0x72, 0x28, 0x31, 0x39, 0x32, 0x20, 0x2a, 0x20, 0x70, 0x29, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x60, 0x72, 0x67, 0x62, 0x61, 0x28, 0x24, 0x7b, 0x72, 0x7d, + 0x2c, 0x24, 0x7b, 0x67, 0x7d, 0x2c, 0x30, 0x2c, 0x30, 0x2e, 0x33, 0x29, + 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x50, 0x72, 0x6f, 0x62, + 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x20, 0x3d, 0x20, + 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x64, 0x61, + 0x74, 0x61, 0x2e, 0x6d, 0x61, 0x70, 0x28, 0x6d, 0x73, 0x67, 0x20, 0x3d, + 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6d, 0x70, + 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, + 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x20, 0x7d, 0x20, 0x3d, + 0x20, 0x6d, 0x73, 0x67, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x21, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, + 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, + 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x20, 0x7c, 0x7c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x2e, 0x6c, 0x65, 0x6e, - 0x67, 0x74, 0x68, 0x20, 0x3e, 0x20, 0x31, 0x29, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, - 0x4e, 0x6f, 0x74, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x62, 0x79, 0x74, 0x65, - 0x20, 0x70, 0x61, 0x69, 0x72, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6d, 0x70, - 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, - 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x5b, 0x30, 0x5d, 0x2e, - 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x74, 0x61, 0x72, - 0x74, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x62, 0x79, 0x74, 0x65, - 0x3a, 0x20, 0x5c, 0x5c, 0x27, 0x29, 0x29, 0x20, 0x72, 0x65, 0x74, 0x75, + 0x67, 0x74, 0x68, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x30, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x70, 0x6c, 0x69, - 0x74, 0x44, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6d, 0x70, - 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, - 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x2e, 0x6d, 0x61, 0x70, - 0x28, 0x70, 0x72, 0x6f, 0x62, 0x20, 0x3d, 0x3e, 0x20, 0x28, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3a, 0x20, 0x70, 0x72, 0x6f, - 0x62, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2c, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, - 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, - 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x3a, - 0x20, 0x5b, 0x70, 0x72, 0x6f, 0x62, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x29, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, - 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x24, 0x7b, 0x50, - 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, - 0x7d, 0x20, 0x64, 0x61, 0x74, 0x61, 0x3d, 0x24, 0x7b, 0x73, 0x70, 0x6c, - 0x69, 0x74, 0x44, 0x61, 0x74, 0x61, 0x7d, 0x20, 0x2f, 0x3e, 0x60, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x7b, 0x20, 0x70, 0x72, 0x6f, 0x62, 0x73, 0x2c, 0x20, 0x63, 0x6f, - 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x3d, 0x20, 0x63, 0x6f, - 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, - 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x5b, 0x30, - 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x20, 0x3d, 0x20, - 0x70, 0x72, 0x6f, 0x62, 0x73, 0x2e, 0x66, 0x69, 0x6e, 0x64, 0x28, 0x70, - 0x20, 0x3d, 0x3e, 0x20, 0x70, 0x2e, 0x74, 0x6f, 0x6b, 0x5f, 0x73, 0x74, - 0x72, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, - 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x43, 0x6f, - 0x6c, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x20, - 0x3f, 0x20, 0x70, 0x72, 0x6f, 0x62, 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x28, - 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x2e, 0x70, 0x72, 0x6f, 0x62, 0x29, 0x20, - 0x3a, 0x20, 0x27, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x70, 0x61, 0x72, 0x65, - 0x6e, 0x74, 0x27, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x6f, 0x70, 0x6f, 0x76, - 0x65, 0x72, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x20, 0x3d, - 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, 0x63, 0x6c, - 0x61, 0x73, 0x73, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x62, 0x2d, 0x73, 0x65, - 0x74, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x62, 0x73, 0x2e, - 0x6d, 0x61, 0x70, 0x28, 0x28, 0x70, 0x2c, 0x20, 0x69, 0x6e, 0x64, 0x65, - 0x78, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, - 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x6b, 0x65, 0x79, 0x3d, 0x24, 0x7b, 0x69, 0x6e, 0x64, 0x65, - 0x78, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x69, 0x74, - 0x6c, 0x65, 0x3d, 0x24, 0x7b, 0x60, 0x70, 0x72, 0x6f, 0x62, 0x3a, 0x20, - 0x24, 0x7b, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x62, 0x7d, 0x60, 0x7d, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3d, - 0x24, 0x7b, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x27, 0x30, 0x2e, - 0x33, 0x65, 0x6d, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, - 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x70, 0x2e, 0x74, 0x6f, 0x6b, - 0x5f, 0x73, 0x74, 0x72, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x63, 0x6f, 0x6e, - 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3f, 0x20, 0x70, 0x72, 0x6f, 0x62, 0x43, - 0x6f, 0x6c, 0x6f, 0x72, 0x28, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x62, 0x29, - 0x20, 0x3a, 0x20, 0x27, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x70, 0x61, 0x72, - 0x65, 0x6e, 0x74, 0x27, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x2e, - 0x74, 0x6f, 0x6b, 0x5f, 0x73, 0x74, 0x72, 0x7d, 0x3a, 0x20, 0x3c, 0x2f, - 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x4d, 0x61, 0x74, 0x68, - 0x2e, 0x66, 0x6c, 0x6f, 0x6f, 0x72, 0x28, 0x70, 0x2e, 0x70, 0x72, 0x6f, - 0x62, 0x20, 0x2a, 0x20, 0x31, 0x30, 0x30, 0x29, 0x7d, 0x25, 0x3c, 0x2f, - 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, - 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x7d, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x60, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, - 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x24, 0x7b, 0x50, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x7d, 0x20, - 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3d, 0x24, 0x7b, 0x7b, 0x20, 0x62, 0x61, - 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x43, 0x6f, 0x6c, 0x6f, - 0x72, 0x3a, 0x20, 0x70, 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x20, 0x7d, 0x7d, - 0x20, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x43, 0x68, 0x69, 0x6c, - 0x64, 0x72, 0x65, 0x6e, 0x3d, 0x24, 0x7b, 0x70, 0x6f, 0x70, 0x6f, 0x76, - 0x65, 0x72, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x7d, 0x3e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x24, 0x7b, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, - 0x6e, 0x74, 0x2e, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x28, 0x2f, 0x5c, 0x6e, - 0x2f, 0x67, 0x69, 0x6d, 0x29, 0x20, 0x3f, 0x20, 0x68, 0x74, 0x6d, 0x6c, - 0x60, 0x3c, 0x62, 0x72, 0x20, 0x2f, 0x3e, 0x60, 0x20, 0x3a, 0x20, 0x6d, - 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x7d, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, - 0x70, 0x6f, 0x6f, 0x72, 0x20, 0x6d, 0x61, 0x6e, 0x73, 0x20, 0x6d, 0x61, - 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x20, 0x72, 0x65, 0x70, 0x6c, 0x61, - 0x63, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, - 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x4d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, - 0x6e, 0x69, 0x73, 0x68, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, - 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x64, 0x20, - 0x3d, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x74, 0x65, 0x78, - 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, - 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x26, 0x2f, 0x67, 0x2c, - 0x20, 0x27, 0x26, 0x61, 0x6d, 0x70, 0x3b, 0x27, 0x29, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, - 0x63, 0x65, 0x28, 0x2f, 0x3c, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x26, 0x6c, - 0x74, 0x3b, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x3e, - 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x26, 0x67, 0x74, 0x3b, 0x27, 0x29, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, - 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x23, 0x7b, 0x31, 0x2c, 0x36, - 0x7d, 0x20, 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f, 0x67, 0x69, 0x6d, 0x2c, - 0x20, 0x27, 0x3c, 0x68, 0x33, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x68, 0x33, - 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x2a, - 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x5c, 0x2a, 0x2f, - 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, - 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, - 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, - 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x5f, 0x28, 0x2e, - 0x2a, 0x3f, 0x29, 0x5f, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, - 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74, - 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, - 0x28, 0x2f, 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x2f, - 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, - 0x65, 0x6d, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, - 0x5f, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, - 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x65, 0x6d, 0x3e, 0x27, - 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, - 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x60, 0x60, 0x2e, - 0x2a, 0x3f, 0x5c, 0x6e, 0x28, 0x5b, 0x5c, 0x73, 0x5c, 0x53, 0x5d, 0x2a, - 0x3f, 0x29, 0x60, 0x60, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x70, - 0x72, 0x65, 0x3e, 0x3c, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24, 0x31, 0x3c, - 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x3c, 0x2f, 0x70, 0x72, 0x65, 0x3e, - 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, - 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x28, 0x2e, - 0x2a, 0x3f, 0x29, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x63, 0x6f, - 0x64, 0x65, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, - 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, - 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x6e, 0x2f, - 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, 0x3c, 0x62, 0x72, 0x20, 0x2f, 0x3e, - 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, - 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x73, - 0x70, 0x61, 0x6e, 0x20, 0x64, 0x61, 0x6e, 0x67, 0x65, 0x72, 0x6f, 0x75, - 0x73, 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, 0x65, 0x72, 0x48, - 0x54, 0x4d, 0x4c, 0x3d, 0x24, 0x7b, 0x7b, 0x20, 0x5f, 0x5f, 0x68, 0x74, - 0x6d, 0x6c, 0x3a, 0x20, 0x6d, 0x64, 0x20, 0x7d, 0x7d, 0x20, 0x2f, 0x3e, - 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x4d, 0x6f, 0x64, - 0x65, 0x6c, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, - 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, - 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x6c, 0x6c, 0x61, 0x6d, - 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, - 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x2f, 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, - 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, - 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x24, 0x7b, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, - 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x65, 0x64, - 0x69, 0x63, 0x74, 0x65, 0x64, 0x5f, 0x70, 0x65, 0x72, 0x5f, 0x74, 0x6f, - 0x6b, 0x65, 0x6e, 0x5f, 0x6d, 0x73, 0x2e, 0x74, 0x6f, 0x46, 0x69, 0x78, - 0x65, 0x64, 0x28, 0x29, 0x7d, 0x6d, 0x73, 0x20, 0x70, 0x65, 0x72, 0x20, - 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x2c, 0x20, 0x24, 0x7b, 0x6c, 0x6c, 0x61, - 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x2e, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x65, 0x64, 0x5f, - 0x70, 0x65, 0x72, 0x5f, 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x2e, 0x74, - 0x6f, 0x46, 0x69, 0x78, 0x65, 0x64, 0x28, 0x32, 0x29, 0x7d, 0x20, 0x74, - 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x20, 0x70, 0x65, 0x72, 0x20, 0x73, 0x65, - 0x63, 0x6f, 0x6e, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6d, 0x70, 0x6c, - 0x65, 0x20, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x69, 0x6d, - 0x70, 0x6c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x50, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x28, - 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, + 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, + 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, + 0x74, 0x69, 0x65, 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x20, + 0x3e, 0x20, 0x31, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x4e, 0x6f, 0x74, 0x20, + 0x66, 0x6f, 0x72, 0x20, 0x62, 0x79, 0x74, 0x65, 0x20, 0x70, 0x61, 0x69, + 0x72, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, + 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, + 0x74, 0x69, 0x65, 0x73, 0x5b, 0x30, 0x5d, 0x2e, 0x63, 0x6f, 0x6e, 0x74, + 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x74, 0x61, 0x72, 0x74, 0x73, 0x57, 0x69, + 0x74, 0x68, 0x28, 0x27, 0x62, 0x79, 0x74, 0x65, 0x3a, 0x20, 0x5c, 0x5c, + 0x27, 0x29, 0x29, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6d, + 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x44, 0x61, 0x74, + 0x61, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, + 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, 0x6c, 0x69, + 0x74, 0x69, 0x65, 0x73, 0x2e, 0x6d, 0x61, 0x70, 0x28, 0x70, 0x72, 0x6f, + 0x62, 0x20, 0x3d, 0x3e, 0x20, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x65, 0x6e, 0x74, 0x3a, 0x20, 0x70, 0x72, 0x6f, 0x62, 0x2e, 0x63, 0x6f, + 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, + 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, 0x62, + 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x3a, 0x20, 0x5b, 0x70, 0x72, + 0x6f, 0x62, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x29, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, + 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x24, 0x7b, 0x50, 0x72, 0x6f, 0x62, 0x61, + 0x62, 0x69, 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x7d, 0x20, 0x64, 0x61, + 0x74, 0x61, 0x3d, 0x24, 0x7b, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x44, 0x61, + 0x74, 0x61, 0x7d, 0x20, 0x2f, 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x7b, 0x20, 0x70, + 0x72, 0x6f, 0x62, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, + 0x74, 0x20, 0x7d, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, + 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x70, 0x72, 0x6f, 0x62, 0x61, 0x62, 0x69, + 0x6c, 0x69, 0x74, 0x69, 0x65, 0x73, 0x5b, 0x30, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, - 0x69, 0x73, 0x4f, 0x70, 0x65, 0x6e, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, - 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x66, 0x61, 0x6c, 0x73, 0x65, - 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, - 0x73, 0x74, 0x20, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x20, - 0x3d, 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, - 0x7b, 0x20, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x27, 0x30, 0x70, 0x78, 0x27, - 0x2c, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x3a, 0x20, 0x27, 0x30, 0x70, 0x78, - 0x27, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, - 0x52, 0x65, 0x66, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x52, 0x65, 0x66, - 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x6f, 0x70, 0x6f, - 0x76, 0x65, 0x72, 0x52, 0x65, 0x66, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, - 0x52, 0x65, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x3b, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, - 0x74, 0x6f, 0x67, 0x67, 0x6c, 0x65, 0x50, 0x6f, 0x70, 0x6f, 0x76, 0x65, - 0x72, 0x20, 0x3d, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, - 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x52, 0x65, 0x66, 0x2e, 0x63, 0x75, - 0x72, 0x72, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x72, 0x65, 0x63, 0x74, 0x20, 0x3d, 0x20, 0x62, 0x75, 0x74, 0x74, - 0x6f, 0x6e, 0x52, 0x65, 0x66, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, - 0x74, 0x2e, 0x67, 0x65, 0x74, 0x42, 0x6f, 0x75, 0x6e, 0x64, 0x69, 0x6e, - 0x67, 0x43, 0x6c, 0x69, 0x65, 0x6e, 0x74, 0x52, 0x65, 0x63, 0x74, 0x28, - 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x3a, - 0x20, 0x60, 0x24, 0x7b, 0x72, 0x65, 0x63, 0x74, 0x2e, 0x62, 0x6f, 0x74, - 0x74, 0x6f, 0x6d, 0x20, 0x2b, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, - 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x59, 0x7d, 0x70, 0x78, 0x60, - 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x3a, 0x20, 0x60, 0x24, 0x7b, 0x72, - 0x65, 0x63, 0x74, 0x2e, 0x6c, 0x65, 0x66, 0x74, 0x20, 0x2b, 0x20, 0x77, - 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, - 0x58, 0x7d, 0x70, 0x78, 0x60, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x69, 0x73, 0x4f, 0x70, 0x65, 0x6e, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x20, 0x3d, 0x20, 0x21, 0x69, 0x73, 0x4f, 0x70, 0x65, 0x6e, - 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x68, 0x61, 0x6e, 0x64, 0x6c, 0x65, - 0x43, 0x6c, 0x69, 0x63, 0x6b, 0x4f, 0x75, 0x74, 0x73, 0x69, 0x64, 0x65, - 0x20, 0x3d, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, + 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x20, 0x3d, 0x20, 0x70, 0x72, 0x6f, 0x62, + 0x73, 0x2e, 0x66, 0x69, 0x6e, 0x64, 0x28, 0x70, 0x20, 0x3d, 0x3e, 0x20, + 0x70, 0x2e, 0x74, 0x6f, 0x6b, 0x5f, 0x73, 0x74, 0x72, 0x20, 0x3d, 0x3d, + 0x3d, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, + 0x74, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x20, + 0x3d, 0x20, 0x66, 0x6f, 0x75, 0x6e, 0x64, 0x20, 0x3f, 0x20, 0x70, 0x72, + 0x6f, 0x62, 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x28, 0x66, 0x6f, 0x75, 0x6e, + 0x64, 0x2e, 0x70, 0x72, 0x6f, 0x62, 0x29, 0x20, 0x3a, 0x20, 0x27, 0x74, + 0x72, 0x61, 0x6e, 0x73, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x27, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x43, 0x68, + 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x20, 0x3d, 0x20, 0x68, 0x74, 0x6d, + 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, + 0x22, 0x70, 0x72, 0x6f, 0x62, 0x2d, 0x73, 0x65, 0x74, 0x22, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x62, 0x73, 0x2e, 0x6d, 0x61, 0x70, 0x28, + 0x28, 0x70, 0x2c, 0x20, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x69, 0x66, 0x20, 0x28, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x52, - 0x65, 0x66, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x20, 0x26, - 0x26, 0x20, 0x21, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x52, 0x65, - 0x66, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x63, 0x6f, - 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x73, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, - 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x29, 0x20, 0x26, 0x26, 0x20, - 0x21, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x52, 0x65, 0x66, 0x2e, 0x63, - 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x61, - 0x69, 0x6e, 0x73, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x74, 0x61, - 0x72, 0x67, 0x65, 0x74, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x73, 0x4f, 0x70, 0x65, - 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x66, 0x61, - 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, - 0x66, 0x65, 0x63, 0x74, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, - 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76, 0x65, - 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x27, - 0x6d, 0x6f, 0x75, 0x73, 0x65, 0x64, 0x6f, 0x77, 0x6e, 0x27, 0x2c, 0x20, - 0x68, 0x61, 0x6e, 0x64, 0x6c, 0x65, 0x43, 0x6c, 0x69, 0x63, 0x6b, 0x4f, - 0x75, 0x74, 0x73, 0x69, 0x64, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, - 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, - 0x6e, 0x74, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x45, 0x76, 0x65, - 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x27, - 0x6d, 0x6f, 0x75, 0x73, 0x65, 0x64, 0x6f, 0x77, 0x6e, 0x27, 0x2c, 0x20, - 0x68, 0x61, 0x6e, 0x64, 0x6c, 0x65, 0x43, 0x6c, 0x69, 0x63, 0x6b, 0x4f, - 0x75, 0x74, 0x73, 0x69, 0x64, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x2c, 0x20, 0x5b, 0x5d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, - 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x20, 0x73, 0x74, 0x79, 0x6c, - 0x65, 0x3d, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x73, 0x74, - 0x79, 0x6c, 0x65, 0x7d, 0x20, 0x72, 0x65, 0x66, 0x3d, 0x24, 0x7b, 0x62, - 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x52, 0x65, 0x66, 0x7d, 0x20, 0x6f, 0x6e, - 0x43, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x74, 0x6f, 0x67, 0x67, - 0x6c, 0x65, 0x50, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x7d, 0x3e, 0x24, - 0x7b, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x63, 0x68, 0x69, 0x6c, 0x64, - 0x72, 0x65, 0x6e, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x69, 0x73, - 0x4f, 0x70, 0x65, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x26, - 0x26, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x50, 0x6f, 0x72, - 0x74, 0x61, 0x6c, 0x7d, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x3d, 0x22, 0x23, - 0x70, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, - 0x76, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x66, 0x3d, 0x24, 0x7b, 0x70, 0x6f, - 0x70, 0x6f, 0x76, 0x65, 0x72, 0x52, 0x65, 0x66, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x64, 0x69, 0x76, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6b, 0x65, + 0x79, 0x3d, 0x24, 0x7b, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x70, 0x6f, 0x70, 0x6f, 0x76, - 0x65, 0x72, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x22, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x69, 0x74, 0x6c, 0x65, 0x3d, 0x24, + 0x7b, 0x60, 0x70, 0x72, 0x6f, 0x62, 0x3a, 0x20, 0x24, 0x7b, 0x70, 0x2e, + 0x70, 0x72, 0x6f, 0x62, 0x7d, 0x60, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3d, 0x24, 0x7b, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x70, 0x6f, 0x73, - 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, - 0x74, 0x6f, 0x70, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, - 0x74, 0x3a, 0x20, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6c, 0x65, 0x66, 0x74, 0x2c, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, + 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x27, 0x30, 0x2e, 0x33, 0x65, 0x6d, 0x27, + 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, + 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x43, 0x6f, 0x6c, 0x6f, + 0x72, 0x3a, 0x20, 0x70, 0x2e, 0x74, 0x6f, 0x6b, 0x5f, 0x73, 0x74, 0x72, + 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, + 0x20, 0x3f, 0x20, 0x70, 0x72, 0x6f, 0x62, 0x43, 0x6f, 0x6c, 0x6f, 0x72, + 0x28, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x62, 0x29, 0x20, 0x3a, 0x20, 0x27, + 0x74, 0x72, 0x61, 0x6e, 0x73, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x27, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x70, - 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, - 0x43, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x7d, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, - 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x24, 0x7b, 0x50, 0x6f, 0x72, 0x74, 0x61, - 0x6c, 0x7d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x60, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x2f, 0x2f, 0x20, 0x53, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x3a, 0x20, 0x70, - 0x72, 0x65, 0x61, 0x63, 0x74, 0x2d, 0x70, 0x6f, 0x72, 0x74, 0x61, 0x6c, - 0x20, 0x28, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x67, 0x69, - 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x64, 0x65, 0x76, - 0x65, 0x6c, 0x6f, 0x70, 0x69, 0x74, 0x2f, 0x70, 0x72, 0x65, 0x61, 0x63, - 0x74, 0x2d, 0x70, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x2f, 0x62, 0x6c, 0x6f, - 0x62, 0x2f, 0x6d, 0x61, 0x73, 0x74, 0x65, 0x72, 0x2f, 0x73, 0x72, 0x63, - 0x2f, 0x70, 0x72, 0x65, 0x61, 0x63, 0x74, 0x2d, 0x70, 0x6f, 0x72, 0x74, - 0x61, 0x6c, 0x2e, 0x6a, 0x73, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, - 0x2a, 0x2a, 0x20, 0x52, 0x65, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x20, - 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x69, 0x6e, 0x67, 0x20, 0x6f, 0x66, - 0x20, 0x64, 0x65, 0x73, 0x63, 0x65, 0x6e, 0x64, 0x61, 0x6e, 0x74, 0x73, - 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x67, 0x69, - 0x76, 0x65, 0x6e, 0x20, 0x43, 0x53, 0x53, 0x20, 0x73, 0x65, 0x6c, 0x65, - 0x63, 0x74, 0x6f, 0x72, 0x20, 0x2a, 0x2f, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6c, 0x61, 0x73, 0x73, 0x20, 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, - 0x20, 0x65, 0x78, 0x74, 0x65, 0x6e, 0x64, 0x73, 0x20, 0x43, 0x6f, 0x6d, - 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, - 0x44, 0x69, 0x64, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x70, 0x72, - 0x6f, 0x70, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x28, 0x6c, 0x65, 0x74, 0x20, - 0x69, 0x20, 0x69, 0x6e, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x69, 0x66, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x5b, 0x69, 0x5d, - 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, - 0x6f, 0x70, 0x73, 0x5b, 0x69, 0x5d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, - 0x74, 0x75, 0x72, 0x6e, 0x20, 0x73, 0x65, 0x74, 0x54, 0x69, 0x6d, 0x65, - 0x6f, 0x75, 0x74, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6e, - 0x64, 0x65, 0x72, 0x4c, 0x61, 0x79, 0x65, 0x72, 0x29, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, - 0x4d, 0x6f, 0x75, 0x6e, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, - 0x73, 0x4d, 0x6f, 0x75, 0x6e, 0x74, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x74, - 0x72, 0x75, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, - 0x4c, 0x61, 0x79, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, - 0x2e, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x4c, 0x61, 0x79, 0x65, 0x72, - 0x2e, 0x62, 0x69, 0x6e, 0x64, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x3b, + 0x20, 0x20, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, + 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x2e, 0x74, 0x6f, 0x6b, 0x5f, + 0x73, 0x74, 0x72, 0x7d, 0x3a, 0x20, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, + 0x6e, 0x3e, 0x24, 0x7b, 0x4d, 0x61, 0x74, 0x68, 0x2e, 0x66, 0x6c, 0x6f, + 0x6f, 0x72, 0x28, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x62, 0x20, 0x2a, 0x20, + 0x31, 0x30, 0x30, 0x29, 0x7d, 0x25, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, + 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x50, + 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x7d, 0x20, 0x73, 0x74, 0x79, 0x6c, + 0x65, 0x3d, 0x24, 0x7b, 0x7b, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, + 0x6f, 0x75, 0x6e, 0x64, 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x70, + 0x43, 0x6f, 0x6c, 0x6f, 0x72, 0x20, 0x7d, 0x7d, 0x20, 0x70, 0x6f, 0x70, + 0x6f, 0x76, 0x65, 0x72, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, + 0x3d, 0x24, 0x7b, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x43, 0x68, + 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x7d, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x6d, + 0x73, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2e, 0x6d, + 0x61, 0x74, 0x63, 0x68, 0x28, 0x2f, 0x5c, 0x6e, 0x2f, 0x67, 0x69, 0x6d, + 0x29, 0x20, 0x3f, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x62, 0x72, + 0x20, 0x2f, 0x3e, 0x60, 0x20, 0x3a, 0x20, 0x6d, 0x73, 0x67, 0x2e, 0x63, + 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x70, 0x6f, 0x6f, 0x72, + 0x20, 0x6d, 0x61, 0x6e, 0x73, 0x20, 0x6d, 0x61, 0x72, 0x6b, 0x64, 0x6f, + 0x77, 0x6e, 0x20, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x6d, 0x65, + 0x6e, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x4d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x69, 0x73, 0x68, + 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x29, 0x20, + 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x64, 0x20, 0x3d, 0x20, 0x70, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x74, 0x65, 0x78, 0x74, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, + 0x63, 0x65, 0x28, 0x2f, 0x26, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x26, 0x61, + 0x6d, 0x70, 0x3b, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, + 0x3c, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x26, 0x6c, 0x74, 0x3b, 0x27, 0x29, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, + 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x3e, 0x2f, 0x67, 0x2c, 0x20, + 0x27, 0x26, 0x67, 0x74, 0x3b, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, + 0x28, 0x2f, 0x5e, 0x23, 0x7b, 0x31, 0x2c, 0x36, 0x7d, 0x20, 0x28, 0x2e, + 0x2a, 0x29, 0x24, 0x2f, 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, 0x3c, 0x68, + 0x33, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x68, 0x33, 0x3e, 0x27, 0x29, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, + 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x2a, 0x5c, 0x2a, 0x28, 0x2e, + 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x5c, 0x2a, 0x2f, 0x67, 0x2c, 0x20, 0x27, + 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, + 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, + 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x5f, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5f, + 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, + 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, + 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x2a, + 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x2f, 0x67, 0x2c, 0x20, 0x27, + 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x65, 0x6d, 0x3e, 0x27, + 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, + 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x28, 0x2e, 0x2a, + 0x3f, 0x29, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, + 0x24, 0x31, 0x3c, 0x2f, 0x65, 0x6d, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, + 0x63, 0x65, 0x28, 0x2f, 0x60, 0x60, 0x60, 0x2e, 0x2a, 0x3f, 0x5c, 0x6e, + 0x28, 0x5b, 0x5c, 0x73, 0x5c, 0x53, 0x5d, 0x2a, 0x3f, 0x29, 0x60, 0x60, + 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x70, 0x72, 0x65, 0x3e, 0x3c, + 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, + 0x65, 0x3e, 0x3c, 0x2f, 0x70, 0x72, 0x65, 0x3e, 0x27, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, + 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x60, + 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24, + 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x27, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, + 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x6e, 0x2f, 0x67, 0x69, 0x6d, 0x2c, + 0x20, 0x27, 0x3c, 0x62, 0x72, 0x20, 0x2f, 0x3e, 0x27, 0x29, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x20, + 0x64, 0x61, 0x6e, 0x67, 0x65, 0x72, 0x6f, 0x75, 0x73, 0x6c, 0x79, 0x53, + 0x65, 0x74, 0x49, 0x6e, 0x6e, 0x65, 0x72, 0x48, 0x54, 0x4d, 0x4c, 0x3d, + 0x24, 0x7b, 0x7b, 0x20, 0x5f, 0x5f, 0x68, 0x74, 0x6d, 0x6c, 0x3a, 0x20, + 0x6d, 0x64, 0x20, 0x7d, 0x7d, 0x20, 0x2f, 0x3e, 0x60, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x47, 0x65, + 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x49, 0x6e, 0x66, 0x6f, + 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x29, 0x20, + 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, + 0x66, 0x20, 0x28, 0x21, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, + 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x73, 0x70, 0x61, + 0x6e, 0x2f, 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x6c, + 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x65, + 0x64, 0x5f, 0x70, 0x65, 0x72, 0x5f, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x5f, + 0x6d, 0x73, 0x2e, 0x74, 0x6f, 0x46, 0x69, 0x78, 0x65, 0x64, 0x28, 0x29, + 0x7d, 0x6d, 0x73, 0x20, 0x70, 0x65, 0x72, 0x20, 0x74, 0x6f, 0x6b, 0x65, + 0x6e, 0x2c, 0x20, 0x24, 0x7b, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, + 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, + 0x65, 0x64, 0x69, 0x63, 0x74, 0x65, 0x64, 0x5f, 0x70, 0x65, 0x72, 0x5f, + 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x2e, 0x74, 0x6f, 0x46, 0x69, 0x78, + 0x65, 0x64, 0x28, 0x32, 0x29, 0x7d, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, + 0x73, 0x20, 0x70, 0x65, 0x72, 0x20, 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x73, + 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x20, 0x70, 0x6f, + 0x70, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x50, 0x6f, 0x70, + 0x6f, 0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, + 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x69, 0x73, 0x4f, 0x70, + 0x65, 0x6e, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, + 0x61, 0x6c, 0x28, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, + 0x6f, 0x73, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x75, 0x73, + 0x65, 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x20, 0x74, 0x6f, + 0x70, 0x3a, 0x20, 0x27, 0x30, 0x70, 0x78, 0x27, 0x2c, 0x20, 0x6c, 0x65, + 0x66, 0x74, 0x3a, 0x20, 0x27, 0x30, 0x70, 0x78, 0x27, 0x20, 0x7d, 0x29, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x52, 0x65, 0x66, 0x20, + 0x3d, 0x20, 0x75, 0x73, 0x65, 0x52, 0x65, 0x66, 0x28, 0x6e, 0x75, 0x6c, + 0x6c, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x52, + 0x65, 0x66, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x52, 0x65, 0x66, 0x28, + 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x6f, 0x67, 0x67, + 0x6c, 0x65, 0x50, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, + 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x62, 0x75, 0x74, 0x74, + 0x6f, 0x6e, 0x52, 0x65, 0x66, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, + 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x63, + 0x74, 0x20, 0x3d, 0x20, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x52, 0x65, + 0x66, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x67, 0x65, + 0x74, 0x42, 0x6f, 0x75, 0x6e, 0x64, 0x69, 0x6e, 0x67, 0x43, 0x6c, 0x69, + 0x65, 0x6e, 0x74, 0x52, 0x65, 0x63, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x6f, 0x73, + 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x60, 0x24, 0x7b, + 0x72, 0x65, 0x63, 0x74, 0x2e, 0x62, 0x6f, 0x74, 0x74, 0x6f, 0x6d, 0x20, + 0x2b, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x2e, 0x73, 0x63, 0x72, + 0x6f, 0x6c, 0x6c, 0x59, 0x7d, 0x70, 0x78, 0x60, 0x2c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, + 0x66, 0x74, 0x3a, 0x20, 0x60, 0x24, 0x7b, 0x72, 0x65, 0x63, 0x74, 0x2e, + 0x6c, 0x65, 0x66, 0x74, 0x20, 0x2b, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, + 0x77, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x58, 0x7d, 0x70, 0x78, + 0x60, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x73, + 0x4f, 0x70, 0x65, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, + 0x20, 0x21, 0x69, 0x73, 0x4f, 0x70, 0x65, 0x6e, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x68, 0x61, 0x6e, 0x64, 0x6c, 0x65, 0x43, 0x6c, 0x69, 0x63, + 0x6b, 0x4f, 0x75, 0x74, 0x73, 0x69, 0x64, 0x65, 0x20, 0x3d, 0x20, 0x28, + 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, + 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x52, 0x65, 0x66, 0x2e, 0x63, + 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x20, 0x26, 0x26, 0x20, 0x21, 0x70, + 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x52, 0x65, 0x66, 0x2e, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, + 0x6e, 0x73, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x74, 0x61, 0x72, + 0x67, 0x65, 0x74, 0x29, 0x20, 0x26, 0x26, 0x20, 0x21, 0x62, 0x75, 0x74, + 0x74, 0x6f, 0x6e, 0x52, 0x65, 0x66, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, + 0x6e, 0x74, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x73, 0x28, + 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, + 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x69, 0x73, 0x4f, 0x70, 0x65, 0x6e, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, + 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, + 0x74, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, + 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x27, 0x6d, 0x6f, 0x75, 0x73, + 0x65, 0x64, 0x6f, 0x77, 0x6e, 0x27, 0x2c, 0x20, 0x68, 0x61, 0x6e, 0x64, + 0x6c, 0x65, 0x43, 0x6c, 0x69, 0x63, 0x6b, 0x4f, 0x75, 0x74, 0x73, 0x69, + 0x64, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x28, 0x29, 0x20, 0x3d, + 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x72, + 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, + 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x27, 0x6d, 0x6f, 0x75, 0x73, + 0x65, 0x64, 0x6f, 0x77, 0x6e, 0x27, 0x2c, 0x20, 0x68, 0x61, 0x6e, 0x64, + 0x6c, 0x65, 0x43, 0x6c, 0x69, 0x63, 0x6b, 0x4f, 0x75, 0x74, 0x73, 0x69, + 0x64, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c, + 0x20, 0x5b, 0x5d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, + 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, + 0x70, 0x61, 0x6e, 0x20, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3d, 0x24, 0x7b, + 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x7d, + 0x20, 0x72, 0x65, 0x66, 0x3d, 0x24, 0x7b, 0x62, 0x75, 0x74, 0x74, 0x6f, + 0x6e, 0x52, 0x65, 0x66, 0x7d, 0x20, 0x6f, 0x6e, 0x43, 0x6c, 0x69, 0x63, + 0x6b, 0x3d, 0x24, 0x7b, 0x74, 0x6f, 0x67, 0x67, 0x6c, 0x65, 0x50, 0x6f, + 0x70, 0x6f, 0x76, 0x65, 0x72, 0x7d, 0x3e, 0x24, 0x7b, 0x70, 0x72, 0x6f, + 0x70, 0x73, 0x2e, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x7d, + 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x69, 0x73, 0x4f, 0x70, 0x65, 0x6e, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x26, 0x26, 0x20, 0x68, 0x74, + 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x7d, + 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x3d, 0x22, 0x23, 0x70, 0x6f, 0x72, 0x74, + 0x61, 0x6c, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x72, 0x65, 0x66, 0x3d, 0x24, 0x7b, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, + 0x72, 0x52, 0x65, 0x66, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6c, 0x61, 0x73, + 0x73, 0x3d, 0x22, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x2d, 0x63, + 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x22, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, + 0x79, 0x6c, 0x65, 0x3d, 0x24, 0x7b, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x6f, + 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x6f, 0x70, 0x2c, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x3a, 0x20, 0x70, + 0x6f, 0x73, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2e, 0x6c, 0x65, 0x66, 0x74, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70, 0x73, + 0x2e, 0x70, 0x6f, 0x70, 0x6f, 0x76, 0x65, 0x72, 0x43, 0x68, 0x69, 0x6c, + 0x64, 0x72, 0x65, 0x6e, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x2f, 0x24, 0x7b, 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x7d, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x7d, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x53, + 0x6f, 0x75, 0x72, 0x63, 0x65, 0x3a, 0x20, 0x70, 0x72, 0x65, 0x61, 0x63, + 0x74, 0x2d, 0x70, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x20, 0x28, 0x68, 0x74, + 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, + 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x64, 0x65, 0x76, 0x65, 0x6c, 0x6f, 0x70, + 0x69, 0x74, 0x2f, 0x70, 0x72, 0x65, 0x61, 0x63, 0x74, 0x2d, 0x70, 0x6f, + 0x72, 0x74, 0x61, 0x6c, 0x2f, 0x62, 0x6c, 0x6f, 0x62, 0x2f, 0x6d, 0x61, + 0x73, 0x74, 0x65, 0x72, 0x2f, 0x73, 0x72, 0x63, 0x2f, 0x70, 0x72, 0x65, + 0x61, 0x63, 0x74, 0x2d, 0x70, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x2e, 0x6a, + 0x73, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2a, 0x2a, 0x20, 0x52, + 0x65, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x20, 0x72, 0x65, 0x6e, 0x64, + 0x65, 0x72, 0x69, 0x6e, 0x67, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x65, 0x73, + 0x63, 0x65, 0x6e, 0x64, 0x61, 0x6e, 0x74, 0x73, 0x20, 0x69, 0x6e, 0x74, + 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x67, 0x69, 0x76, 0x65, 0x6e, 0x20, + 0x43, 0x53, 0x53, 0x20, 0x73, 0x65, 0x6c, 0x65, 0x63, 0x74, 0x6f, 0x72, + 0x20, 0x2a, 0x2f, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6c, 0x61, 0x73, + 0x73, 0x20, 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x20, 0x65, 0x78, 0x74, + 0x65, 0x6e, 0x64, 0x73, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, + 0x6e, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, 0x55, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, + 0x6f, 0x72, 0x20, 0x28, 0x6c, 0x65, 0x74, 0x20, 0x69, 0x20, 0x69, 0x6e, + 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, + 0x70, 0x72, 0x6f, 0x70, 0x73, 0x5b, 0x69, 0x5d, 0x20, 0x21, 0x3d, 0x3d, + 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x5b, + 0x69, 0x5d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x73, 0x65, 0x74, 0x54, 0x69, 0x6d, 0x65, 0x6f, 0x75, 0x74, 0x28, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x4c, + 0x61, 0x79, 0x65, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6d, 0x70, + 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, 0x4d, 0x6f, 0x75, 0x6e, + 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x73, 0x4d, 0x6f, 0x75, + 0x6e, 0x74, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x4c, 0x61, 0x79, 0x65, - 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6d, 0x70, - 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x55, 0x6e, 0x6d, - 0x6f, 0x75, 0x6e, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x72, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6e, + 0x64, 0x65, 0x72, 0x4c, 0x61, 0x79, 0x65, 0x72, 0x2e, 0x62, 0x69, 0x6e, + 0x64, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, - 0x6e, 0x64, 0x65, 0x72, 0x4c, 0x61, 0x79, 0x65, 0x72, 0x28, 0x66, 0x61, - 0x6c, 0x73, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x73, 0x4d, 0x6f, 0x75, - 0x6e, 0x74, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x66, 0x61, 0x6c, 0x73, 0x65, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, - 0x20, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, - 0x65, 0x20, 0x26, 0x26, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, - 0x6d, 0x6f, 0x74, 0x65, 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x4e, - 0x6f, 0x64, 0x65, 0x29, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, - 0x6d, 0x6f, 0x74, 0x65, 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x4e, - 0x6f, 0x64, 0x65, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x43, 0x68, - 0x69, 0x6c, 0x64, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, - 0x6f, 0x74, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x69, 0x6e, - 0x64, 0x4e, 0x6f, 0x64, 0x65, 0x28, 0x6e, 0x6f, 0x64, 0x65, 0x29, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, - 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, - 0x6e, 0x6f, 0x64, 0x65, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x73, 0x74, - 0x72, 0x69, 0x6e, 0x67, 0x27, 0x20, 0x3f, 0x20, 0x64, 0x6f, 0x63, 0x75, - 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x71, 0x75, 0x65, 0x72, 0x79, 0x53, 0x65, - 0x6c, 0x65, 0x63, 0x74, 0x6f, 0x72, 0x28, 0x6e, 0x6f, 0x64, 0x65, 0x29, - 0x20, 0x3a, 0x20, 0x6e, 0x6f, 0x64, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x4c, 0x61, 0x79, 0x65, 0x72, 0x28, - 0x73, 0x68, 0x6f, 0x77, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x29, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, - 0x66, 0x20, 0x28, 0x21, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x73, 0x4d, - 0x6f, 0x75, 0x6e, 0x74, 0x65, 0x64, 0x29, 0x20, 0x72, 0x65, 0x74, 0x75, - 0x72, 0x6e, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x2f, 0x2f, 0x20, 0x63, 0x6c, 0x65, 0x61, 0x6e, 0x20, 0x75, 0x70, - 0x20, 0x6f, 0x6c, 0x64, 0x20, 0x6e, 0x6f, 0x64, 0x65, 0x20, 0x69, 0x66, - 0x20, 0x6d, 0x6f, 0x76, 0x69, 0x6e, 0x67, 0x20, 0x62, 0x61, 0x73, 0x65, - 0x73, 0x3a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, - 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, - 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x74, - 0x68, 0x69, 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x50, 0x6f, 0x69, 0x6e, - 0x74, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x6e, - 0x74, 0x6f, 0x50, 0x6f, 0x69, 0x6e, 0x74, 0x65, 0x72, 0x20, 0x3d, 0x20, - 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x69, - 0x6e, 0x74, 0x6f, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, - 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x26, 0x26, 0x20, 0x74, 0x68, 0x69, 0x73, - 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, - 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x20, 0x3d, - 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x28, 0x68, 0x74, 0x6d, 0x6c, - 0x60, 0x3c, 0x24, 0x7b, 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x50, 0x72, - 0x6f, 0x78, 0x79, 0x7d, 0x20, 0x2f, 0x3e, 0x60, 0x2c, 0x20, 0x74, 0x68, - 0x69, 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x2c, 0x20, 0x74, 0x68, 0x69, - 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x29, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, - 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, - 0x73, 0x2e, 0x66, 0x69, 0x6e, 0x64, 0x4e, 0x6f, 0x64, 0x65, 0x28, 0x74, - 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x69, 0x6e, - 0x74, 0x6f, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x20, - 0x3d, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x28, 0x68, 0x74, 0x6d, - 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x24, 0x7b, 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x50, 0x72, - 0x6f, 0x78, 0x79, 0x7d, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, - 0x3d, 0x24, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x63, 0x6f, 0x6e, 0x74, - 0x65, 0x78, 0x74, 0x7d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x73, 0x68, 0x6f, 0x77, - 0x20, 0x26, 0x26, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, - 0x70, 0x73, 0x2e, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x20, - 0x7c, 0x7c, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x7d, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x24, 0x7b, 0x50, - 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x50, 0x72, 0x6f, 0x78, 0x79, 0x7d, 0x3e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x2c, 0x20, - 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x2c, 0x20, 0x74, - 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x29, 0x3b, + 0x6e, 0x64, 0x65, 0x72, 0x4c, 0x61, 0x79, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x28, 0x29, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, + 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x55, 0x6e, 0x6d, 0x6f, 0x75, 0x6e, 0x74, + 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, + 0x4c, 0x61, 0x79, 0x65, 0x72, 0x28, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x29, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x69, 0x73, 0x4d, 0x6f, 0x75, 0x6e, 0x74, 0x65, 0x64, + 0x20, 0x3d, 0x20, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x20, 0x26, 0x26, + 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, + 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x4e, 0x6f, 0x64, 0x65, 0x29, + 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, + 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x4e, 0x6f, 0x64, 0x65, 0x2e, + 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x28, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x29, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x64, 0x4e, 0x6f, 0x64, + 0x65, 0x28, 0x6e, 0x6f, 0x64, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x6e, 0x6f, 0x64, 0x65, + 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, + 0x27, 0x20, 0x3f, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, + 0x2e, 0x71, 0x75, 0x65, 0x72, 0x79, 0x53, 0x65, 0x6c, 0x65, 0x63, 0x74, + 0x6f, 0x72, 0x28, 0x6e, 0x6f, 0x64, 0x65, 0x29, 0x20, 0x3a, 0x20, 0x6e, + 0x6f, 0x64, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6e, 0x64, + 0x65, 0x72, 0x4c, 0x61, 0x79, 0x65, 0x72, 0x28, 0x73, 0x68, 0x6f, 0x77, + 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x73, 0x4d, 0x6f, 0x75, 0x6e, 0x74, + 0x65, 0x64, 0x29, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x3b, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, + 0x63, 0x6c, 0x65, 0x61, 0x6e, 0x20, 0x75, 0x70, 0x20, 0x6f, 0x6c, 0x64, + 0x20, 0x6e, 0x6f, 0x64, 0x65, 0x20, 0x69, 0x66, 0x20, 0x6d, 0x6f, 0x76, + 0x69, 0x6e, 0x67, 0x20, 0x62, 0x61, 0x73, 0x65, 0x73, 0x3a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, + 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x69, 0x6e, + 0x74, 0x6f, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x69, 0x6e, 0x74, 0x6f, 0x50, 0x6f, 0x69, 0x6e, 0x74, 0x65, 0x72, 0x29, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x50, 0x6f, + 0x69, 0x6e, 0x74, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, + 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, + 0x20, 0x26, 0x26, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, 0x6d, + 0x6f, 0x74, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x6e, + 0x64, 0x65, 0x72, 0x28, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x24, 0x7b, + 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x50, 0x72, 0x6f, 0x78, 0x79, 0x7d, + 0x20, 0x2f, 0x3e, 0x60, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, + 0x6e, 0x74, 0x6f, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x72, 0x65, + 0x6d, 0x6f, 0x74, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x6e, + 0x74, 0x6f, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x69, + 0x6e, 0x64, 0x4e, 0x6f, 0x64, 0x65, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x29, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x72, 0x65, + 0x6e, 0x64, 0x65, 0x72, 0x28, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, + 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x50, 0x72, 0x6f, 0x78, 0x79, 0x7d, + 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x3d, 0x24, 0x7b, 0x74, + 0x68, 0x69, 0x73, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x7d, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x24, 0x7b, 0x73, 0x68, 0x6f, 0x77, 0x20, 0x26, 0x26, 0x20, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x63, + 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x20, 0x7c, 0x7c, 0x20, 0x6e, + 0x75, 0x6c, 0x6c, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x24, 0x7b, 0x50, 0x6f, 0x72, 0x74, 0x61, + 0x6c, 0x50, 0x72, 0x6f, 0x78, 0x79, 0x7d, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x69, 0x6e, 0x74, 0x6f, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x72, 0x65, 0x6d, 0x6f, 0x74, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x68, 0x69, 0x67, 0x68, 0x2d, 0x6f, 0x72, + 0x64, 0x65, 0x72, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, + 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, + 0x72, 0x73, 0x20, 0x69, 0x74, 0x73, 0x20, 0x66, 0x69, 0x72, 0x73, 0x74, + 0x20, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x20, 0x69, 0x66, 0x20, 0x69, 0x74, + 0x20, 0x65, 0x78, 0x69, 0x73, 0x74, 0x73, 0x2e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x2f, 0x2f, 0x20, 0x75, 0x73, 0x65, 0x64, 0x20, 0x61, 0x73, 0x20, + 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x64, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x61, + 0x6c, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x69, 0x6e, 0x67, 0x20, + 0x70, 0x72, 0x6f, 0x78, 0x79, 0x2e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6c, 0x61, 0x73, 0x73, 0x20, 0x50, 0x6f, 0x72, 0x74, 0x61, 0x6c, 0x50, + 0x72, 0x6f, 0x78, 0x79, 0x20, 0x65, 0x78, 0x74, 0x65, 0x6e, 0x64, 0x73, + 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x74, 0x43, 0x68, + 0x69, 0x6c, 0x64, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, - 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, + 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x28, 0x7b, + 0x20, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x20, 0x7d, 0x29, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, + 0x65, 0x6e, 0x20, 0x7c, 0x7c, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x68, 0x69, 0x67, - 0x68, 0x2d, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x63, 0x6f, 0x6d, 0x70, - 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, - 0x65, 0x6e, 0x64, 0x65, 0x72, 0x73, 0x20, 0x69, 0x74, 0x73, 0x20, 0x66, - 0x69, 0x72, 0x73, 0x74, 0x20, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x20, 0x69, - 0x66, 0x20, 0x69, 0x74, 0x20, 0x65, 0x78, 0x69, 0x73, 0x74, 0x73, 0x2e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x75, 0x73, 0x65, 0x64, - 0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x64, 0x69, 0x74, - 0x69, 0x6f, 0x6e, 0x61, 0x6c, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, - 0x69, 0x6e, 0x67, 0x20, 0x70, 0x72, 0x6f, 0x78, 0x79, 0x2e, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x20, 0x50, 0x6f, 0x72, - 0x74, 0x61, 0x6c, 0x50, 0x72, 0x6f, 0x78, 0x79, 0x20, 0x65, 0x78, 0x74, - 0x65, 0x6e, 0x64, 0x73, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, - 0x6e, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, - 0x65, 0x74, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x43, 0x6f, 0x6e, 0x74, 0x65, - 0x78, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, - 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x63, 0x6f, 0x6e, - 0x74, 0x65, 0x78, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6e, 0x64, - 0x65, 0x72, 0x28, 0x7b, 0x20, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, - 0x6e, 0x20, 0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x68, - 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x20, 0x7c, 0x7c, 0x20, 0x6e, 0x75, - 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, - 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x41, 0x70, 0x70, 0x28, - 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, - 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, + 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x20, 0x41, 0x70, 0x70, 0x28, 0x70, 0x72, 0x6f, 0x70, + 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, + 0x76, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x6d, 0x6f, 0x64, + 0x65, 0x2d, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x7d, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x68, 0x31, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, - 0x63, 0x70, 0x70, 0x3c, 0x2f, 0x68, 0x31, 0x3e, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x68, 0x65, 0x61, - 0x64, 0x65, 0x72, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x69, 0x64, - 0x3d, 0x22, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x22, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x24, 0x7b, 0x63, 0x68, 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, 0x74, - 0x65, 0x64, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3f, 0x20, 0x43, - 0x68, 0x61, 0x74, 0x4c, 0x6f, 0x67, 0x20, 0x3a, 0x20, 0x43, 0x6f, 0x6e, - 0x66, 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, - 0x6d, 0x61, 0x69, 0x6e, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, - 0x6e, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x77, 0x72, 0x69, 0x74, 0x65, 0x22, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, - 0x49, 0x6e, 0x70, 0x75, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, + 0x3c, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x68, 0x31, + 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x3c, 0x2f, + 0x68, 0x31, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x3e, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x6f, 0x6e, + 0x74, 0x65, 0x6e, 0x74, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x63, 0x68, + 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x20, 0x3f, 0x20, 0x43, 0x68, 0x61, 0x74, 0x4c, 0x6f, + 0x67, 0x20, 0x3a, 0x20, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46, 0x6f, + 0x72, 0x6d, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x6d, 0x61, 0x69, 0x6e, 0x3e, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x64, 0x3d, + 0x22, 0x77, 0x72, 0x69, 0x74, 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, + 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, + 0x63, 0x68, 0x61, 0x74, 0x27, 0x20, 0x3f, 0x20, 0x4d, 0x65, 0x73, 0x73, + 0x61, 0x67, 0x65, 0x49, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x3a, 0x20, 0x43, + 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x43, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x73, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x6f, 0x74, 0x65, @@ -2335,4 +2516,4 @@ unsigned char index_html[] = { 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x3c, 0x2f, 0x62, 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x0a, 0x3c, 0x2f, 0x68, 0x74, 0x6d, 0x6c, 0x3e, 0x0a }; -unsigned int index_html_len = 28018; +unsigned int index_html_len = 30190; diff --git a/examples/server/public/index.html b/examples/server/public/index.html index 1bf2a8b3a..f539884e2 100644 --- a/examples/server/public/index.html +++ b/examples/server/public/index.html @@ -136,6 +136,11 @@ display: block; } + fieldset label.slim { + margin: 0 0.5em; + display: inline; + } + header, footer { text-align: center; } @@ -145,6 +150,14 @@ color: #888; } + .mode-chat textarea[name=prompt] { + height: 4.5em; + } + + .mode-completion textarea[name=prompt] { + height: 10em; + } + @keyframes loading-bg-wipe { 0% { @@ -187,7 +200,7 @@ template: "{{prompt}}\n\n{{history}}\n{{char}}:", historyTemplate: "{{name}}: {{message}}", transcript: [], - type: "chat", + type: "chat", // "chat" | "completion" char: "Llama", user: "User", }) @@ -365,13 +378,44 @@ return String(str).replaceAll(/\{\{(.*?)\}\}/g, (_, key) => template(settings[key])); } + async function runLlama(prompt, llamaParams, char) { + const currentMessages = []; + const history = session.value.transcript; + if (controller.value) { + throw new Error("already running"); + } + controller.value = new AbortController(); + for await (const chunk of llama(prompt, llamaParams, {controller: controller.value})) { + const data = chunk.data; + + if (data.stop) { + while ( + currentMessages.length > 0 && + currentMessages[currentMessages.length - 1].content.match(/\n$/) != null + ) { + currentMessages.pop(); + } + transcriptUpdate([...history, [char, currentMessages]]) + console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data); + } else { + currentMessages.push(data); + transcriptUpdate([...history, [char, currentMessages]]) + } + + if (data.timings) { + llamaStats.value = data.timings; + } + } + + controller.value = null; + } + // send message to server const chat = async (msg) => { if (controller.value) { console.log('already running...'); return; } - controller.value = new AbortController(); transcriptUpdate([...session.value.transcript, ["{{user}}", msg]]) @@ -391,55 +435,41 @@ ).join("\n"), }); - const currentMessages = []; - const history = session.value.transcript - - const llamaParams = { + await runLlama(prompt, { ...params.value, stop: ["", template("{{char}}:"), template("{{user}}:")], + }, "{{char}}"); + } + + const runCompletion = async () => { + if (controller.value) { + console.log('already running...'); + return; } + const {prompt} = session.value; + transcriptUpdate([...session.value.transcript, ["", prompt]]); + await runLlama(prompt, { + ...params.value, + stop: [], + }, ""); + } - for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) { - const data = chunk.data; - - if (data.stop) { - while ( - currentMessages.length > 0 && - currentMessages[currentMessages.length - 1].content.match(/\n$/) != null - ) { - currentMessages.pop(); - } - transcriptUpdate([...history, ["{{char}}", currentMessages]]) - console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data); - } else { - currentMessages.push(data); - transcriptUpdate([...history, ["{{char}}", currentMessages]]) - } - - if (data.timings) { - llamaStats.value = data.timings; - } + const stop = (e) => { + e.preventDefault(); + if (controller.value) { + controller.value.abort(); + controller.value = null; } + } - controller.value = null; + const reset = (e) => { + stop(e); + transcriptUpdate([]); } function MessageInput() { const message = useSignal("") - const stop = (e) => { - e.preventDefault(); - if (controller.value) { - controller.value.abort(); - controller.value = null; - } - } - - const reset = (e) => { - stop(e); - transcriptUpdate([]); - } - const submit = (e) => { stop(e); chat(message.value); @@ -474,6 +504,19 @@ ` } + function CompletionControls() { + const submit = (e) => { + stop(e); + runCompletion(); + } + return html` +
+ + + +
`; + } + const ChatLog = (props) => { const messages = session.value.transcript; const container = useRef(null) @@ -497,7 +540,11 @@ data; message = html`<${Markdownish} text=${template(text)} />` } - return html`

${template(user)}: ${message}

` + if(user) { + return html`

${template(user)}: ${message}

` + } else { + return html`

${message}

` + } }; return html` @@ -574,18 +621,31 @@ userTemplateAutosave() }, [session.value, params.value]) - return html` -
-
- <${UserTemplateResetButton}/> -
+ const GrammarControl = () => ( + html` +
+ +