mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 21:37:19 +01:00
rpc : fix nkvo
This commit is contained in:
parent
9b2c24c099
commit
c3e2bb6dcf
@ -2544,7 +2544,11 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
|
||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node->src[0] && node->src[0]->buffer && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
|
||||
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
||||
#ifndef NDEBUG
|
||||
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to split buffer\n", __func__);
|
||||
|
@ -883,15 +883,17 @@ ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rp
|
||||
}
|
||||
result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
|
||||
if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
|
||||
return nullptr;
|
||||
result->buffer = nullptr;
|
||||
}
|
||||
|
||||
// require that the tensor data does not go beyond the buffer end
|
||||
uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
|
||||
uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
|
||||
uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
|
||||
GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
|
||||
GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
|
||||
if (result->buffer) {
|
||||
// require that the tensor data does not go beyond the buffer end
|
||||
uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
|
||||
uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
|
||||
uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
|
||||
GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
|
||||
GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
|
||||
}
|
||||
|
||||
result->op = (ggml_op) tensor->op;
|
||||
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
|
||||
@ -1060,7 +1062,7 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<u
|
||||
const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
|
||||
GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
|
||||
|
||||
static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
|
||||
static size_t buf_size = ggml_tensor_overhead()*(n_nodes*20 + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
|
@ -3847,7 +3847,7 @@ static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml
|
||||
|
||||
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
|
||||
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
|
||||
__func__, cur_end + size_needed, ctx->mem_size);
|
||||
__func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
|
||||
assert(false);
|
||||
return NULL;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user