mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
fix issues for merging
This commit is contained in:
parent
3e6348b8dc
commit
c5b68515f0
1
.gitignore
vendored
1
.gitignore
vendored
@ -117,7 +117,6 @@ poetry.toml
|
||||
/tests/test-tokenizer-0
|
||||
/tests/test-tokenizer-1-bpe
|
||||
/tests/test-tokenizer-1-spm
|
||||
/openbmb
|
||||
|
||||
# Scripts
|
||||
!/scripts/install-oneapi.bat
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 304 KiB |
@ -554,7 +554,7 @@ struct clip_ctx {
|
||||
ggml_gallocr_t compute_alloc = NULL;
|
||||
};
|
||||
|
||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, std::pair<int, int> load_image_size = {448, 448}, bool is_inf = false) {
|
||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct load_image_size * load_image_size, bool is_inf = false) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return nullptr;
|
||||
@ -567,8 +567,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
int image_size_width = image_size;
|
||||
int image_size_height = image_size;
|
||||
if (ctx->has_minicpmv_projector) {
|
||||
image_size_width = load_image_size.first;
|
||||
image_size_height = load_image_size.second;
|
||||
if(load_image_size==nullptr){
|
||||
load_image_size= load_image_size_init();
|
||||
}
|
||||
LOG_TEE("%s : %d %d\n", __func__, load_image_size->image_size_width, load_image_size->image_size_height);
|
||||
image_size_width = load_image_size->image_size_width;
|
||||
image_size_height = load_image_size->image_size_height;
|
||||
if (is_inf){
|
||||
image_size_width = imgs->data->nx;
|
||||
image_size_height = imgs->data->ny;
|
||||
@ -995,7 +999,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
}
|
||||
|
||||
// read and create ggml_context containing the tensors and their data
|
||||
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, std::pair<int, int> load_image_size) {
|
||||
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, struct load_image_size * load_image_size) {
|
||||
struct ggml_context * meta = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
@ -1464,6 +1468,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, s
|
||||
return new_clip;
|
||||
}
|
||||
|
||||
struct load_image_size * load_image_size_init() {
|
||||
struct load_image_size * load_image_size = new struct load_image_size();
|
||||
load_image_size->image_size_width = 448;
|
||||
load_image_size->image_size_height = 448;
|
||||
return load_image_size;
|
||||
}
|
||||
|
||||
struct clip_image_u8 * clip_image_u8_init() {
|
||||
return new clip_image_u8();
|
||||
}
|
||||
@ -2058,7 +2069,7 @@ static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, co
|
||||
return pos_embed_2d;
|
||||
}
|
||||
|
||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec, std::pair<int, int> load_image_size) {
|
||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec, struct load_image_size * load_image_size) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
@ -2070,7 +2081,7 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3
|
||||
return clip_image_batch_encode(ctx, n_threads, &imgs, vec, load_image_size);
|
||||
}
|
||||
|
||||
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec, std::pair<int, int> load_image_size) {
|
||||
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec, struct load_image_size * load_image_size) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
@ -2148,8 +2159,12 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
|
||||
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
|
||||
struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
|
||||
int pos_w = load_image_size.first/patch_size;
|
||||
int pos_h = load_image_size.second/patch_size;
|
||||
if(load_image_size==nullptr){
|
||||
load_image_size= load_image_size_init();
|
||||
}
|
||||
LOG_TEE("%s : %d %d\n", __func__, load_image_size->image_size_width, load_image_size->image_size_height);
|
||||
int pos_w = load_image_size->image_size_width/patch_size;
|
||||
int pos_h = load_image_size->image_size_height/patch_size;
|
||||
int embed_dim = 4096;
|
||||
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
|
||||
|
||||
|
@ -3,7 +3,6 @@
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <utility>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
@ -27,6 +26,10 @@ extern "C" {
|
||||
|
||||
struct clip_ctx;
|
||||
|
||||
struct load_image_size {
|
||||
int image_size_width;
|
||||
int image_size_height;
|
||||
};
|
||||
struct clip_image_u8_batch {
|
||||
struct clip_image_u8 * data;
|
||||
size_t size;
|
||||
@ -37,7 +40,7 @@ struct clip_image_f32_batch {
|
||||
size_t size;
|
||||
};
|
||||
|
||||
CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity, std::pair<int, int> load_image_size = {448, 448});
|
||||
CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity, struct load_image_size * load_image_size = nullptr);
|
||||
CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity);
|
||||
|
||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
@ -56,6 +59,7 @@ CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API struct load_image_size * load_image_size_init();
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
|
||||
@ -76,8 +80,8 @@ CLIP_API void uhd_normalize_image_u8_to_f32(struct clip_ctx * ctx, const clip_im
|
||||
|
||||
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec, std::pair<int, int> load_image_size = {448, 448});
|
||||
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec, std::pair<int, int> load_image_size = {448, 448});
|
||||
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec, struct load_image_size * load_image_size = nullptr);
|
||||
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec, struct load_image_size * load_image_size = nullptr);
|
||||
|
||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||
|
||||
|
@ -31,6 +31,9 @@ struct clip_image_grid_shape {
|
||||
int second;
|
||||
};
|
||||
|
||||
struct uhd_image_embed {
|
||||
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
||||
};
|
||||
/**
|
||||
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||||
*
|
||||
@ -410,7 +413,7 @@ void llava_image_embed_free(struct llava_image_embed * embed) {
|
||||
free(embed);
|
||||
}
|
||||
|
||||
static bool encode_image_with_clip_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos, std::pair<int, int> load_image_size) {
|
||||
static bool encode_image_with_clip_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos, struct load_image_size * load_image_size) {
|
||||
// std::vector<clip_image_f32*> img_res_v;
|
||||
// format VectN x H x W x RGB (N x 448 x 448 x 3)
|
||||
clip_image_f32 * img_res_v = clip_image_f32_init();
|
||||
@ -683,9 +686,10 @@ struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx *
|
||||
float* image_embed = NULL;
|
||||
int n_image_pos = 0;
|
||||
int patch_size=14;
|
||||
std::pair<int, int> load_image_size;
|
||||
load_image_size.first = imgs[i][j]->nx;
|
||||
load_image_size.second = imgs[i][j]->ny;
|
||||
struct load_image_size * load_image_size = load_image_size_init();
|
||||
load_image_size->image_size_width = imgs[i][j]->nx;
|
||||
load_image_size->image_size_height = imgs[i][j]->ny;
|
||||
LOG_TEE("%s : %d %d\n", __func__, load_image_size->image_size_width, load_image_size->image_size_height);
|
||||
bool image_embed_result = llava_image_embed_make_with_clip_img_uhd(ctx_clip, n_threads, only_v2_5_reshape_by_patch(imgs[i][j], patch_size), &image_embed, &n_image_pos, load_image_size);
|
||||
if (!image_embed_result) {
|
||||
LOG_TEE("%s: coulnd't embed the image\n", __func__);
|
||||
@ -701,7 +705,7 @@ struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx *
|
||||
return results;
|
||||
}
|
||||
|
||||
bool llava_image_embed_make_with_clip_img_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out, std::pair<int, int> load_image_size) {
|
||||
bool llava_image_embed_make_with_clip_img_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out, struct load_image_size * load_image_size) {
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
|
||||
if (!image_embd) {
|
||||
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||||
|
@ -18,15 +18,13 @@
|
||||
#endif
|
||||
|
||||
struct clip_ctx;
|
||||
|
||||
struct uhd_image_embed {
|
||||
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
||||
};
|
||||
struct uhd_image_embed;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct uhd_image_embed;
|
||||
struct llava_image_embed {
|
||||
float * embed;
|
||||
int n_image_pos;
|
||||
@ -47,7 +45,7 @@ LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
||||
/** build an image embed from image file bytes */
|
||||
LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img);
|
||||
/** build an image embed from a path to an image filename */
|
||||
LLAVA_API bool llava_image_embed_make_with_clip_img_uhd(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out, std::pair<int, int> load_image_size = {448, 448});
|
||||
LLAVA_API bool llava_image_embed_make_with_clip_img_uhd(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out, struct load_image_size * load_image_size = nullptr);
|
||||
LLAVA_API bool llava_image_embed_make_with_clip_img_ollama(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
|
||||
LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
|
||||
LLAVA_API void llava_image_embed_free_uhd(struct uhd_image_embed * embed);
|
||||
|
@ -10,6 +10,10 @@
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
struct uhd_image_embed {
|
||||
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
||||
};
|
||||
|
||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
|
@ -58,7 +58,7 @@ struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
std::pair<int, int> load_image_size = std::make_pair(448, 448);
|
||||
struct load_image_size * load_image_size = load_image_size_init();
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1, load_image_size);
|
||||
return ctx_clip;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user