mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 06:10:29 +01:00
llama : add EXAONE model support (#9025)
* add exaone model support * add chat template * fix whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add ftype * add exaone pre-tokenizer in `llama-vocab.cpp` Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com> * fix lint Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com> * add `EXAONE` to supported models in `README.md` * fix space Co-authored-by: compilade <git@compilade.net> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: compilade <113953597+compilade@users.noreply.github.com> Co-authored-by: compilade <git@compilade.net>
This commit is contained in:
parent
fb487bb567
commit
c679e0cb5c
@ -105,6 +105,7 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
|
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
|
||||||
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b)
|
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b)
|
||||||
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
||||||
|
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
||||||
|
|
||||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
||||||
|
|
||||||
|
@ -596,6 +596,9 @@ class Model:
|
|||||||
if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
|
if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
|
||||||
# ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
|
# ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
|
||||||
res = "gpt3-finnish"
|
res = "gpt3-finnish"
|
||||||
|
if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
|
||||||
|
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
|
||||||
|
res = "exaone"
|
||||||
|
|
||||||
if res is None:
|
if res is None:
|
||||||
logger.warning("\n")
|
logger.warning("\n")
|
||||||
@ -3781,6 +3784,77 @@ class NemotronModel(Model):
|
|||||||
|
|
||||||
return [(self.map_tensor_name(name), data_torch)]
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
|
|
||||||
|
@Model.register("ExaoneForCausalLM")
|
||||||
|
class ExaoneModel(Model):
|
||||||
|
model_arch = gguf.MODEL_ARCH.EXAONE
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
hparams = self.hparams
|
||||||
|
|
||||||
|
assert(hparams["activation_function"] == "silu")
|
||||||
|
|
||||||
|
max_position_embeddings = hparams["max_position_embeddings"]
|
||||||
|
embed_dim = hparams["hidden_size"]
|
||||||
|
num_heads = hparams["num_attention_heads"]
|
||||||
|
num_kv_heads = hparams.get("num_key_value_heads", num_heads)
|
||||||
|
layer_norm_eps = hparams["layer_norm_epsilon"]
|
||||||
|
intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
|
||||||
|
num_layers = hparams["num_layers"]
|
||||||
|
# ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
|
||||||
|
# attention_dropout_rate = hparams["attention_dropout"]
|
||||||
|
# ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
|
||||||
|
# embed_dropout_rate = hparams["embed_dropout"]
|
||||||
|
self.gguf_writer.add_embedding_length(embed_dim)
|
||||||
|
self.gguf_writer.add_head_count(num_heads)
|
||||||
|
self.gguf_writer.add_head_count_kv(num_kv_heads)
|
||||||
|
self.gguf_writer.add_context_length(max_position_embeddings)
|
||||||
|
self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
|
||||||
|
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||||||
|
self.gguf_writer.add_block_count(num_layers)
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
|
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||||
|
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||||
|
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
|
||||||
|
rotary_factor = rotary_factor if rotary_factor is not None else 1.0
|
||||||
|
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||||
|
if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
|
||||||
|
if hparams["rope_scaling"].get("type") == "linear":
|
||||||
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||||
|
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
|
||||||
|
|
||||||
|
def prepare_tensors(self):
|
||||||
|
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||||
|
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||||
|
base = self.hparams.get("rope_theta", 10000.0)
|
||||||
|
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||||
|
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||||
|
|
||||||
|
factor = rope_scaling.get("factor", 8.0)
|
||||||
|
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
|
||||||
|
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
|
||||||
|
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
|
||||||
|
|
||||||
|
low_freq_wavelen = old_context_len / low_freq_factor
|
||||||
|
high_freq_wavelen = old_context_len / high_freq_factor
|
||||||
|
assert low_freq_wavelen != high_freq_wavelen
|
||||||
|
|
||||||
|
rope_factors = []
|
||||||
|
for freq in freqs:
|
||||||
|
wavelen = 2 * math.pi / freq
|
||||||
|
if wavelen < high_freq_wavelen:
|
||||||
|
rope_factors.append(1)
|
||||||
|
elif wavelen > low_freq_wavelen:
|
||||||
|
rope_factors.append(factor)
|
||||||
|
else:
|
||||||
|
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||||
|
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||||
|
|
||||||
|
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||||
|
|
||||||
|
super().prepare_tensors()
|
||||||
|
|
||||||
###### CONVERSION LOGIC ######
|
###### CONVERSION LOGIC ######
|
||||||
|
|
||||||
|
|
||||||
|
@ -96,6 +96,7 @@ models = [
|
|||||||
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
||||||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||||||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||||||
|
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -220,6 +220,7 @@ class MODEL_ARCH(IntEnum):
|
|||||||
T5ENCODER = auto()
|
T5ENCODER = auto()
|
||||||
JAIS = auto()
|
JAIS = auto()
|
||||||
NEMOTRON = auto()
|
NEMOTRON = auto()
|
||||||
|
EXAONE = auto()
|
||||||
|
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
@ -349,6 +350,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||||||
MODEL_ARCH.T5ENCODER: "t5encoder",
|
MODEL_ARCH.T5ENCODER: "t5encoder",
|
||||||
MODEL_ARCH.JAIS: "jais",
|
MODEL_ARCH.JAIS: "jais",
|
||||||
MODEL_ARCH.NEMOTRON: "nemotron",
|
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||||
|
MODEL_ARCH.EXAONE: "exaone",
|
||||||
}
|
}
|
||||||
|
|
||||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
@ -1082,6 +1084,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.EXAONE: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
# TODO
|
# TODO
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ class TensorNameMap:
|
|||||||
# Token embeddings
|
# Token embeddings
|
||||||
MODEL_TENSOR.TOKEN_EMBD: (
|
MODEL_TENSOR.TOKEN_EMBD: (
|
||||||
"gpt_neox.embed_in", # gptneox
|
"gpt_neox.embed_in", # gptneox
|
||||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
|
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
|
||||||
"transformer.word_embeddings", # falcon
|
"transformer.word_embeddings", # falcon
|
||||||
"word_embeddings", # bloom
|
"word_embeddings", # bloom
|
||||||
"model.embed_tokens", # llama-hf nemotron
|
"model.embed_tokens", # llama-hf nemotron
|
||||||
@ -52,7 +52,7 @@ class TensorNameMap:
|
|||||||
# Output
|
# Output
|
||||||
MODEL_TENSOR.OUTPUT: (
|
MODEL_TENSOR.OUTPUT: (
|
||||||
"embed_out", # gptneox
|
"embed_out", # gptneox
|
||||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron
|
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone
|
||||||
"output", # llama-pth bloom internlm2
|
"output", # llama-pth bloom internlm2
|
||||||
"word_embeddings_for_head", # persimmon
|
"word_embeddings_for_head", # persimmon
|
||||||
"lm_head.linear", # phi2
|
"lm_head.linear", # phi2
|
||||||
@ -62,7 +62,7 @@ class TensorNameMap:
|
|||||||
# Output norm
|
# Output norm
|
||||||
MODEL_TENSOR.OUTPUT_NORM: (
|
MODEL_TENSOR.OUTPUT_NORM: (
|
||||||
"gpt_neox.final_layer_norm", # gptneox
|
"gpt_neox.final_layer_norm", # gptneox
|
||||||
"transformer.ln_f", # gpt2 gpt-j falcon jais
|
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
|
||||||
"model.norm", # llama-hf baichuan internlm2
|
"model.norm", # llama-hf baichuan internlm2
|
||||||
"norm", # llama-pth
|
"norm", # llama-pth
|
||||||
"transformer.norm_f", # mpt dbrx
|
"transformer.norm_f", # mpt dbrx
|
||||||
@ -89,7 +89,7 @@ class TensorNameMap:
|
|||||||
# Attention norm
|
# Attention norm
|
||||||
MODEL_TENSOR.ATTN_NORM: (
|
MODEL_TENSOR.ATTN_NORM: (
|
||||||
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||||
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
|
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
|
||||||
"transformer.blocks.{bid}.norm_1", # mpt
|
"transformer.blocks.{bid}.norm_1", # mpt
|
||||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||||
"h.{bid}.input_layernorm", # bloom
|
"h.{bid}.input_layernorm", # bloom
|
||||||
@ -143,6 +143,7 @@ class TensorNameMap:
|
|||||||
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
|
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
|
||||||
"model.layers.{bid}.attention.wq", # internlm2
|
"model.layers.{bid}.attention.wq", # internlm2
|
||||||
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
|
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
|
||||||
|
"transformer.h.{bid}.attn.attention.q_proj", # exaone
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention key
|
# Attention key
|
||||||
@ -155,6 +156,7 @@ class TensorNameMap:
|
|||||||
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
|
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
|
||||||
"model.layers.{bid}.attention.wk", # internlm2
|
"model.layers.{bid}.attention.wk", # internlm2
|
||||||
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
|
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
|
||||||
|
"transformer.h.{bid}.attn.attention.k_proj", # exaone
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention value
|
# Attention value
|
||||||
@ -166,7 +168,8 @@ class TensorNameMap:
|
|||||||
"transformer.h.{bid}.attn.v", # refact
|
"transformer.h.{bid}.attn.v", # refact
|
||||||
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
|
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
|
||||||
"model.layers.{bid}.attention.wv", # internlm2
|
"model.layers.{bid}.attention.wv", # internlm2
|
||||||
"transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
|
"transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
|
||||||
|
"transformer.h.{bid}.attn.attention.v_proj", # exaone
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention output
|
# Attention output
|
||||||
@ -191,6 +194,7 @@ class TensorNameMap:
|
|||||||
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
|
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
|
||||||
"encoder.layers.{bid}.self_attention.dense", # chatglm
|
"encoder.layers.{bid}.self_attention.dense", # chatglm
|
||||||
"transformer.layers.{bid}.attn.out_proj", # openelm
|
"transformer.layers.{bid}.attn.out_proj", # openelm
|
||||||
|
"transformer.h.{bid}.attn.attention.out_proj", # exaone
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention output norm
|
# Attention output norm
|
||||||
@ -216,7 +220,7 @@ class TensorNameMap:
|
|||||||
# Feed-forward norm
|
# Feed-forward norm
|
||||||
MODEL_TENSOR.FFN_NORM: (
|
MODEL_TENSOR.FFN_NORM: (
|
||||||
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
||||||
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
|
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
|
||||||
"h.{bid}.post_attention_layernorm", # bloom
|
"h.{bid}.post_attention_layernorm", # bloom
|
||||||
"transformer.blocks.{bid}.norm_2", # mpt
|
"transformer.blocks.{bid}.norm_2", # mpt
|
||||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron
|
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron
|
||||||
@ -278,6 +282,7 @@ class TensorNameMap:
|
|||||||
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
|
||||||
"model.layers.{bid}.residual_mlp.w3", # arctic
|
"model.layers.{bid}.residual_mlp.w3", # arctic
|
||||||
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
|
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
|
||||||
|
"transformer.h.{bid}.mlp.c_fc_1", # exaone
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_UP_EXP: (
|
MODEL_TENSOR.FFN_UP_EXP: (
|
||||||
@ -309,6 +314,7 @@ class TensorNameMap:
|
|||||||
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
|
||||||
"transformer.h.{bid}.mlp.linear_1", # refact
|
"transformer.h.{bid}.mlp.linear_1", # refact
|
||||||
"model.layers.{bid}.residual_mlp.w1", # arctic
|
"model.layers.{bid}.residual_mlp.w1", # arctic
|
||||||
|
"transformer.h.{bid}.mlp.c_fc_0", # exaone
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||||
@ -348,6 +354,7 @@ class TensorNameMap:
|
|||||||
"model.layers.{bid}.residual_mlp.w2", # arctic
|
"model.layers.{bid}.residual_mlp.w2", # arctic
|
||||||
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
|
||||||
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
|
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
|
||||||
|
"model.layers.h.{bid}.mlp.c_proj", # exaone
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||||
|
@ -95,6 +95,7 @@ extern "C" {
|
|||||||
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
|
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
|
||||||
LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
|
LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
|
||||||
LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
|
LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
|
||||||
|
LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
|
||||||
};
|
};
|
||||||
|
|
||||||
enum llama_rope_type {
|
enum llama_rope_type {
|
||||||
|
@ -388,6 +388,7 @@ struct llm_tokenizer_bpe {
|
|||||||
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
||||||
case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
|
case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
|
||||||
case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
|
case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
|
||||||
|
case LLAMA_VOCAB_PRE_TYPE_EXAONE:
|
||||||
regex_exprs = {
|
regex_exprs = {
|
||||||
"\\p{N}",
|
"\\p{N}",
|
||||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||||
|
212
src/llama.cpp
212
src/llama.cpp
@ -211,6 +211,7 @@ enum llm_arch {
|
|||||||
LLM_ARCH_T5ENCODER,
|
LLM_ARCH_T5ENCODER,
|
||||||
LLM_ARCH_JAIS,
|
LLM_ARCH_JAIS,
|
||||||
LLM_ARCH_NEMOTRON,
|
LLM_ARCH_NEMOTRON,
|
||||||
|
LLM_ARCH_EXAONE,
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -257,6 +258,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||||||
{ LLM_ARCH_T5ENCODER, "t5encoder" },
|
{ LLM_ARCH_T5ENCODER, "t5encoder" },
|
||||||
{ LLM_ARCH_JAIS, "jais" },
|
{ LLM_ARCH_JAIS, "jais" },
|
||||||
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
||||||
|
{ LLM_ARCH_EXAONE, "exaone" },
|
||||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -1316,6 +1318,25 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_EXAONE,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
{
|
{
|
||||||
@ -5263,6 +5284,15 @@ static void llm_load_hparams(
|
|||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_EXAONE:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 32: model.type = e_model::MODEL_8B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
default: (void)0;
|
default: (void)0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -5501,6 +5531,9 @@ static void llm_load_vocab(
|
|||||||
} else if (
|
} else if (
|
||||||
tokenizer_pre == "gpt3-finnish") {
|
tokenizer_pre == "gpt3-finnish") {
|
||||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
|
||||||
|
} else if (
|
||||||
|
tokenizer_pre == "exaone") {
|
||||||
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE;
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||||
}
|
}
|
||||||
@ -7638,6 +7671,36 @@ static bool llm_load_tensors(
|
|||||||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_EXAONE:
|
||||||
|
{
|
||||||
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
|
||||||
|
// output
|
||||||
|
{
|
||||||
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||||
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||||
|
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||||
|
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
|
|
||||||
|
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||||
|
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||||
|
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||||
|
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||||
|
|
||||||
|
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||||
|
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||||
|
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||||
|
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||||
|
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||||
|
}
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
throw std::runtime_error("unknown architecture");
|
throw std::runtime_error("unknown architecture");
|
||||||
}
|
}
|
||||||
@ -13895,7 +13958,6 @@ struct llm_build_context {
|
|||||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||||
model.layers[il].wo, model.layers[il].bo,
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (il == n_layer - 1) {
|
if (il == n_layer - 1) {
|
||||||
@ -13947,6 +14009,133 @@ struct llm_build_context {
|
|||||||
|
|
||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph * build_exaone() {
|
||||||
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||||
|
|
||||||
|
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||||
|
int32_t n_tokens = this->n_tokens;
|
||||||
|
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
|
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
struct ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
// norm
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||||
|
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||||
|
|
||||||
|
// compute Q and K and RoPE them
|
||||||
|
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
if (model.layers[il].bq) {
|
||||||
|
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
if (model.layers[il].bk) {
|
||||||
|
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
if (model.layers[il].bv) {
|
||||||
|
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||||
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
|
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (il == n_layer - 1) {
|
||||||
|
// skip computing output for unused tokens
|
||||||
|
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
n_tokens = n_outputs;
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||||
|
model.layers[il].ffn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||||
|
model.layers[il].ffn_up, NULL, NULL,
|
||||||
|
model.layers[il].ffn_gate, NULL, NULL,
|
||||||
|
model.layers[il].ffn_down, NULL, NULL,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, -1);
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
||||||
@ -14206,6 +14395,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||||||
{
|
{
|
||||||
result = llm.build_nemotron();
|
result = llm.build_nemotron();
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_EXAONE:
|
||||||
|
{
|
||||||
|
result = llm.build_exaone();
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
GGML_ABORT("fatal error");
|
GGML_ABORT("fatal error");
|
||||||
}
|
}
|
||||||
@ -17277,6 +17470,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||||||
case LLM_ARCH_GPTNEOX:
|
case LLM_ARCH_GPTNEOX:
|
||||||
case LLM_ARCH_CODESHELL:
|
case LLM_ARCH_CODESHELL:
|
||||||
case LLM_ARCH_NEMOTRON:
|
case LLM_ARCH_NEMOTRON:
|
||||||
|
case LLM_ARCH_EXAONE:
|
||||||
return LLAMA_ROPE_TYPE_NEOX;
|
return LLAMA_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
// all model arches should be listed explicitly here
|
// all model arches should be listed explicitly here
|
||||||
@ -19207,6 +19401,22 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "Assistant:";
|
ss << "Assistant:";
|
||||||
}
|
}
|
||||||
|
} else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) {
|
||||||
|
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||||
|
// EXAONE-3.0-7.8B-Instruct
|
||||||
|
for (auto message : chat) {
|
||||||
|
std::string role(message->role);
|
||||||
|
if (role == "system") {
|
||||||
|
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
|
||||||
|
} else if (role == "user") {
|
||||||
|
ss << "[|user|]" << trim(message->content) << "\n";
|
||||||
|
} else if (role == "assistant") {
|
||||||
|
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (add_ass) {
|
||||||
|
ss << "[|assistant|]";
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
// template not supported
|
// template not supported
|
||||||
return -1;
|
return -1;
|
||||||
|
Loading…
Reference in New Issue
Block a user