diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py index a937410dd..53bb8a3d9 100755 --- a/convert-lora-to-ggml.py +++ b/convert-lora-to-ggml.py @@ -3,7 +3,6 @@ from __future__ import annotations import json import os -import re import struct import sys from typing import Any, BinaryIO, Sequence @@ -11,43 +10,15 @@ from typing import Any, BinaryIO, Sequence import numpy as np import torch +from pathlib import Path +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) +import gguf + + NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} -HF_SUBLAYER_TO_GGML = { - "self_attn.q_proj": "attn_q", - "self_attn.k_proj": "attn_k", - "self_attn.v_proj": "attn_v", - "self_attn.o_proj": "attn_output", - "mlp.gate_proj": "ffn_gate", - "mlp.down_proj": "ffn_down", - "mlp.up_proj": "ffn_up", - "input_layernorm": "attn_norm", - "post_attention_layernorm": "ffn_norm", -} - - -def translate_tensor_name(t: str) -> str: - match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t) - if match: - nn = match.group(1) - sub_layer = match.group(2) - lora_type = match.group(3) - - sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer) - if sub_layer_renamed is None: - print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}") - sys.exit(1) - - output_string = ( - f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}" - ) - return output_string - else: - print(f"Error: unrecognized tensor {t}") - sys.exit(1) - - def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None: fout.write(b"ggla"[::-1]) # magic (ggml lora) fout.write(struct.pack("i", 1)) # file version @@ -61,9 +32,7 @@ def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None: fout.write(struct.pack("i", int(params["lora_alpha"]))) -def write_tensor_header( - self, name: str, shape: Sequence[int], data_type: np.dtype[Any] -) -> None: +def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None: sname = name.encode("utf-8") fout.write( struct.pack( @@ -78,11 +47,12 @@ def write_tensor_header( fout.seek((fout.tell() + 31) & -32) -if len(sys.argv) != 2: - print(f"Usage: python {sys.argv[0]} ") +if len(sys.argv) < 2: + print(f"Usage: python {sys.argv[0]} [arch]") print( "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" ) + print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") sys.exit(1) input_json = os.path.join(sys.argv[1], "adapter_config.json") @@ -90,6 +60,14 @@ input_model = os.path.join(sys.argv[1], "adapter_model.bin") output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") model = torch.load(input_model, map_location="cpu") +arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" + +if arch_name not in gguf.MODEL_ARCH_NAMES.values(): + print(f"Error: unsupported architecture {arch_name}") + sys.exit(1) + +arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] +name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone with open(input_json, "r") as f: params = json.load(f) @@ -117,6 +95,7 @@ with open(output_path, "wb") as fout: write_file_header(fout, params) for k, v in model.items(): + orig_k = k if k.endswith(".default.weight"): k = k.replace(".default.weight", ".weight") if k in ["llama_proj.weight", "llama_proj.bias"]: @@ -129,7 +108,32 @@ with open(output_path, "wb") as fout: v = v.float() t = v.detach().numpy() - tname = translate_tensor_name(k) + + prefix = "base_model.model." + if k.startswith(prefix): + k = k[len(prefix) :] + + lora_suffixes = (".lora_A.weight", ".lora_B.weight") + if k.endswith(lora_suffixes): + suffix = k[-len(lora_suffixes[0]):] + k = k[: -len(lora_suffixes[0])] + else: + print(f"Error: unrecognized tensor name {orig_k}") + sys.exit(1) + + tname = name_map.get_name(k) + if tname is None: + print(f"Error: could not map tensor name {orig_k}") + print(" Note: the arch parameter must be specified if the model is not llama") + sys.exit(1) + + if suffix == ".lora_A.weight": + tname += ".weight.loraA" + elif suffix == ".lora_B.weight": + tname += ".weight.loraB" + else: + assert False + print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") write_tensor_header(fout, tname, t.shape, t.dtype) t.tofile(fout) diff --git a/llama.cpp b/llama.cpp index 58fe7492e..f49214c13 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8647,53 +8647,60 @@ static int llama_apply_lora_from_file_internal( const int64_t t_start_lora_us = ggml_time_us(); - auto fin = std::ifstream(path_lora, std::ios::binary); - if (!fin) { - LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora); - return 1; - } + llama_file fin(path_lora, "rb"); // verify magic and version { - uint32_t magic; - fin.read((char *) &magic, sizeof(magic)); - uint32_t format_version; - fin.read((char *) &format_version, sizeof(format_version)); + uint32_t magic = fin.read_u32(); + if (magic != LLAMA_FILE_MAGIC_GGLA) { + LLAMA_LOG_ERROR("%s: bad file magic\n", __func__); + return 1; + } + uint32_t format_version = fin.read_u32(); if (format_version != 1) { LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ ); return 1; } } - int32_t lora_r; - int32_t lora_alpha; - fin.read((char *) &lora_r, sizeof(lora_r)); - fin.read((char *) &lora_alpha, sizeof(lora_alpha)); + int32_t lora_r = fin.read_u32(); + int32_t lora_alpha = fin.read_u32(); float scaling = scale * (float)lora_alpha / (float)lora_r; LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); + // create a name -> tensor map of the model to accelerate lookups + // find the max tensor size to estimate the required temporary buffer size + size_t max_tensor_size = 0; + std::unordered_map model_tensors; + for (const auto & kv : model.tensors_by_name) { + model_tensors.insert(kv); + size_t f32_size = ggml_nelements(kv.second) * sizeof(float); + max_tensor_size = std::max(max_tensor_size, f32_size); + } + // create a temporary ggml context to store the lora tensors - // todo: calculate size from biggest possible tensor - std::vector lora_buf(1024ull * 1024ull * 1024ull); + // TODO: use ggml-alloc + size_t lora_ctx_size = max_tensor_size * 3; + LLAMA_LOG_INFO("%s: allocating %.f MB for lora temporary buffer\n", __func__, lora_ctx_size / 1024.0 / 1024.0); + std::vector lora_buf(lora_ctx_size); + struct ggml_init_params params; params.mem_size = lora_buf.size(); params.mem_buffer = lora_buf.data(); params.no_alloc = false; - ggml_context * lora_ctx = ggml_init(params); - std::unordered_map lora_tensors; + using unique_context = std::unique_ptr; - // create a name -> tensor map of the model to accelerate lookups - std::unordered_map model_tensors; - for (const auto & kv : model.tensors_by_name) { - model_tensors.insert(kv); - } + unique_context lora_ctx(nullptr, ggml_free); + lora_ctx.reset(ggml_init(params)); + std::unordered_map lora_tensors; // load base model std::unique_ptr ml; - ggml_context * base_ctx = NULL; + + unique_context base_ctx(nullptr, ggml_free); std::vector base_buf; if (path_base_model) { LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); @@ -8702,6 +8709,7 @@ static int llama_apply_lora_from_file_internal( size_t ctx_size; size_t mmapped_size; ml->calc_sizes(ctx_size, mmapped_size); + base_buf.resize(ctx_size); ggml_init_params base_params; @@ -8709,9 +8717,9 @@ static int llama_apply_lora_from_file_internal( base_params.mem_buffer = base_buf.data(); base_params.no_alloc = ml->use_mmap; - base_ctx = ggml_init(base_params); + base_ctx.reset(ggml_init(base_params)); - // maybe this should in llama_model_loader + // maybe this should be in llama_model_loader if (ml->use_mmap) { ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa())); } @@ -8724,27 +8732,35 @@ static int llama_apply_lora_from_file_internal( std::vector work_buffer; while (true) { + if (fin.tell() == fin.size) { + // eof + break; + } + int32_t n_dims; - int32_t length; + int32_t name_len; int32_t ftype; - fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); - fin.read(reinterpret_cast(&length), sizeof(length)); - fin.read(reinterpret_cast(&ftype), sizeof(ftype)); - if (fin.eof()) { - break; + fin.read_raw(&n_dims, sizeof(n_dims)); + fin.read_raw(&name_len, sizeof(name_len)); + fin.read_raw(&ftype, sizeof(ftype)); + + if (n_dims != 1 && n_dims != 2) { + LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims); + return 1; } int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { - fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); + fin.read_raw(&ne[i], sizeof(ne[i])); } std::string name; { + GGML_ASSERT(name_len <= 1024); char buf[1024]; - fin.read(buf, length); - name = std::string(buf, length); + fin.read_raw(buf, name_len); + name = std::string(buf, name_len); } // check for lora suffix and get the type of tensor @@ -8758,7 +8774,7 @@ static int llama_apply_lora_from_file_internal( std::string lora_type = name.substr(pos + lora_suffix.length()); std::string base_name = name; base_name.erase(pos); - // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); + // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(), base_name.c_str(), lora_type.c_str()); if (model_tensors.find(base_name) == model_tensors.end()) { LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); @@ -8777,22 +8793,15 @@ static int llama_apply_lora_from_file_internal( return false; } } - ggml_tensor * lora_tensor; - if (n_dims == 2) { - lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); - } - else { - LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims); - return 1; - } - ggml_set_name(lora_tensor, "lora_tensor"); + ggml_tensor * lora_tensor = ggml_new_tensor_2d(lora_ctx.get(), wtype, ne[0], ne[1]); + ggml_set_name(lora_tensor, name.c_str()); // load tensor data - size_t offset = fin.tellg(); + size_t offset = fin.tell(); size_t tensor_data_size = ggml_nbytes(lora_tensor); offset = (offset + 31) & -32; - fin.seekg(offset); - fin.read((char*)lora_tensor->data, tensor_data_size); + fin.seek(offset, SEEK_SET); + fin.read_raw(lora_tensor->data, tensor_data_size); lora_tensors[name] = lora_tensor; @@ -8822,13 +8831,11 @@ static int llama_apply_lora_from_file_internal( // load from base model if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) { - // TODO: throw LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); return 1; } - // TODO: not tested!! maybe not working! - base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU); + base_t = ml->create_tensor(base_ctx.get(), base_name, { dest_t->ne[0], dest_t->ne[1] }, GGML_BACKEND_CPU); ml->load_data_for(base_t); } else { base_t = dest_t; @@ -8857,43 +8864,45 @@ static int llama_apply_lora_from_file_internal( } // w = w + BA*s - ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); + ggml_tensor * BA = ggml_mul_mat(lora_ctx.get(), loraA, loraB); offload_func(BA); ggml_set_name(BA, "BA"); if (scaling != 1.0f) { - ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling); + ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx.get(), scaling); ggml_set_name(scale_tensor, "scale_tensor"); - BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor); + BA = ggml_scale_inplace(lora_ctx.get(), BA, scale_tensor); offload_func(BA); ggml_set_name(BA, "BA_scaled"); } ggml_tensor * r; if (base_t == dest_t) { - r = ggml_add_inplace(lora_ctx, dest_t, BA); + r = ggml_add_inplace(lora_ctx.get(), dest_t, BA); offload_func_force_inplace(r); ggml_set_name(r, "r_add_inplace"); } else { - r = ggml_add(lora_ctx, base_t, BA); + r = ggml_add(lora_ctx.get(), base_t, BA); offload_func(r); ggml_set_name(r, "r_add"); - r = ggml_cpy(lora_ctx, r, dest_t); + r = ggml_cpy(lora_ctx.get(), r, dest_t); offload_func(r); ggml_set_name(r, "r_cpy"); } - struct ggml_cgraph * gf = ggml_new_graph(lora_ctx); + struct ggml_cgraph * gf = ggml_new_graph(lora_ctx.get()); ggml_build_forward_expand(gf, r); ggml_graph_compute_helper(work_buffer, gf, n_threads); + // the tensors in the adapter must be sorted such that loraA and loraB of the same tensor are next to each other + GGML_ASSERT(lora_tensors.size() == 2); + // we won't need these tensors again, reset the context to save memory - ggml_free(lora_ctx); - lora_ctx = ggml_init(params); + lora_ctx.reset(ggml_init(params)); lora_tensors.clear(); n_tensors++; @@ -8903,12 +8912,6 @@ static int llama_apply_lora_from_file_internal( } } - // TODO: this should be in a destructor, it will leak on failure - ggml_free(lora_ctx); - if (base_ctx) { - ggml_free(base_ctx); - } - const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0); diff --git a/llama.h b/llama.h index 45a65cacb..15ab4f80e 100644 --- a/llama.h +++ b/llama.h @@ -39,6 +39,7 @@ #define LLAMA_MAX_RNG_STATE (64*1024) +#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla' #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn' #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN