mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
llama : rename missed batch params/vars to ubatch
This commit renames the `batch` parameter to `ubatch` in the `llama_kv_cache_find_slot`, `llm_build_inp_embd`, and `llm_build_mamba` functions. The motivation for this is that this should have been done as part of Commit 19d900a7565b8f6b0a708836a57d26966cb9efe2 ("llama : rename batch to ubatch (#9950)") but for some reason I missed these functions in that commit and only noticed them now (sorry).
This commit is contained in:
parent
cc2983d375
commit
c76851eeb0
@ -3591,10 +3591,10 @@ static bool llama_kv_cache_init(
|
||||
// to the first cell of the slot.
|
||||
static bool llama_kv_cache_find_slot(
|
||||
struct llama_kv_cache & cache,
|
||||
const struct llama_ubatch & batch) {
|
||||
const uint32_t n_tokens = batch.n_tokens;
|
||||
const uint32_t n_seqs = batch.n_seqs;
|
||||
const uint32_t n_seq_tokens = batch.n_seq_tokens;
|
||||
const struct llama_ubatch & ubatch) {
|
||||
const uint32_t n_tokens = ubatch.n_tokens;
|
||||
const uint32_t n_seqs = ubatch.n_seqs;
|
||||
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
if (cache.recurrent) {
|
||||
// For recurrent state architectures (like Mamba or RWKV),
|
||||
@ -3602,16 +3602,16 @@ static bool llama_kv_cache_find_slot(
|
||||
// A slot should be always be contiguous.
|
||||
|
||||
// can only process batches with an equal number of new tokens in each sequence
|
||||
GGML_ASSERT(batch.equal_seqs);
|
||||
GGML_ASSERT(ubatch.equal_seqs);
|
||||
|
||||
int32_t min = cache.size - 1;
|
||||
int32_t max = 0;
|
||||
|
||||
// everything should fit if all seq_ids are smaller than the max
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const uint32_t n_seq_id = batch.n_seq_id[s];
|
||||
const uint32_t n_seq_id = ubatch.n_seq_id[s];
|
||||
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
||||
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
||||
|
||||
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
|
||||
// too big seq_id
|
||||
@ -3670,7 +3670,7 @@ static bool llama_kv_cache_find_slot(
|
||||
|
||||
// find usable cell range
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||||
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
||||
llama_kv_cell & seq_meta = cache.cells[seq_id];
|
||||
bool has_cell = false;
|
||||
if (seq_meta.tail >= 0) {
|
||||
@ -3709,7 +3709,7 @@ static bool llama_kv_cache_find_slot(
|
||||
// gather and re-order
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
int32_t dst_id = s + min;
|
||||
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
|
||||
int32_t src_id = cache.cells[ubatch.seq_id[s][0]].tail;
|
||||
if (dst_id != src_id) {
|
||||
llama_kv_cell & dst_cell = cache.cells[dst_id];
|
||||
llama_kv_cell & src_cell = cache.cells[src_id];
|
||||
@ -3730,7 +3730,7 @@ static bool llama_kv_cache_find_slot(
|
||||
|
||||
// update the pos of the used seqs
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
||||
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
||||
int32_t cell_id = s + min;
|
||||
llama_kv_cell & cell = cache.cells[cell_id];
|
||||
|
||||
@ -3738,12 +3738,12 @@ static bool llama_kv_cache_find_slot(
|
||||
// What should happen when the pos backtracks or skips a value?
|
||||
// Clearing the state mid-batch would require special-casing which isn't done.
|
||||
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
||||
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
|
||||
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
|
||||
}
|
||||
cell.pos = last_pos;
|
||||
cell.seq_id.clear();
|
||||
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
||||
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
|
||||
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
||||
cell.seq_id.insert(seq_id);
|
||||
cache.cells[seq_id].tail = cell_id;
|
||||
}
|
||||
@ -3795,10 +3795,10 @@ static bool llama_kv_cache_find_slot(
|
||||
for (uint32_t s = 0; s < n_seqs; s++) {
|
||||
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
|
||||
uint32_t k = s*n_seq_tokens + i;
|
||||
cache.cells[cache.head + k].pos = batch.pos[k];
|
||||
cache.cells[cache.head + k].pos = ubatch.pos[k];
|
||||
|
||||
for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
|
||||
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
|
||||
for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
|
||||
cache.cells[cache.head + k].seq_id.insert(ubatch.seq_id[s][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -9178,21 +9178,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
struct ggml_context * ctx,
|
||||
struct llama_context & lctx,
|
||||
const llama_hparams & hparams,
|
||||
const llama_ubatch & batch,
|
||||
const llama_ubatch & ubatch,
|
||||
struct ggml_tensor * tok_embd,
|
||||
const llm_build_cb & cb) {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
if (batch.token) {
|
||||
lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
|
||||
if (ubatch.token) {
|
||||
lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ubatch.n_tokens);
|
||||
cb(lctx.inp_tokens, "inp_tokens", -1);
|
||||
ggml_set_input(lctx.inp_tokens);
|
||||
|
||||
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
||||
} else {
|
||||
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
||||
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
|
||||
inpL = lctx.inp_embd;
|
||||
ggml_set_input(lctx.inp_embd);
|
||||
}
|
||||
@ -9766,7 +9766,7 @@ static struct ggml_tensor * llm_build_copy_mask_state(
|
||||
static struct ggml_tensor * llm_build_mamba(
|
||||
struct ggml_context * ctx,
|
||||
struct llama_context & lctx,
|
||||
const llama_ubatch & batch,
|
||||
const llama_ubatch & ubatch,
|
||||
struct ggml_cgraph * graph,
|
||||
struct ggml_tensor * cur,
|
||||
struct ggml_tensor * state_copy,
|
||||
@ -9782,17 +9782,17 @@ static struct ggml_tensor * llm_build_mamba(
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t d_state = hparams.ssm_d_state;
|
||||
const int64_t dt_rank = hparams.ssm_dt_rank;
|
||||
const int64_t n_seqs = batch.n_seqs;
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
|
||||
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
|
||||
// Use the same RMS norm as the final layer norm
|
||||
const float norm_rms_eps = hparams.f_norm_rms_eps;
|
||||
|
||||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
GGML_ASSERT(n_seqs != 0);
|
||||
GGML_ASSERT(batch.equal_seqs);
|
||||
GGML_ASSERT(batch.n_tokens == n_seq_tokens * n_seqs);
|
||||
GGML_ASSERT(ubatch.equal_seqs);
|
||||
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||
|
||||
struct ggml_tensor * conv_states_all = kv.k_l[il];
|
||||
struct ggml_tensor * ssm_states_all = kv.v_l[il];
|
||||
@ -20440,10 +20440,10 @@ struct llama_data_read {
|
||||
|
||||
llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
|
||||
|
||||
llama_ubatch batch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
|
||||
batch.n_tokens = cell_count;
|
||||
batch.n_seq_tokens = cell_count;
|
||||
batch.n_seqs = 1;
|
||||
llama_ubatch ubatch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
|
||||
ubatch.n_tokens = cell_count;
|
||||
ubatch.n_seq_tokens = cell_count;
|
||||
ubatch.n_seqs = 1;
|
||||
|
||||
for (uint32_t i = 0; i < cell_count; ++i) {
|
||||
llama_pos pos;
|
||||
@ -20457,11 +20457,11 @@ struct llama_data_read {
|
||||
return false;
|
||||
}
|
||||
|
||||
batch.pos[i] = pos;
|
||||
ubatch.pos[i] = pos;
|
||||
}
|
||||
batch.n_seq_id[0] = 1;
|
||||
batch.seq_id[0] = &dest_seq_id;
|
||||
if (!llama_kv_cache_find_slot(kv_self, batch)) {
|
||||
ubatch.n_seq_id[0] = 1;
|
||||
ubatch.seq_id[0] = &dest_seq_id;
|
||||
if (!llama_kv_cache_find_slot(kv_self, ubatch)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
@ -20469,8 +20469,8 @@ struct llama_data_read {
|
||||
// DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
|
||||
// Assume that this is one contiguous block of cells
|
||||
GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
|
||||
GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
|
||||
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
|
||||
GGML_ASSERT(kv_self.cells[kv_self.head].pos == ubatch.pos[0]);
|
||||
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == ubatch.pos[cell_count - 1]);
|
||||
GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
|
||||
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
|
||||
} else {
|
||||
|
Loading…
x
Reference in New Issue
Block a user