llama : remove mirrors, perform Device -> Host when partial offload

This commit is contained in:
Georgi Gerganov 2023-12-03 19:46:06 +02:00
parent c44bc1ee00
commit c80b8a2bff
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

223
llama.cpp
View File

@ -3543,8 +3543,8 @@ static void llm_build_k_shift(
GGML_ASSERT(n_embd_head % n_rot == 0); GGML_ASSERT(n_embd_head % n_rot == 0);
struct ggml_tensor * K_shift_ref = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_ctx); struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_ctx);
cb(K_shift_ref, "K_shift_ref", -1); cb(K_shift, "K_shift", -1);
int rope_type = 0; int rope_type = 0;
@ -3555,9 +3555,6 @@ static void llm_build_k_shift(
} }
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * K_shift = ggml_view_tensor(ctx, K_shift_ref);
cb(K_shift, "K_shift", il);
struct ggml_tensor * tmp = struct ggml_tensor * tmp =
// we rotate only the first n_rot dimensions // we rotate only the first n_rot dimensions
ggml_rope_custom_inplace(ctx, ggml_rope_custom_inplace(ctx,
@ -3917,16 +3914,16 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions // inp_pos - contains the positions
struct ggml_tensor * inp_pos_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos_ref, "inp_pos_ref", -1); cb(inp_pos, "inp_pos", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
if (do_rope_shift) { if (do_rope_shift) {
@ -3934,18 +3931,6 @@ struct llm_build_context {
} }
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
// offloaded mirrors
// TODO: this is not ideal because when we do partial offloading, we will do Device->Host copies
// for all non-offloaded layers
struct ggml_tensor * inp_pos = ggml_view_tensor(ctx0, inp_pos_ref);
cb(inp_pos, "inp_pos", il);
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
struct ggml_tensor * inpSA = inpL; struct ggml_tensor * inpSA = inpL;
// norm // norm
@ -4051,16 +4036,16 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions // inp_pos - contains the positions
struct ggml_tensor * inp_pos_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos_ref, "inp_pos_ref", -1); cb(inp_pos, "inp_pos", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
if (do_rope_shift) { if (do_rope_shift) {
@ -4068,16 +4053,6 @@ struct llm_build_context {
} }
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
// offloaded mirrors
struct ggml_tensor * inp_pos = ggml_view_tensor(ctx0, inp_pos_ref);
cb(inp_pos, "inp_pos", il);
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
struct ggml_tensor * inpSA = inpL; struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
@ -4181,16 +4156,16 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions // inp_pos - contains the positions
struct ggml_tensor * inp_pos_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos_ref, "inp_pos_ref", -1); cb(inp_pos, "inp_pos", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
if (do_rope_shift) { if (do_rope_shift) {
@ -4198,15 +4173,6 @@ struct llm_build_context {
} }
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inp_pos = ggml_view_tensor(ctx0, inp_pos_ref);
cb(inp_pos, "inp_pos", il);
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
struct ggml_tensor * attn_norm; struct ggml_tensor * attn_norm;
attn_norm = llm_build_norm(ctx0, inpL, hparams, attn_norm = llm_build_norm(ctx0, inpL, hparams,
@ -4313,33 +4279,24 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions // inp_pos - contains the positions
struct ggml_tensor * inp_pos_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos_ref, "inp_pos_ref", -1); cb(inp_pos, "inp_pos", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos_ref); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1); cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos); inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1); cb(inpL, "inpL", -1);
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inp_pos = ggml_view_tensor(ctx0, inp_pos_ref);
cb(inp_pos, "inp_pos", il);
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, model.layers[il].attn_norm,
model.layers[il].attn_norm_b, model.layers[il].attn_norm_b,
@ -4422,31 +4379,22 @@ struct llm_build_context {
cb(inpL, "imp_embd", -1); cb(inpL, "imp_embd", -1);
// inp_pos - contains the positions // inp_pos - contains the positions
struct ggml_tensor * inp_pos_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos_ref, "inp_pos_ref", -1); cb(inp_pos, "inp_pos", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
if (do_rope_shift) { if (do_rope_shift) {
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, n_embd_head, freq_base, freq_scale, cb); llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, n_embd_head, freq_base, freq_scale, cb);
} }
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inp_pos = ggml_view_tensor(ctx0, inp_pos_ref);
cb(inp_pos, "inp_pos", il);
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
struct ggml_tensor * residual = inpL; struct ggml_tensor * residual = inpL;
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
@ -4641,20 +4589,14 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
struct ggml_tensor * inpSA = inpL; struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
@ -4738,12 +4680,12 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
inpL = llm_build_norm(ctx0, inpL, hparams, inpL = llm_build_norm(ctx0, inpL, hparams,
model.tok_norm, model.tok_norm,
@ -4752,12 +4694,6 @@ struct llm_build_context {
cb(inpL, "inp_norm", -1); cb(inpL, "inp_norm", -1);
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, model.layers[il].attn_norm,
model.layers[il].attn_norm_b, model.layers[il].attn_norm_b,
@ -4838,20 +4774,14 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
struct ggml_tensor * attn_norm; struct ggml_tensor * attn_norm;
attn_norm = llm_build_norm(ctx0, inpL, hparams, attn_norm = llm_build_norm(ctx0, inpL, hparams,
@ -4943,16 +4873,16 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions // inp_pos - contains the positions
struct ggml_tensor * inp_pos_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos_ref, "inp_pos_ref", -1); cb(inp_pos, "inp_pos", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
if (do_rope_shift) { if (do_rope_shift) {
@ -4960,15 +4890,6 @@ struct llm_build_context {
} }
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inp_pos = ggml_view_tensor(ctx0, inp_pos_ref);
cb(inp_pos, "inp_pos", il);
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
struct ggml_tensor * inpSA = inpL; struct ggml_tensor * inpSA = inpL;
// norm // norm
@ -5065,16 +4986,16 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions // inp_pos - contains the positions
struct ggml_tensor * inp_pos_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); struct ggml_tensor * inp_pos= ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos_ref, "inp_pos_ref", -1); cb(inp_pos, "inp_pos", -1);
// KQ_scale // KQ_scale
struct ggml_tensor * KQ_scale_ref = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * KQ_scale= ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale_ref, "KQ_scale_ref", -1); cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_ref = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); struct ggml_tensor * KQ_mask= ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask_ref, "KQ_mask_ref", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
if (do_rope_shift) { if (do_rope_shift) {
@ -5082,15 +5003,6 @@ struct llm_build_context {
} }
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inp_pos = ggml_view_tensor(ctx0, inp_pos_ref);
cb(inp_pos, "inp_pos", il);
struct ggml_tensor * KQ_scale = ggml_view_tensor(ctx0, KQ_scale_ref);
cb(KQ_scale, "KQ_scale", il);
struct ggml_tensor * KQ_mask = ggml_view_tensor(ctx0, KQ_mask_ref);
cb(KQ_mask, "KQ_mask", il);
struct ggml_tensor * inpSA = inpL; struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
@ -5274,15 +5186,10 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
//{ "inp_embd", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel //{ "inp_embd", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel
{ "pos_embd", OFFLOAD_FUNC_NR }, { "pos_embd", OFFLOAD_FUNC_NR },
{ "inp_pos_ref", OFFLOAD_FUNC_FRC }, // this is often used for KQ ops (e.g. rope) { "inp_pos", OFFLOAD_FUNC_FRC }, // this is often used for KQ ops (e.g. rope)
{ "KQ_scale_ref", OFFLOAD_FUNC_FRC }, { "KQ_scale", OFFLOAD_FUNC_FRC },
{ "KQ_mask_ref", OFFLOAD_FUNC_FRC }, { "KQ_mask", OFFLOAD_FUNC_FRC },
{ "K_shift_ref", OFFLOAD_FUNC_FRC }, { "K_shift", OFFLOAD_FUNC_FRC },
{ "inp_pos", OFFLOAD_FUNC },
{ "KQ_scale", OFFLOAD_FUNC },
{ "KQ_mask", OFFLOAD_FUNC },
{ "K_shift", OFFLOAD_FUNC },
{ "K_shifted", OFFLOAD_FUNC }, { "K_shifted", OFFLOAD_FUNC },
@ -5418,7 +5325,7 @@ static struct ggml_cgraph * llama_build_graph(
alloc_inp_embd = true; alloc_inp_embd = true;
} }
if (!alloc_inp_pos && strcmp(name, "inp_pos_ref") == 0) { if (!alloc_inp_pos && strcmp(name, "inp_pos") == 0) {
ggml_allocr_alloc(lctx.alloc, cur); ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc) && batch.pos) { if (!ggml_allocr_is_measure(lctx.alloc) && batch.pos) {
@ -5434,7 +5341,7 @@ static struct ggml_cgraph * llama_build_graph(
alloc_inp_pos = true; alloc_inp_pos = true;
} }
if (!alloc_inp_KQ_scale && strcmp(name, "KQ_scale_ref") == 0) { if (!alloc_inp_KQ_scale && strcmp(name, "KQ_scale") == 0) {
ggml_allocr_alloc(lctx.alloc, cur); ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) { if (!ggml_allocr_is_measure(lctx.alloc)) {
@ -5445,7 +5352,7 @@ static struct ggml_cgraph * llama_build_graph(
alloc_inp_KQ_scale = true; alloc_inp_KQ_scale = true;
} }
if (!alloc_inp_KQ_mask && strcmp(name, "KQ_mask_ref") == 0) { if (!alloc_inp_KQ_mask && strcmp(name, "KQ_mask") == 0) {
ggml_allocr_alloc(lctx.alloc, cur); ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) { if (!ggml_allocr_is_measure(lctx.alloc)) {
@ -5472,7 +5379,7 @@ static struct ggml_cgraph * llama_build_graph(
alloc_inp_KQ_mask = true; alloc_inp_KQ_mask = true;
} }
if (!alloc_inp_K_shift && strcmp(name, "K_shift_ref") == 0) { if (!alloc_inp_K_shift && strcmp(name, "K_shift") == 0) {
ggml_allocr_alloc(lctx.alloc, cur); ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) { if (!ggml_allocr_is_measure(lctx.alloc)) {